
Distributed Systems, 
Consensus and 

Replicated State Machines
Ali Ghodsi – UC Berkeley
alig(at)cs.berkeley.edu



Ali Ghodsi, alig@cs 
2

What’s a distributed system? 

“A distributed system is one in
which the failure of a
computer you didn't even
know existed can render your
own computer unusable. “

Leslie Lamport



Ali Ghodsi, alig@cs 
3

Two Generals’ Problem

n Two generals need to coordinate an attack
q Must agree on time to attack
q They’ll win only if they attack simultaneously
q Communicate through messengers
q Messengers may be killed on their way



Ali Ghodsi, alig@cs 
4

Two Generals’ Problem

n Lets try to solve it for general g1 and g2
n g1 sends time of attack to g2

q Problem: how can g1 ensure g2 received msg?
q Solution: let g2 ack receipt of msg, then g1 attacks
q Problem: how can g2 ensure g1 received ack?
q Solution: let g1 ack the receipt of the ack…
q …

n This problem is impossible to solve!



Ali Ghodsi, alig@cs 
5

Teaser: Two Generals’ Problem

n Applicability to distributed systems
q Two nodes need to agree on a value
q Communicate by messages using an unreliable

channel

n Agreement is a core problem…



How it all started

n Commit protocols for databases
q Needed to implement Atomicity in ACID
q Every node needs to agree on COMMIT/ABORT

n Two-phase commit known since 1976
q Problem?
q Centralized and blocking if coordinator fails

Ali Ghodsi, alig@cs 



Bad news theorem

n After years of people solving the problem, 
bunch of authors proved that a basic version 
of it is impossible in most circumstances

Ali Ghodsi, alig@cs 



Ali Ghodsi, alig@cs 
8

Consensus: 
agreeing on a number

n Consensus problem
q All nodes propose a value
q Some nodes might crash & stop responding

n The algorithm must ensure:
q All correct nodes eventually decide
q Every node decides the same
q Only decide on proposed values



Bad news theorem (FLP85)

n In an asynchronous system, even with only 
one failure, Consensus cannot be solved
q In asynchronous systems, message delays can be 

arbitrary, i.e. not bounded
q If cannot do it with 1 failure, definitely cannot 

do it with n>1 failures
q Internet is essentially an asynchronous system

n But Consensus != Atomic Commit

Ali Ghodsi, alig@cs 



Ali Ghodsi, alig@cs 
10

Consensus is Important

n Atomic Commit
q Only two proposal values {commit, abort}
q Only decide commit if all nodes vote commit

q This related problem is even harder to solve 
than consensus
q Also impossible in asynchronous systems L



Ali Ghodsi, alig@cs 
11

Reliable Broadcast Problem

n Reliable Broadcast Problem
q A node broadcasts a message

q If sender correct, all correct nodes deliver msg

q All correct nodes deliver same messages

n Very simple solution, works in any environment
n Algo: Every node broadcast every message O(N2)



Ali Ghodsi, alig@cs 
12

Atomic Broadcast Problem

n Atomic Broadcast
q A node broadcasts a message

q If sender correct, all correct nodes deliver msg 

q All correct nodes deliver same messages 

q Messages delivered in the same order



Ali Ghodsi, alig@cs 
13

Atomic Broadcast=Consensus

n Given Atomic broadcast
q Can use it to solve Consensus. How? 

n Every node broadcasts its proposal
q Decide on the first received proposal 
q Messages received same order

n All nodes will decide the same

n Given Consensus
q Can use it to solve Atomic Broadcast. How?

n Atomic Broadcast equivalent to Consensus



Ali Ghodsi, alig@cs 
14

Possibility of Consensus

n Consensus solvable in synchronous system with up 
to N/2 crashes
q Synchronous system has a bound on message delay

n Intuition behind solution
q Accurate crash detection

n Every node sends a message to every other node
n If no msg from a node within bound, node has crashed

n Not useful for Internet, how to proceed?



Ali Ghodsi, alig@cs 
15

Modeling the Internet

n But Internet is mostly synchronous
q Bounds respected mostly
q Occasionally violate bounds (congestion/failures)
q How do we model this?

n Partially synchronous system
q Initially system is asynchronous
q Eventually the system becomes synchronous



Ali Ghodsi, alig@cs 
16

Failure detectors

n Let each node use a failure detector
q Detects crashes
q Implemented by heartbeats and waiting
q Might be initially wrong, but eventually correct

n Consensus and Atomic Broadcast solvable 
with failure detectors
n Obviously, those FDs are impossible too
n But useful to encapsulate all asynchrony 

assumptions inside FD algorithm



Useless failure detectors

n How do we create a failure detector with no 
false-negatives?
q i.e., never say a failed node is correct

n How do we create a failure detector with no 
false-positives?
q i.e., never say a correct node is failed

Ali Ghodsi, alig@cs 



Eventual Perfect FD

n Eventually perfect failure detector
q Every failed node is eventually detected as failed

n How to implement?

q Eventually, no correct node is detected as failed

n Properties
q Initially, all bets are off and the FD might output 

anything
q Eventually, all nodes will not give false-positives

Ali Ghodsi, alig@cs 



Failure detection and Leader 
Election

n Leader election (LE) is a special case of 
failure detection
q Always suspect every node, but one correct 

node, as failed

n Implement LE with eventual perfect FD
q How?
q Pick highest ID correct node as leader

Ali Ghodsi, alig@cs 



All problems solved

n With LE we can solve
q Atomic Commit
q Atomic Broadcast
q Eventual Perfect Failure Detection
q Consensus

n Consensus algorithm Paxos implemented 
with LE

Ali Ghodsi, alig@cs 



One special failure detector

n Omega failure detector
q Every failed node is eventually detected as failed

n How to implement?

q Eventually, at least one correct node will not be 
suspected as failed by any node

n Properties
q Initially, all bets are off and the FD might output 

anything
q Eventually, all nodes will not give false-positives 

w.r.t. at least one node
Ali Ghodsi, alig@cs 



Failure Detection and Consensus

n Omega is the weakest failure detector 
needed to solve Consensus
q Second most important results of distributed 

systems

Ali Ghodsi, alig@cs 



RSM?

n So many problems
q All interrelated
q How should we build distributed systems?

n Replicated State Machine (RSM) approach
q Model your application as an RSM
q Replicate your RSM to N servers
q Clients/users submits inputs to all servers
q Servers run agree on the order of inputs
q All servers will have the same state and output 

Ali Ghodsi, alig@cs 



RSM (2)

n Advantage of RSM?
q Make any application trivially fault tolerant

n Distributed file system example
q Each server implements a filesystem
q Each input (read/write) run through consensus
q Voila: fault tolerant FS

Ali Ghodsi, alig@cs 



Paxos vs RSM

n Paxos vs RSM?
q Use Paxos to agree on input order to RSM

n Adapting Paxos for RSM
q Paxos takes 2 round-trips, but RSM optimizations 

make it 1 round trip, how?
q Prepare phase doesn’t need actual values, run 

Prepare for thousands of inputs at once
q How do you add/remove nodes to RSM? (Reconfig)
q Use Paxos to agree on set of nodes in the system

Ali Ghodsi, alig@cs 



Raft vs Paxos

n Paxos initially for Consensus
q Easy to understand correctness, but harder o 

know how to implement the algorithm
q Need all optimizations to make it perfect for RSM
q Need to implement reconfiguration on-top
q A family of Paxos algorithms

Ali Ghodsi, alig@cs 



Raft vs Paxos

n Raft purpose made algorithm for RSM
q Less declarative, more imperative
q Leader election, leader replicates log
q Supports reconfiguration
q Many implementations

Ali Ghodsi, alig@cs 



Summary

n Distributed systems are hard to build
q Failures
q Parallelism

n Many problems interrelated
q Consensus, Atomic Commit
q Atomic Broadcast
q Leader election, Failure detection

n Replicated state machine
q Generic approach to make any DS fault-tolerant
q Can be implemented with Paxos or Raft
q Raft more straight forward to implement

Ali Ghodsi, alig@cs 


