
Security (2) and Some Takeaway
(Lecture 26, cs262a) 

Ali Ghodsi and Ion Stoica,
UC Berkeley

December 2, 2020



Today’s Lecture (1/2)
CryptDB: Protecting Confidentiality with Encrypted Query
Processing, Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan
https://people.csail.mit.edu/nickolai/papers/popa-cryptdb.pdf

Opaque: An Oblivious and Encrypted Distributed Analytics 
Platform, Wenting Zheng, Ankur Dave, Jethro G. Beekman, 
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica
https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/zheng 2

https://people.csail.mit.edu/nickolai/papers/popa-cryptdb.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng


Today’s Lecture (2/2)
Query/process data running on an untrusted infrastructure

Public cloud a big part of the motivation

Two solutions
• Data is encrypted on server, so server cannot “see” it
• Data is protected by a hardware enclave that runs the client’s 

code; no other code (even OS) can “see” data
Need to be worried about side channel attacks. 

3



Designing a system

4

Tradeoff
Space

Functionality 
(Flexibility, Extensibility)

Performance

(Easy of use/
Consistency/
Safety/
Security/…)*

An exercise in picking the point in tradeoff space…



Tradeoff space examples
Performance Functionality 

(Flexibility / 
Extensibility)

* (Easy of use / Consistency/
Safety / Security/ Reliability…

SQL

Unix

Internet

Microkernels

MapReduce

Spark

TensorFlow or MPI

Easy of use

Easy of use / security

Reliability / QoS

Safety / Security

Scalability / reliability

Scalability / reliability

Easy of use



Big Theme: Indirection
Add an intermediate layer to

• Simplify system design
• Decouple evolution of 

lower and higher layer
Examples:

• Internet protocol (IP): between Transport and Link layers
• OS: between app and hardware
• VM: between OS and hardware
• LLVM IR: between high-level language and machine code
• Logical query plan: between SQL query and physical execution
• Abstract Device Interface: between MPI app and communication infra
• Spark: between data app and cluster (abstracts away parallelism)
• …

N

M

NxM N+M

N

M



Big Theme: End-to-end arguments
Think twice about implementing functionality at lower layer:
• Only if functionality shared by many apps
• Only if it doesn’t hurt performance of apps that don’t need it

Examples:
• IP (wide-area routing; shared by all transport protocols, e.g., TCP and UDP) 
• Microkernel, Exokernel (IPC, protection / isolation, maybe scheduling)
• RISC processor (basic memory and arithmetic operations)
• ADI for MPI (several functions vs 100+ functions)
• …

7



Big Theme: Specialization
Improve one dimension without impacting others

• Idea: Leverage semantics about workloads to specialize implementations!
Examples:

• SQL: focus on querying structured data (improve performance)
• CRDT: focus on commutative operations (improve performance)

– Also recall coordination avoidance
• GFS: focus on large, append only file systems (improve scalability)
• Idempotent operations (improve fault tolerance)
• GPU: focus on graphic, deep learning (improve performance)
• TPU: focus on deep learning (improve performance)
• …

8



Some advice on system design…
Typically many constraints, many goals you want to satisfy…

Resist the urge to satisfy all of them, prioritize!

Always start with the simplest design first
• Much easier to add features than remove them!
• Allow you to get early feedback, then iterate fast
• Minimalist API, clear semantics

Correctness first, optimization second
• Much easier to optimize latter than add fault tollerance!

“Make simple things simple and complex things possible” – Alan Kay
• Enable users to get some simple things done out of the box à adoption 
• Enable experts to experiement à you’ll learn a lot

9



Project
Poster session: 9-11am PT, Wednesday 12/16

Project reports due: 11:59PT, Friday 12/18

10


