Security (2) and Some Takeaway
(Lecture 26, cs262a)

Ali Ghodsi and lon Stoica,
UC Berkeley
December 2, 2020

Today’s Lecture (1/2)

CryptDB: Protecting Confidentiality with Encrypted Query

Processing, Raluca Ada Popa, Catherine M. S. Redfield, Nickolali
Zeldovich, and Hari Balakrishnan
https://people.csail. mit.edu/nickolai/papers/popa-cryptdb.pdf

Opaqgue: An Oblivious and Encrypted Distributed Analytics
Platform, Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and lon Stoica
https://www.usenix.org/conference/nsdil 7 /technical-
sessions/presentation/zheng 2

https://people.csail.mit.edu/nickolai/papers/popa-cryptdb.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

Today’s Lecture (2/2)

Query/process data running on an untrusted infrastructure
Public cloud a big part of the motivation

Two solutions
« Data is encrypted on server, so server cannot “see” it
« Data is protected by a hardware enclave that runs the client’s

code; no other code (even OS) can “see” data
Need to be worried about side channel attacks.

Designing a system

An exercise in picking the point in tradeoff space...

Functionality
(Flexibility, Extensibility)

Tradeoff
S (Easy of use/
el Consistency/
Performance sk Safety/

Security/...)

Tradeoff space examples

Performance | Functionality | * (Easy of use / Consistency/
(Flexibility / Safety / Security/ Reliability...
Extensibility)

TensorFlow or MPI

SQL ‘ O Easy of use

Unix O O Easy of use / security

Internet ‘ ‘ Reliability / QoS

Microkernels o ‘ Safety / Security

MapReduce ® ‘ Scalability / reliability

Spark . ‘ Scalability / reliability
@ L

Easy of use

Big Theme: Indirection

Add an intermediate layer to N N
« Simplify system design NxM =) N+M

« Decouple evolution of
lower and higher layer

Examples:
« Internet protocol (IP): between Transport and Link layers
« OS: between app and hardware
« VM: between OS and hardware
- LLVM IR: between high-level language and machine code
 Logical query plan: between SQL query and physical execution
« Abstract Device Interface: between MPI app and communication infra
« Spark: between data app and cluster (abstracts away parallelism)

Big Theme: End-to-end arguments

Think twice about implementing functionality at lower layer:

« Only if functionality shared by many apps
« Only if it doesn’t hurt performance of apps that don’t need it

Examples:

« |IP (wide-area routing; shared by all transport protocols, e.g., TCP and UDP)
« Microkernel, Exokernel (IPC, protection / isolation, maybe scheduling)

« RISC processor (basic memory and arithmetic operations)

« ADI for MPI (several functions vs 100+ functions)

Big Theme: Specialization

Improve one dimension without impacting others
« |[dea: Leverage semantics about workloads to specialize implementations!

Examples:
« SQL: focus on querying structured data (improve performance)

« CRDT: focus on commutative operations (improve performance)
- Also recall coordination avoidance
« GFS: focus on large, append only file systems (improve scalability)
 [dempotent operations (improve fault tolerance)
« GPU: focus on graphic, deep learning (improve performance)
« TPU: focus on deep learning (improve performance)

Some advice on system design...

Typically many constraints, many goals you want to satisfy...

Resist the urge to satisfy all of them, prioritize!

Always start with the simplest design first
« Much easier to add features than remove them!
« Allow you to get early feedback, then iterate fast
- Minimalist API, clear semantics

Correctness first, optimization second
« Much easier to optimize latter than add fault tollerance!

“Make simple things simple and complex things possible” — Alan Kay

- Enable users to get some simple things done out of the box = adoption
« Enable experts to experiement - you’ll learn a lot

Project
Poster session: 9-11am PT, Wednesday 12/16

Project reports due: 11:59PT, Friday 12/18

10

