
Lock Granularity and
Consistency Levels
(Lecture 7, cs262a)

Ali Ghodsi and Ion Stoica,
UC Berkeley

February 7, 2018

Papers

Granularity of Locks and Degrees of Consistency in a Shared
Database, J. N. Gray, R. A. Lorie, G. R. Putzolu, I. L. Traiger

Generalized Isolation Level Definitions,
A. Adya, B. Liskov, and P. O'Neil

The ACID properties of Transactions

Atomicity: all actions in the transaction happen, or none happen
Consistency: if each transaction is consistent, and the database starts
consistent, it ends up consistent, e.g.,

• Balance cannot be negative
• Cannot reschedule meeting on February 30

Isolation: execution of one transaction is isolated from others
Durability: if a transaction commits, its effects persist

Example: Transaction 101

UPDATE accounts SET balance = balance - 100.00 WHERE name =
'Alice';

UPDATE branches SET balance = balance - 100.00 WHERE name =
(SELECT branch_name FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE name =
'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE name =
(SELECT branch_name FROM accounts WHERE name = 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Why is it Hard?

Failures: might leave state inconsistent or cause updates to be
lost

• Remember last lecture?

Concurrency: might leave state inconsistent or cause updates to
be lost

• This lecture and the next one!

Concurrency

When operations of concurrent threads are interleaved, the effect
on shared state can be unexpected

Well known issue in operating systems, thread programming
• Critical section in OSes
• Java use of synchronized keyword

Transaction Scheduling
Why not run only one transaction at a time?
Answer: low system utilization

• Two transactions cannot run simultaneously even if they access different
data

Goal of transaction scheduling:
• Maximize system utilization, i.e., concurrency

– Interleave operations from different transactions
• Preserve transaction semantics

– Logically all operations in a transaction are executed atomically
– Intermediate state of a transaction is not visible to other transactions

Anomalies with Interleaved Execution

May violate transaction semantics, e.g., some data read by the
transaction changes before committing

Inconsistent database state, e.g., some updates are lost

Anomalies always involves a “write”; Why?

P0 – Overwriting uncommitted data
Write-write conflict

• T2 writes value modified by T1 before T1 commits, e.g, T2 overwrites
W(A) before T1 commits

Violates transaction serializability
If transactions were serial, you’d get either:

• T1’s updates of A and B
• T2’s updates of A and B

T1:W(A), W(B)

T2: W(A),W(B)

P1 – Reading uncommitted data (dirty read)
Write-read conflict (reading uncommitted data or dirty read)

• T2 reads value modified by T1 before T1 commits, e.g., T2 reads A
before T1 modifies it

T1:R(A),W(A),

T2: R(A), …

P3 – Non-repeatable reads
Read-Write conflict

• T2 reads value, after which T1 modifies it, e.g., T2 reads A, after which
T1 modifies it

Example: Mary and John want to buy a TV set on Amazon but
there is only one left in stock

• (T1) John logs first, but waits…
• (T2) Mary logs second and buys the TV set right away
• (T1) John decides to buy, but it is too late…

T1: R(A),W(A)

T2:R(A), R(A),W(A)

Goals of Transaction Scheduling
Maximize system utilization, i.e., concurrency

• Interleave operations from different transactions

Preserve transaction semantics
• Semantically equivalent to a serial schedule, i.e., one transaction runs at a

time
T1: R, W, R, W T2: R, W, R, R, W

R, W, R, W, R, W, R, R, W
Serial schedule (T1, then T2):

R, W, R, R, W, R, W, R, W
Serial schedule (T2, then T1):

Two Key Questions
1) Is a given schedule equivalent to a serial execution of

transactions?

2) How do you come up with a schedule equivalent to a serial
schedule?

R, W, R, W, R, W, R, R, W R, W, R, R, W, R, W, R, W

R, R, W, W, R, R, R, W, WSchedule:

Serial schedule (T1, then T2):
:

Serial schedule (T2, then T1):

≡ ?≡ ?

Transaction Scheduling
Serial schedule:

• A schedule that does not interleave the operations of different transactions
• Transactions run serially (one at a time)

Equivalent schedules:
• For any storage/database state, the effect (on storage/database) and output of

executing the first schedule is identical to the effect of executing the second
schedule

Serializable schedule:
• A schedule that is equivalent to some serial execution of the transactions
• Intuitively: with a serializable schedule you only see things that could happen in

situations where you were running transactions one-at-a-time

Conflict Serializable Schedules
Two operations conflict if they

• Belong to different transactions
• Are on the same data
• At least one of them is a write

Two schedules are conflict equivalent iff:
• Involve same operations of same transactions
• Every pair of conflicting operations is ordered the same way

Schedule S is conflict serializable if S is conflict equivalent to
some serial schedule

Conflict Equivalence – Intuition
If you can transform an interleaved schedule by swapping
consecutive non-conflicting operations of different
transactions into a serial schedule, then the original
schedule is conflict serializable, e.g.,
T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A), R(B),W(B)

T1:R(A),W(A), R(B), W(B)

T2: R(A), W(A), R(B),W(B)

T1:R(A),W(A),R(B), W(B)

T2: R(A),W(A), R(B),W(B)

Conflict Equivalence – Intuition
If you can transform an interleaved schedule by swapping
consecutive non-conflicting operations of different
transactions into a serial schedule, then the original
schedule is conflict serializable, e.g.,
T1:R(A),W(A),R(B), W(B)

T2: R(A),W(A), R(B),W(B)

T1:R(A),W(A),R(B), W(B)

T2: R(A), W(A),R(B),W(B)

T1:R(A),W(A),R(B),W(B)

T2: R(A), W(A),R(B),W(B)

Conflict Equivalence – Intuition
If you can transform an interleaved schedule by swapping
consecutive non-conflicting operations of different
transactions into a serial schedule, then the original
schedule is conflict serializable, e.g.,

Is this schedule serializable?

T1:R(A), W(A)

T2: R(A),W(A),

Dependency Graph

Dependency graph:
• Transactions represented as nodes
• Edge from Ti to Tj:

– an operation of Ti conflicts with an operation of Tj
– Ti appears earlier than Tj in the schedule

Theorem: Schedule is conflict serializable if and only if its
dependency graph is acyclic

Example
Conflict serializable schedule:

No cycle!

T1 T2
A

Dependency graph
B

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A), R(B),W(B)

Example
Conflict that is not serializable:

Cycle: The output of T1 depends on T2, and vice-versa

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A),R(B),W(B)

T1 T2
A

B
Dependency graph

Notes on Conflict Serializability

Conflict Serializability doesn’t allow all schedules that you would
consider correct

• This is because it is strictly syntactic - it doesn’t consider the meanings of
the operations or the data

Many times, Conflict Serializability is what gets used, because it
can be done efficiently

• See isolation degrees/levels next
Two-phase locking (2PL) is how we implement it

T1:R(A), W(A),

T2: W(A),

T3: WA

Srializability ≠ Conflict Serializability
Following schedule is not conflict serializable

However, the schedule is serializable since its output is
equivalent with the following serial schedule

Note: deciding whether a schedule is serializable (not conflict-
serializable) is NP-complete

T1:R(A),W(A),

T2: W(A),

T3: WA

T1 T2

A
Dependency graph

T3

A
AA

Locks
“Locks” to control access to data

Two types of locks:
• shared (S) lock: multiple concurrent transactions allowed to operate on

data
• exclusive (X) lock: only one transaction can operate on data at a time

Lock
Compatibility
Matrix

Held\Request S X
S Yes Block
X Block Block

Two-Phase Locking (2PL)
1) Each transaction must obtain:

• S (shared) or X (exclusive) lock on data before reading,
• X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it releases any locks
Thus, each transaction has a “growing phase” followed by a “shrinking
phase”

0
1
2
3
4

1 3 5 7 9 11 13 15 17 19#
Lo

ck
s

H
el

d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Two-Phase Locking (2PL)
2PL guarantees conflict serializability
Doesn’t allow dependency cycles. Why?
Answer: a dependency cycle leads to deadlock

• Assume there is a cycle between Ti and Tj
• Edge from Ti to Tj: Ti acquires lock first and Tj needs to wait
• Edge from Tj to Ti: Tj acquires lock first and Ti needs to wait
• Thus, both Ti and Tj wait for each other
• Since with 2PL neither Ti nor Tj release locks before acquiring all locks

they need à deadlock
Schedule of conflicting transactions is conflict equivalent to a
serial schedule ordered by “lock point”

Example
T1 transfers $50 from account A to account B

T2 outputs the total of accounts A and B

Initially, A = $1000 and B = $2000

What are the possible output values?

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)

T2:Read(A),Read(B),PRINT(A+B)

Is this a 2PL Schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Unlock(A) <granted>
6 Read(A)
7 Unlock(A)
8 Lock_S(B) <granted>
9 Lock_X(B)

10 Read(B)
11 <granted> Unlock(B)
12 PRINT(A+B)
13 Read(B)
14 B := B +50
15 Write(B)
16 Unlock(B)

No, and it is not serializable

Is this a 2PL Schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

Yes, it is serializable

Strict 2PL (cont’d)

All locks held by a transaction are released only when the
transaction completes

In effect, “shrinking phase” is delayed until:
a) Transaction has committed (commit log record on disk), or
b) Decision has been made to abort the transaction (then locks

can be released after rollback).

Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>
2 Read(A) Lock_S(A)
3 A: = A-50
4 Write(A)

5 Lock_X(B) <granted>
6 Unlock(A) <granted>
7 Read(A)
8 Lock_S(B)
9 Read(B)

10 B := B +50
11 Write(B)
12 Unlock(B) <granted>
13 Unlock(A)
14 Read(B)
15 Unlock(B)
16 PRINT(A+B)

No: Cascading Abort Possible

Granularity

What is a data item (on which a lock is obtained)?
• Most times, in most modern systems: item is one tuple in a

table
• Sometimes (especially in early 1970s): item is a page (with

several tuples)
• Sometimes: item is a whole table

Granularity trade-offs
Larger granularity: fewer locks held, so less overhead; but less
concurrency possible

• “false conflicts” when txns deal with different parts of the same item

Smaller “fine” granularity: more locks held, so more overhead; but
more concurrency is possible

System usually gets fine grain locks until there are too many of
them; then it replaces them with larger granularity locks

Multigranular locking

Care needed to manage conflicts properly among items of varying
granularity

• Note: conflicts only detectable among locks on a given item name

System gets “intention” mode locks on larger granules before
getting actual S/X locks on smaller granules

• Conflict rules arranged so that activities that do not commute must get
conflicting locks on some item

Lock Mode Conflicts

Held\Request IS IX S SIX X
IS Yes Yes Yes Yes Block
IX Yes Yes Block Block Block
S Yes Block Yes Block Block
SIX Yes Block Block Block Block
X Block Block Block Block Block

Lock manager internals
Hash table, keyed by hash of item name

• Each item has a mode and holder (set)
• Wait queue of requests
• All requests and locks in linked list from transaction information
• Transaction table

– To allow thread rescheduling when blocking is finished
• Deadlock detection

– Either cycle in waits-for graph, or just timeouts

Problems with serializability
The performance reduction from isolation is high

• Transactions are often blocked because they want to read data
that another transactions has changed

For many applications, the accuracy of the data they read is
not crucial

• e.g. overbooking a plane is ok in practice
• e.g. your banking decisions would not be very different if you

saw yesterday’s balance instead of the most up-to-date

Explicit isolation levels

A transaction can be declared to have isolation properties that
are less stringent than serializability

• However SQL standard says that default should be serializable
(Gray’75 called this “level 3 isolation”)

• In practice, most systems have weaker default level, and most
transactions run at weaker levels!

Isolation levels are defined with respect to data access
conflicts (phenomena) they preclude

Phenomena
P0: T2 writes value modified by T1 before T1 commits

• Transactions cannot be serialized by their writes
P1 – Dirty Read: T2 reads value modified by T1 before T1
commits

• If T1 aborts it will be as if transaction T2 read values that have never
existed

P2 – Non-Repeatable Read: T2 reads value, after which T1
modifies it

• If T2 attempts to re-read value it can read another value
P3 – Phantom: (see next)

Phantom

1. A transaction T1 reads a set of rows that satisfy some
condition

2. Another transaction T2 executes a statement that causes new
rows to be added or removed from the search condition

3. If T1 repeats the read it will obtain a different set of rows.

Phantom Example
T1
Select count(*)
where dept = “Acct”
// find and S-lock (“Sue”, “Acct”,
3500) and (“Tim”, “Acct, 2400)

Select sum(salary)
where dept = “Acct”
// find and S-lock (“Sue”, “Acct”,
3500) and (“Tim”, “Acct, 2400) and
(“Joe”, “Acct”, 2000)

T2

Insert (“Joe”,”Acct”, 2000)
// X-lock the new record

Commit
// release locks

Isolation Levels
Isolation levels Degree Proscribed

Phenomena
Read locks on data
items and
phantoms (same
unless noted)

Write locks on data
items and phantoms
(always the same)

0 none none Short write locks
READ
UNCOMMITTED

1 P0 none Long write locks

READ COMITTED 2 P0, P1 Short read locks Long write locks
REAPEATABLE
READ

P0, P1, P2 Long data-item read
locks, short phantom
locks

Long write locks

SERIALIZABLE 3 P0, P1, P2,
P3

Long read locks Long write locksANSI Gray’s isolation degrees

Generalized Isolation Levels

Direct Serialization Graph (DSG)
Conflict Name Description DSG
Directly write-depends T1 writes value, then T2 overwrites

it
T1 T2

Directly read-depends T1 writes value, then T2 reads it T1 T2
Directly anti-depends T1 reads value, then T2 writes it T1 T2

ww

wr

rw

T1 T2 T3

wr

ww
ww

wr

rw

T1:W(A), W(B), W(C)
T2: R(B), W(C)
T3: W(B) R(C), W(B)

Example:

Disallowing P0

Writes by T1 are not overwritten by T2 while T1 is uncommitted
• Simplifies recovery from aborts, e.g.,

– T1 updates x, T2 overwrites x , and then T1 aborts
– The system must not restore x to T1’s pre-state
– However, if T2 aborts later, x must be restored to T1’s pre-state!

• Serializes transactions based on their writes alone
– all writes of T2 must be ordered before or after all writes of T1

G0 just disallows this one

G0
G0: DSG contains a directed cycle consisting entirely of write-
dependency edges

• Just ensure serialization on writes alone
• More permissive than Degree 1 as allows concurrent transactions to

modify same object
Example: T1:W(A) W(B), …

T2: W(A), W(B), …

T1 T2
ww

ww

Disallowing P1

Writes of T1 could not be read by T2 while T1 is still uncommitted
• It prevents a transaction T2 from committing if T2 has read the updates

of a transaction that might later abort
• It prevents transactions from reading intermediate modifications of other

transactions
• It serializes committed transactions based on their read/write-

dependencies (but not their antidependencies), i.e.,
– If transaction T2 depends on T1, T1 cannot depend on T2

G1
G1a – Aborted reads: T2 has read a value written by an aborted
transaction T1

G1b – Intermediate Reads: Committed transaction T2 has read
an intermediate value written by transaction T1

G1c – Circular Information Flow: DSG contains a directed
cycle consisting entirely of dependency edges

• Disallowing G1c ensures that if transaction T2 is affected by transaction
T1, T2 does not affect T1

Disallowing P2

T1 cannot modify value read by T2
• Precludes a transaction reading inconsistent data and making

inconsistent updates

G2

Just prevent transactions that perform inconsistent reads or writes
from committing

G2 – Anti-dependency Cycles: DSG contains a directed cycle
with one or more anti-dependency edges

G2-item – Item Anti-dependency Cycles: DSG contains a
directed cycle having one or more item-antidependency edges

Generalized Isolation Levels

Isolation levels G0 G1 G2-Item G2
READ
UNCOMMITTED

NA NA NA NA

READ COMITTED Not possible Possible Possible Possible
REAPEATABLE
READ

Not possible Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible Not possible

Summary

Transactions, key abstractions on databases
• Application defined sequence of operations on one or more databases

that is atomic
Key challenge: trade performance to correctness

• On one hand we want to interleave transactions to increase throughput
• On the other hand we want to isolate transactions from each other

Solution: increase interleaving by providing
• Multi-granularity locks
• Relax the isolation semantics

