
Aries
(Lecture 6, cs262a)

Ali Ghodsi and Ion Stoica,
UC Berkeley

February 5, 2018

(based on slide from Joe Hellerstein and Alan Fekete)

Today’s Paper

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-ahead Logging,
C. Mohan, Don Haderle, Bruce Lindsay, Hamid
Pirahesh and Peter Schwarz. Appears in
Transactions on Database Systems, Vol 17, No. 1,
March 1992, Pages 94-162

Thoughts?

Review: The ACID properties

Atomicity: All actions in the Transaction happen, or none happen
Consistency: If each Transaction is consistent, and the DB starts
consistent, it ends up consistent
Isolation: Execution of one Transaction is isolated from that of
other Transactions
Durability: If a Transaction commits, its effects persist

The Recovery Manager guarantees Atomicity & Durability

Motivation
Atomicity:

• Transactions may abort (“Rollback”)
Durability:

• What if DBMS stops running?
(Causes?)

crash!
• Desired Behavior after system

restarts:
– T1, T2 & T3 should be

durable
– T4 & T5 should be aborted

(effects not seen)

T1
T2
T3
T4
T5

Intended Functionality

At any time, each (visible) data item contains the value
produced by the most recent update done by a

transaction that committed

Goals
1. Simplicity
2. Operation logging (example?)
3. Flexible storage management
4. Partial rollbacks
5. Flexible buffer management
6. Recovery independence
7. Logical undo
8. Parallelism and fast recovery
9. Minimal overhead

Assumptions

Essential concurrency control is in effect
• For read/write items: Write locks taken and held till commit

– E.g., Strict 2PL, but read locks not important for recovery
• For more general types: operations of concurrent transactions commute

Updates are happening “in place”
• i.e. data is overwritten on (or deleted from) its location

– Unlike multiversion (e.g., shadow pages) approaches

Buffer in volatile memory
Data persists on disk

Challenge: REDO

Need to restore value 1 to item
• Last value written by a committed transaction

Action Buffer Disk
Initially 0
T1 writes 1 1 0
T1 commits 1 0
CRASH 0

Challenge: UNDO

Need to restore value 0 to item
• Last value from a committed transaction

Action Buffer Disk
Initially 0
T1 writes 1 1 0
Page flushed 1
CRASH 1

Handling the Buffer Pool

What is a simple scheme to guarantee Atomicity & Durability?
Force write to disk at commit?

• Poor response time
• But provides durability

No Steal of buffer-pool frames from
uncommited Transactions (“pin”)?

• Poor throughput
• But easily ensure atomicity

Force

No Force

No Steal Steal

Trivial

Desired

More on Steal and Force

STEAL (why enforcing Atomicity is hard)
• To steal frame F: Current page in F (say P) is written to disk; some

Transaction holds lock on P
– What if the Transaction with the lock on P aborts?
– Must remember old value of P at steal time (to support UNDOing the write to

page P)

NO FORCE (why enforcing Durability is hard)
• What if system crashes before a modified page is written to disk?
• Write as little as possible, in a convenient place, at commit time, to support

REDOing modifications

Basic Idea: Logging

Record REDO and UNDO information, for every update, in a log
• Sequential writes to log (put it on a separate disk)
• Minimal info (diff) written to log, so multiple updates fit in a single log page

Log: An ordered list of REDO/UNDO actions
• Log record contains:

<XID, pageID, offset, length, old data, new data>
• and additional control info (which we’ll see soon)
• For abstract types, have operation(args) instead of old value new value

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:
1. Must force the log record for an update before the corresponding data

page gets to disk
2. Must write all log records for a Transaction before commit

#1 (undo rule) allows system to have Atomicity

#2 (redo rule) allows system to have Durability

ARIES

Exactly how is logging (and recovery!) done?
• Many approaches (traditional ones used in relational systems of 1980s)
• ARIES algorithms developed by IBM used many of the same ideas, and

some novelties that were quite radical at the time
– Research report in 1989; conference paper on an extension in 1989;

comprehensive journal publication in 1992
– 10 Year VLDB Award 1999

Key ideas of ARIES

Log every change (even UNDOs during Transaction abort)
In restart, first repeat history without backtracking

• Even REDO the actions of loser transactions
Then UNDO actions of losers

LSNs in pages used to coordinate state between log, buffer, disk

Novel features of ARIES in italics

WAL & the Log
Each log record has a unique Log
Sequence Number (LSN)

• LSNs always increasing

Each data page contains a pageLSN
• The LSN of the most recent log record

for an update to that page

System keeps track of flushedLSN
• The max LSN flushed so far

LSNs pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

DB

WAL constraints

Before a page is written,
• pageLSN ≤ flushedLSN

Commit record included in log; all related update log records
precede it in log

Log Records
Possible log record types:
Update
Commit
Abort
End (signifies end of commit or
abort)
Compensation Log Records (CLRs)

• for UNDO actions
• (and some other tricks!)

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Other Log-Related State

Transaction Table:
• One entry per active Transaction
• Contains XID, status (running/commited/aborted), and lastLSN

Dirty Page Table:
• One entry per dirty page in buffer pool
• Contains recLSN – the LSN of the log record which first caused the

page to be dirty

Normal Execution of a Transaction

Series of reads & writes, followed by commit or abort
• We will assume that page write is atomic on disk

– In practice, additional details to deal with non-atomic writes

Strict 2PL (at least for writes)

STEAL, NO-FORCE buffer management, with Write-Ahead
Logging

Checkpointing
Periodically, the DBMS creates a checkpoint, in order to minimize
the time taken to recover in the event of a system crash. Write to
log:

• begin_checkpoint record: Indicates when chkpt began.
• end_checkpoint record: Contains current Transaction table and dirty page

table. This is a `fuzzy checkpoint’:
– Other Transactions continue to run; so these tables only known to reflect some

mix of state after the time of the begin_checkpoint record.
– No attempt to force dirty pages to disk; effectiveness of checkpoint limited by

oldest unwritten change to a dirty page. (So it’s a good idea to periodically
flush dirty pages to disk!)

• Store LSN of chkpt record in a safe place (master record)

The Big Picture: What’s Stored Where

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG DB

Data pages
each
with a
pageLSN

master record

Transaction Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

Simple Transaction Abort

For now, consider an explicit abort of a Transaction
• No crash involved

We want to “play back” the log in reverse order, UNDOing
updates.

• Get lastLSN of Transaction from Transaction table
• Can follow chain of log records backward via the prevLSN field
• Note: before starting UNDO, could write an Abort log record

– Why bother?

Abort, cont
To perform UNDO, must have a lock on data!

• No problem!
Before restoring old value of a page, write a compensation log record (CLR):

• You continue logging while you UNDO!!
• CLR has one extra field: undonextLSN

– Points to next LSN to undo (i.e. prevLSN of the record we’re currently
undoing)

• CLR contains REDO info
• CLRs never Undone

– Undo needn’t be idempotent (>1 UNDO won’t happen)
– But they might be Redone when repeating history (=1 UNDO guaranteed)

At end of all UNDOs, write an “end” log record

Transaction Commit

Write commit record to log
All log records up to Transaction’s lastLSN are flushed

• Guarantees that flushedLSN ≥ lastLSN
• Note that log flushes are sequential, synchronous writes to disk
• Many log records per log page

Make transaction visible
• Commit() returns, locks dropped, etc.

Write end record to log

Crash Recovery: Big Picture

• Start from a checkpoint (found
via master record)

• Three phases. Need to:
– Figure out which Xacts committed

since checkpoint, which failed
(Analysis)

– REDO all actions
• (repeat history)

– UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at
crash
Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Recovery: The Analysis Phase
Reconstruct state at checkpoint

• via end_checkpoint record
Scan log forward from begin_checkpoint

• End record: Remove Xact from Xact table
• Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact

status on commit
• Update record: If P not in Dirty Page Table (DPT)

– Add P to DPT., set its recLSN=LSN

This phase could be skipped;
information can be regained in subsequent REDO pass

Recovery: The REDO Phase
We repeat History to reconstruct state at crash:

• Reapply all updates (even of aborted Xacts!), redo CLRs
Scan forward from log rec containing smallest recLSN in DPT. For
each CLR or update log rec LSN, REDO the action unless page is
already more up-to-date than this record:

• REDO when Affected page is in D.P.T., and has pageLSN (in DB) < LSN. (if
page has recLSN > LSN no need to read page in from disk to check
pageLSN)

To REDO an action:
• Reapply logged action
• Set pageLSN to LSN. No additional logging!

Invariant

State of page P is the outcome of all changes of relevant log
records whose LSN is <= P.pageLSN
During redo phase, every page P has P.pageLSN >= currently-
redoing-LSN

Thus at end of redo pass, the database has a state that reflects
exactly everything on the (stable) log

Recovery: The UNDO Phase

Key idea: Similar to simple transaction abort, for each loser
transaction (that was in flight or aborted at time of crash)

• Process each loser transaction’s log records backwards; undoing each
record in turn and generating CLRs

But: loser may include partial (or complete) rollback actions
Avoid undo-ing what was already undone

• undoNextLSN field in each CLR equals prevLSN field from the original
action

Example of Recovery

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

prevLSNs

Example: Crash During Restart!

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

90

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Additional Crash Issues

What happens if system crashes during Analysis? During
REDO?
How do you limit the amount of work in REDO?

• Flush asynchronously in the background.
• Watch “hot spots”!

How do you limit the amount of work in UNDO?
• Avoid long-running Xacts.

Parallelism during restart

Remember the invariants!
Activities on a given page must be processed in sequence
Activities on different pages can be done in parallel

Log record contents

What is actually stored in a log record, to allow REDO and UNDO
to occur?

Many choices, 3 main types
• PHYSICAL
• LOGICAL
• PHYSIOLOGICAL

Physical logging
Describe the bits (optimization: only those that change)
Example

• OLD STATE: 0x47A90E….
• NEW STATE: 0x632F00…
• So REDO: set to NEW; UNDO: set to OLD

Or just delta (OLD XOR NEW)
• DELTA: 0x24860E…
• So REDO=UNDO=xor with delta

Question: XOR is not idempotent, but redo and undo must be;
why is this OK?

Logical Logging

Describe the operation and arguments
E.g., Update field 3 of record whose key is 37, by adding 32
We need a programmer supplied inverse operation to undo this

Physiological Logging

Describe changes to a specified page, logically within that page
Goes with common page layout, with records indexed from a
page header
Allows movement within the page (important for records whose
length varies over time)
E.g., on page 298, replace record at index 17 from old state to
new state
E.g., on page 35, insert new record at index 20

ARIES logging
ARIES allows different log approaches; common choice is:
Physiological REDO logging

• Independence of REDO (e.g. indexes & tables)
– Can have concurrent commutative logical operations like

increment/decrement (“escrow transactions”)

Logical UNDO
• To allow for simple management of physical structures that are invisible to

users
– CLR may act on different page than original action

• To allow for escrow

Interactions

Recovery is traditionally designed with deep awareness of access
methods (eg B-trees) and concurrency control

And vice versa

Need to handle failure during page split, reobtaining locks for
prepared transactions during recovery, etc

Summary of Logging/Recovery

Recovery Manager guarantees Atomicity & Durability.

Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.

LSNs identify log records; linked into backwards chains per
transaction (via prevLSN).

pageLSN allows comparison of data page and log records.

Summary, Cont.

Checkpointing: A quick way to limit the amount of log to scan on
recovery.
Recovery works in 3 phases:

• Analysis: Forward from checkpoint.
• Redo: Forward from oldest recLSN.
• Undo: Backward from end to first LSN of oldest Xact alive at crash.

Upon Undo, write CLRs.
Redo “repeats history”: Simplifies the logic!

Further Readings

Repeating History Beyond ARIES,
• C. Mohan, Proc VLDB’99
• Reflections on the work 10 years later

Model and Verification of a Data Manager Based on ARIES
• D. Kuo, ACM TODS 21(4):427-479
• Proof of a substantial subset

A Survey of B-Tree Logging and Recovery Techniques
• G. Graefe, ACM TODS 37(1), article 1

Is this a good paper?

What were the authors’ goals?
What about the performance metrics?
Did they convince you that this was a good system?
Were there any red-flags?
What mistakes did they make?
Does the system meet the “Test of Time” challenge?
How would you review this paper today?

Backup

Nested Top Actions

Trick to support physical operations you do not
want to ever be undone

• Example?
Basic idea

• At end of the nested actions, write a dummy CLR
– Nothing to REDO in this CLR

• Its UndoNextLSN points to the step before the
nested action

Recovery: The UNDO Phase
ToUndo={ l | l a lastLSN of a “loser” Xact}
Repeat:

• Choose largest LSN among ToUndo.
• If this LSN is a CLR and undonextLSN==NULL

– Write an End record for this Transaction
• If this LSN is a CLR, and undonextLSN != NULL

– Add undonextLSN to ToUndo
– (Q: what happens to other CLRs?)

• Else this LSN is an update. Undo the update, write a CLR, add prevLSN to
ToUndo

Until ToUndo is empty

UndoNextLSN

From Mohan et al, TODS 17(1):94-162

Restart Recovery Example

From Mohan et al, TODS 17(1):94-162

