
CRDTs and
Coordination Avoidance

(Lecture 8, cs262a)
Ion Stoica & Ali Ghodsi

UC Berkeley
February 12, 2018

Today’s Papers
CRDTs: Consistency without concurrency control,
Marc Shapiro, Nuno Preguica, Carlos Baquero, Marek Zawirski
Research Report, RR-6956, INRIA, 2009
(https://hal.inria.fr/inria-00609399v1/document)

Coordination Avoidance in Database Systems,
Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi,
Joseph M. Hellerstein, Ion Stoica,
Proceedings of VLDB’14
(http://www.vldb.org/pvldb/vol8/p185-bailis.pdf)

Replicated Data

Replicate data at many nodes
• Performance: local reads
• Fault-tolerance: no data loss unless all replicas fail or become unreachable
• Availability: data still available unless all replicas fail or become unreachable
• Scalability: load balance across nodes for reads

Updates
• Push to all replicas
• Consistency: expensive!

Conflicts

Updating replicas may lead to different results à
inconsistent data

s1

s2

s3

5

5

5 7

3

3

7

3 7

Strong Consistency

All replicas execute updates in same total order
• Deterministic updates: same update on same objects à same result

s1

s2

s3

5

5

5 7

3

3

7

3 7

3

7

coordinate

Strong Consistency

All replicas execute updates in same total order
• Deterministic updates: same update on same objects à same result

Requires coordination and consensus to decide on total order of
operations

• N-way agreement, basically serialize updates à very expensive!

CAP theorem

• Can only have two of the three properties in a distributed
system
• Consistency. Always return a consistent results (linearizable). As if

there was only a single copy of the data.
• Availability. Always return an answer to requests (faster than really

long lived partitions).
• Partition-tolerance. Continue operating correctly even if the network

partitions.

CAP theorem v2

• When the networked is partitioned, you must chose one of
these
• Consistency. Always return a consistent results (linearizable). As if

there was only a single copy of the data.
• Availability. Always return an answer to requests (faster than really

long lived partitions).

How can we get around CAP?

Eventual Consistency to the rescue
If no new updates are made to an object all replicas will eventually
converge to the same value

Update local and propagate
• No consensus in the background à scale well for both reads and writes
• Expose intermediate state
• Assume, eventual, reliable delivery

On conflict, applications
• Arbitrate & Rollback

Eventual Consistency
If no new updates are made to an object all replicas will eventually
converge to the same value

However
• High complexity
• Unclear semantics if application reads data and then we have a rollback!

• Must be available when partitions happen
• “For example, customers should be able to view and add items to

their shopping cart even if disks are failing, network routes are
flapping, or data centers are being destroyed by tornados. Therefore,
the service responsible for managing shopping carts requires that it
can always write to and read from its data store, and that its data
needs to be available across multiple data centers.”

• Handles 3 million checkouts a day (2009). Availability!

• Must be available when partitions happen
• “Many traditional […]. In such systems, writes may be rejected if the

data store cannot reach all (or a majority of) the replicas at a given
time. On the other hand, Dynamo targets the design space of an
“always writeable” data store (i.e., a data store that is highly available
for writes). […] For instance, the shopping cart service must allow
customers to add and remove items from their shopping cart even
amidst network and server failures. This requirement forces us to push
the complexity of conflict resolution to the reads in order to ensure that
writes are never rejected”

• Must be available when partitions happen
• “There is a category of applications in Amazon’s platform that can tolerate

such inconsistencies and can be constructed to operate under these
conditions. For example, the shopping cart application requires that an “Add
to Cart” operation can never be forgotten or rejected. If the most recent
state of the cart is unavailable, and a user makes changes to an older version
of the cart, that change is still meaningful and should be preserved. Note that
both “add to cart” and “delete item from cart” operations are
translated into put requests to Dynamo. When a customer wants to add
an item to (or remove from) a shopping cart and the latest version is not
available, the item is added to (or removed from) the older version and the
divergent versions are reconciled later. .”

Main idea of CRDTs

How does CRDTs get around these consistency problems of
eventual consistency?

Create many specialized APIs with custom semantics
• Shopping cart might need a SET instead of PUT/GET
• A search engine might need a distributed DAG

CS Research Trick: assume more semantics. More limited
applicability, but can do things that were impossible before!

Strong Eventual Consistency

Strong Eventual Consistency (SEC) is Eventual Consistency
with the guarantee that correct replicas that have received the
same updates (maybe in different order) have an equivalent
correct state!

Like eventual consistency but with deterministic outcomes of
concurrent updates

• No need for background consensus
• No need to rollback
• Available, fault-tolerant, scalable

Partial Order (poset)

Set of objects S and an order relationship ≤ between them, such
that for all a, b, c in S
• Reflexive: a ≤ a
• Antisymmetric: (a ≤ b ∧ b ≤ a) ⇒ (a = b)
• Transitive: (a ≤ b ∧ b ≤ c) ⇒ (a ≤ c)

Hesse diagram

Simple way of describing posets, with a graph
• Read bottom to top (smaller to greater), no arrows, just links
• Remove self links
• Remove transitive links

Semi-lattice

Partial order ≤ set S with a least upper bound (LUB), denoted ⊔
• m = x ⊔ y is a LUB of {x, y} under ≤ iff
∀ m′ (x ≤ m′ ∧ y ≤ m′) ⇒ (x ≤ m ∧ y ≤ m ∧ m ≤ m′)

The nice thing about semi-lattices is that it follows that ⊔ is:
• commutative: x ⊔ y = y ⊔ x
• idempotent: x ⊔ x = x
• associative: (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z)

Example

Partial order ≤ on set of integers
⊔: max()

Then, we have:
• commutative: max(x, y) = max(y, x)
• idempotent: max(x, x) = x
• associative: max(max(x, y), z) = max(x, max(y, z))

Example

Partial order ⊆ on sets
⊔: U (set union)

Then, we have:
• commutative: A U B = B U A
• idempotent: A U A = A
• associative: (A U B) U C = A U (B U C)

Aha!

How can this help us in building replicated distributed systems?
• Just use the LUB ⊔ to merge state between replicas

For instance, could build a CRDT using
• Supports add(integer)
• Supports get à returns the maximum integer
• How?

Always correct: available and strongly eventually consistent

Can we support remove(integer)?

State-based Replication

Replicated object: a tuple (S, s0, q, u, m).
• Replica at process pi has state si∈ S
• s0: initial state

Each replica can execute one of following commands
• q: query object’s state
• u: update object’s state
• m: merge state from a remote replica

State-based Replication

Algorithm
• Periodically, replica at pi sends its current state to pj

• Replica pj merges received state into its local state by executing m
After receiving all updates (irrespective of order), each replica will
have same state

Monotonic Semi-lattice Object

A state-based object with partial order ≤, noted (S,≤, s0, q, u, m),
that has following properties, is called a monotonic semi-lattice:

1. Set S of values forms a semi-lattice ordered by ≤
2. Merging state s with remote state s′ computes the LUB of the two

states, i.e., s •m (s′) = s⊔s′
3. State is monotonically non-decreasing across updates, i.e., s ≤ s • u

Convergent Replicated Data Type (CvRDT)

Theorem: Assuming eventual delivery and termination, any state-
based object that satisfies the monotonic semi-lattice property is
SEC

Why does it work?

Don’t care about order:
• Merge is both commutative and associative

Don’t care about delivering more than once
• Merge is idempotent

Numerical Example: Union Set
u: add new element to local replica
q: return entire set
merge: union between remote set and local replica

{5}

{5}

{5}

{5}

{5}

{5}

{5} U {3} = {3, 5}

{5} U {7} = {5, 7}

{3, 5} U {5, 7} = {3, 5, 7}

{5, 7} U {3, 5} = {3, 5, 7}

{5} U {3, 5} = {3, 5}

{3, 5} U {5, 7} = {3, 5, 7}

Operation-based Replication

An op-based object is a tuple (S, s0, q, t, u, P), where S, s0 and q
have same meaning: state domain, initial state and query method

• No merge method; instead an update is split into a pair (t, u), where
• t: side-effect-free prepare-update method (at local copy)
• u: effect-free update method (at all copies)
• P: delivery precondition (see next)

Operation-based Replication

Algorithm
• Updates are delivered to all replicas
• Use causally-ordered broadcast communication protocol, i.e., deliver every

message to every node exactly once, consistent with happen-before order
• Happen-before: updates from same replica are delivered in the order they

happened to all recipients (effectively delivery precondition, P)
• Note: concurrent updates can be delivered in any order

Commutativity Property

Updates (t, u) and (t′, u′) commute, iff for any reachable
replica state s where both u and u′ are enabled

• u (resp. u′) remains enabled in state s • u′ (resp. s • u)
• s • u • u′ ≡ s • u′ • u

Commutativity holds for concurrent updates

Commutative Replicated Data Type (CmRDT)

Assuming causal delivery of updates and method termination, any
op-based object that satisfies the commutativity property for all
concurrent updates is SEC

Numerical Example: Union Set
t: add a set to local replica
u: add delta to every remote replica

{5}

{5}

{5}

{5}

{5}

{5}

{5} U {3} = {3, 5}

{5} U {5, 7} = {5, 7}

{3, 5} U {5,7} = {3, 5, 7}

{5, 7} U {3} = {3, 5, 7}

{5} U {3} = {3, 5}

{3, 5} U {5,7} = {3, 5, 7}

State-based vs Op-based
State	Based	CRDT	(CvRDT)

Op	Based	CRDT	(CmRDT)

What	is	the	differences	and	why	
might	it	matter?

State-based vs Operation-based Replication

Both are equivalent!
• You can use one to emulate the other

Operation-based
• More efficient since you can ship only small updates, but requires

causally-ordered broadcast

State-based
• Just requires reliable broadcast; causally-ordered broadcast much more

complex! But requires sending all state

CRDT Examples (cont’d)
Integer vector (virtual clock):

• u: increment value at corresponding index by one, inc(i)
• m: maximum across all values, e.g., m([1, 2, 4], [3, 1, 2]) = [3, 2, 4]

Counter: use an integer vector, with query operation
• q: returns sum of all vector values (1-norm), e.g., q([1, 2, 4]) = 7

Counter that decrements as well:
• Use two integer vectors:

– I updated when incrementing
– D updated when decrementing

• q: returns difference between 1-norms of I and D

CRDT Examples (cont’d)

Add only set object
• u: add new element to set
• m: union between two sets
• q: return local set

Add and remove set object
• Two add only sets

– A: when adding an element, add it to A
– R: when removing an element, add it to R

• q: returns A\R (only supports adding an element at most once)

CAP Theorem

You cannot achieve simultaneously
• Strong consistency
• Availability
• Partition tolerance

Why?

SEC a Solution for CAP?

Availability: a replica is always available for both reads and writes
Partition tolerance: any communicating subset of replicas of
eventually converges, even if partitioned from the rest of the
network.
Fault tolerance: n-1 nodes can fail!

Almost a solution: SEC weaker than Strong Consistency, though
good enough for many practical situations

Summary
Serialization, strong consistency

• Easy to use by applications, but don’t scale well due to conflicts

Two solutions to dramatically improve performance:
• CRDTs: eliminate coordination by restricting types of supported objects

for concurrent updates
• Coordination avoidance: rely on application hints to avoid coordination for

transactions

Discussion

• What’s the main contribution of this paper?
• What do these models mean for applications?
• What’s the relationship between transactions and CRDTs?

