
1

System R
cs262a, Lecture 2

Ali Ghodsi and Ion Stoica
(adapted from Joe Hellerstein’s notes)

Databases
Store two types of information. What are they?
»Contents of records
»How records are connected together.

How do you search a database?
»You specify detailed algorithms that traverse the

connections to get the answer.

Examples: search/insert/delete in linked lists,
trees, etc

Before relational DBs: hierarchical and network

Hierarchical Model*
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

1966: IMS (IBM Management System)
» Designed for Apollo program for managing

inventory for Saturn V and space vehicle
» Still in use today!

*examples from “Network hierarchies and relations in database management systems”
by M. Stonebraker and G. Held

Hierarchical Model*
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

*examples from “Network hierarchies and relations in database management systems” by M.
Stonebraker and G. Held

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output:

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output:

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher Jones

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher Jones

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher Jones

Hierarchical Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Output: Fisher Jones Adams

Hierarchical Model: Challenges
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

1) Duplicate records
2) Requirements to have a parent;

deletion anomalies

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

CODASYL (Conference/Committee on Data
Systems Languages)
» 1969: CODASYL data model

Designed by Charles Bachman,
Turing Award, 1973

» Also led to development of COBOL

Network Model*
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

*examples from “Network hierarchies and relations in database management systems” by M.
Stonebraker and G. Held

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output:

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output:

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output:

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Network Model
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

find department numbers of all employees in office 12
FIND OFFICE RECORD WITH OFFICE# = 12

if failure; return “no such office”
LOOP FIND NEXT MEMBER OF OCUPIED SET

if failure; return “done”
FIND OWNER OF CURRENT EMPLOYEE RECORD USING WORK SET

if failure; return “employee exists which is not in a department”
save department number

GO TO LOOP

Output: 17

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500Dave,7

Data Dependence
Record-at-a-time Data Manipulation
Language (DML)

Reflect physical data structures

If you want to change the data organization
you need to change query!

Example: Changing Data Representation
DEPT

EMP

CHILD OFFICE
(CHILD NAME, AGE) (OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 12, 500 12, 500 12, 500Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

Example: Changing Data Representation
DEPT

CHILD
(CHILD NAME, AGE)

(OFFICE#, SIZE)

(DEPT#, BUDGET)

(NAME, SALARY)

17, 25M

Fisher, 100K Jones, 80K Adams, 140K

Sue,10 Peter,4 Dave,7

find names of all employees in department 17
FIND DEPT RECORD WHERE DEPT# = 17

if failure; return “no such department”
FIND 1st SON OF CURRENT RECORD

if failure; return “no employee in this department”
LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD WHICH IS OF SAME TYPE
GO TO LOOP

EMP

OFFICE 12, 500

Relational Database
1970 Edgar Codd's paper; probably the
most influential paper in DB research
»Set-at-a-time DML
»Data independence: allows for schema and

physical storage structures to change
• “as clear a paradigm shift as we can hope to find in

computer science” – Christos Papadimitriou
»1981 Turing Award

Relational Database:
Two key ideas

1. Store values only, no connections
» Everything is a table

2. Declarative query language, leaves
implementation and algorithm unspecified

Relational Model
BUDGET
17 25M

DEPT

SIZE
12 500

OFFICE

NAME SALARY
Fischer 100K

EMP

Jones
Adams

80K
140K

DEPT# NAME
17 Fisher

WORKS

17
17

Jones
Adams

NAME OFFICE#
Fischer 12

OCCUPIED

Jones
Adams

12
12

C. NAME C. NAME
Sue 10

CHILD

Peter
Dave

4
7

find department number of all employees in office 12
FIND ALL DEPT# in WORKS

WHERE NAME = NAME IN OCCUPIED WHERE OFFICE# = 12

Links
represented

as tables

NAME C. NAME
Fischer Sue

OFFSPRINGS

Fischer
Jones

Peter
Dave

Data Independence
Separation into three levels:
» physical storage
» logical schema
»multiple views

Two levels of independence:
» physical data independence: you change the storage

layout without affecting apps
» logical data independence: isolates apps from changes

in logical schema (almost, as it can’t update views in
general)

Data Independence
Critical for database evolution – allow
databases live and evolve for a long time!

Need data independence when environment
changes much faster than applications
»Environment: physical storage, machine speed,

machine workload

First Relational Databases
Mid 70's: Codd's vision implemented by two
projects: ancestors of essentially all today's
commercial systems!
» Ingres (UC Berkeley)
»System R (IBM)

Lots of crosspollination between both groups

Ingres
1974-77, UC Berkeley: Stonebraker, Wong and
many others
»2015 Turing Award (Stonebraker)

Ancestor of:
» Ingres Corp (CA), CA-Universe, Britton-Lee, Sybase,

MS SQL Server, Wang's PACE, Tandem Non-Stop
SQL

System R
IBM San Jose (now Almaden)
»15 PhDs, including many Berkeley people:
• Jim Gray (1st CS PhD @ Berkeley), Bruce Lindsay, Irv

Traiger, Paul McJones, Mike Blasgen, Mario Schkolnick,
Bob Selinger, Bob Yost

»1998 Turing Award (Gray)

Ancestor of:
» IBM's SQL/DS & DB2, Oracle, HP's Allbase, Tandem

Non-Stop SQL

Early 80’s Commercialization
Ellison's Oracle beats IBM to market by reading white papers ;-)

IBM releases multiple RDBMSs, settles down to DB2

Gray (System R), Jerry Held (Ingres) and others join Tandem (Non-Stop SQL)

Kapali Eswaran starts EsVal, which led to HP Allbase and Cullinet

Relational Technology Inc (Ingres Corp), Britton-Lee/Sybase, Wang PACE
grow out of Ingres group

CA releases CA-Universe, a commercialization of Ingres

Informix started by Cal alum Roger Sippl (no pedigree to research).

Teradata started by a Cal Tech alums, based on proprietary networking
technology

Discussion

R System Goals
1.To provide a high-level, non-navigational user interface for maximum

user productivity and data independence.
2.To support different types of database use including programmed

transactions, ad hoc queries, and report generation.
3.To support a rapidly changing database environment, in which tables,

indexes, views, transactions, and other objects could easily be added to
and removed from the database without stopping the system.

4.To support a population of many concurrent users, with mechanisms to
protect the integrity of the database in a concurrent-update environment.

5.To provide a means of recovering the contents of the database to a
consistent state after a failure of hardware or software.

6.To provide a flexible mechanism whereby different views of stored data
can be defined and various users can be authorized to query and update
these views.

7.To support all of the above functions with a level of performance
comparable to existing lower-function database systems.

R System Goals
1.To provide a high-level, non-navigational user interface for maximum

user productivity and data independence.
2.To support different types of database use including programmed

transactions, ad hoc queries, and report generation.
3.To support a rapidly changing database environment, in which tables,

indexes, views, transactions, and other objects could easily be added to
and removed from the database without stopping the system.

4.To support a population of many concurrent users, with mechanisms to
protect the integrity of the database in a concurrent-update environment.

5.To provide a means of recovering the contents of the database to a
consistent state after a failure of hardware or software.

6.To provide a flexible mechanism whereby different views of stored data
can be defined and various users can be authorized to query and update
these views.

7.To support all of the above functions with a level of performance
comparable to existing lower-function database systems.

1.Easy of use
2. Unifying abstraction

3. Evolvability (of database)

4. Concurrency

5. Fault tolerance
6. Access control (and flexibility)

7. Performance

Development
Expect to throw out the 1st version of the
system

Why?

Development
Expect to throw out the 1st version of the
system

Authors very familiar with
»What they want to build
» Implementation challenges

Similar to Unix:
»Ken Thomson and Dennis Ritchie both worked on

Multics

Query Optimization:
Phase Zero vs One

Phase Zero focus: optimize complex queries

Phase One focus: optimize simple, most
common queries

Query Optimization:
Phase Zero vs One

Phase Zero: “predicate locks” deemed to
complicated

Phase One: per object locks, albeit hierarchical
and multiple granularity

Storage: Phase Zero vs One
Phase Zero: single user, XRM
»Values of each column stored in a separate domain
»Each field contains TID of corresponding domain/value
» Inversions: mapping between values and TIDs

Phase One: multiuser, RSS
»Tuple contains values
» Indexes on one, more, or combination of columns

Cost Based Optimizer:
Phase Zero vs One

Phase Zero: per-tuple cost

Phase One: combination of
»# of I/Os
»# of calls (CPU activity)

Questions
»How well does it work?
»Do you expect CPU to still be bottleneck today?
»Caveats?

Others
Interpretation vs. compilation?

Three levels of transactions?

Shadow pages vs write ahead logging?

Unix vs. System R
UNIX paper: "The most important job of UNIX
is to provide a file system”
»UNIX and System R are both "information

management" systems!

Both also provide programming APIs for apps

Unix vs. System R: Goals
Ease of use:
»Unix: “most important characteristics of the system

are its simplicity, elegance, and ease of use.”
»System R: “The system was mostly used in

applications for which ease of installation, a high-
level user language, and an ability to rapidly
reconfigure the database were important
requirements.”

Unix vs. System R: Reuse
Unix
»Written in the developer language, C
»Directories as files
» I/O naming as file naming
»Same security mechanism for I/O devices & files
»Shell, just another process

System R?

Unix vs. System R: Reuse
Unix
»Written in the developer language, C
»Directories as files
» I/O naming as file naming
»Same security mechanism for I/O devices & files
»Shell, just another process

System R?
»Relations as tables
»Catalogs as tables
»Views: any SQL query to be used as view definition
»…

Unix vs. System R: Philosophy
Bottom-Up (elegance of system) vs. Top-Down
(elegance of semantics)

UNIX main function: present hardware to
computer programmers
» small elegant set of mechanisms, and abstractions for

developers (i.e. C programmers)

System R: manage data for application
programmer
» complete system that insulated programmers (i.e. SQL

+ scripting) from the system, while guaranteeing clearly
defined semantics of data and queries.

Unix vs. System R: Philosophy
Bottom-Up (elegance of system) vs. Top-Down
(elegance of semantics)

Affects where the complexity goes: to system,
or end-programmer?

Which one is better? In what environments?

Summary
Advantages of relational databases:
»Can change data layout without breaking things
»Don't need to worry about coming up with algo.
»Don't need to be a genius to query.
»More readable queries (no convoluted algo query).
»Database can come up with algo; algo and layout

can be dynamic over time
»Apps don't need to be recompiled. Just upgrade

database and get speedup.
»Database can adapt to new hardware, apps don't

need to worry

Summary
Disadvantages of relational databases:
»Hard to express certain things in declarative form
»Could be slower for small simple imperative queries

Backup

Different Challenges
Achilles' heel of RDBMSs: closed box
» Cannot leverage technology without going through the full SQL stack
» One solution: make the system extensible, convince the world to

download code into the DBMS
» Another solution: componentize the system (hard, RSS is hard to bust

up, due to transaction semantics)

Achilles' heel of OSes: hard to get "right" level of abstraction
» Many UNIX abstractions (e.g. virtual memory) too high level, hide too

much detail
• In contrast, too low a level can cause too much programmer burden

» One solution: make the system extensible, convince fancy apps to
download code into the OS

» Another solution: componentize the system (hard, due to protection)
• But lot’s of work on this, e.g., Microkernel

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• Rewrite query against a materialized view (e.g.,
results of a sub-query)

• May change query semantics (e.g., constraints,
protection)

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• large space of equivalent relational plans
• pick one that's going to be "optimal”
• produces either an interpretable plan tree,

or compiled code

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• modules to perform relation operations
like joins, sorts, aggregations

• calls Access Methods for operations on
base and temporary relations

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• uniform relational interface (open, get next)
• multiple implementations: heap, B-tree,

extensible hashing

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• Intelligent user-level disk cache
• must interact with transaction manager & lock manager
• Virtual memory does not cut it! (we'll discuss this at

length)

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• must efficiently support lock table
• System R architecture influential:

• multiple granularity of locks
• set intent locks at high levels
• we will study this in more detail later

• deadlock handling: detection

Database Architecture

Query Parser

Query Rewriter

Query Optimizer

Query Executor

Files & Access Methods

Buffer Manger

Storage Manger

Storage

Lock Manager

Logging & Recovery

Transaction Manager

Main Memory
Buffers

Lock
Table

Users / Web Forms / Applications / DBA /

• Use shadow page for updates
• checkpoint/restore facility for quick recovery
• "before/after" log on values
• Redo/Undo on restore

Discussion: Shadow Pages
Shadow pages:
»New version is created for each page that is updated
» Periodically new page is checkpointed on disk
» “before/after” logs recording all database changes
»On failure, revert to “old” page and use log to redo

committed transactions and undo incomplete ones

Write Ahead Log (WAL):
» Keep a log of all database updates
»Write each update before writing back to disk the updates

Tradeoffs?

Others: Transactions
Level 1: Transactions can read uncommitted
transactions but not write
Level 2: Transactions acquire lock for each reads
but releases it right after reading
» Another transaction may update a value between two

reads

Level 3: Once a transaction acquires a read lock it
keeps it until the end
Discussion?

System R Paper Nuggets
Interpretation vs. compilation

R Systems use compilation: compiler
assembles from about 100 code fragments
specially tailored for processing a given SQL
query”

System R Paper Nuggets
Component failure as common case

Three failure cases:
1. System failure
2. Media (disk) failure
3. Transaction failure

