
VM Migration, Containers
(Lecture 12, cs262a) 

Ali Ghodsi and Ion Stoica,
UC Berkeley

February 28, 2018

(Based in part on 
http://web.eecs.umich.edu/~mosharaf/Slides/EECS582/W16/021516-JunchengLiveMigration.pptx)



Today’s Paper

Live Migration of Virtual Machines, C. Clark, K. Fraser, S. 
Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,
NSDI’05

An Updated Performance Comparison of Virtual Machines and 
Linux Containers, Wes Felter, Alexandre Ferreira, Ram 
Rajamony, Juan Rubio



VMWare “history”
Started by creators of Disco

Initial product: provide VMs for developers to aid with 
development and testing

• Can develop & test for multiple OSes on the same box

Actual, killer product: server consolidation
• Enable enterprises to consolidate many lightly used services/systems
• Cost reduction, easier to manage
• Eventually over 90% of VMWare’s revenue

Mendel 
Rosemblum
(Stanford University)



Migration Motivation

Server becomes overloaded
• Multiple VMs on same server are heavily used
• Load balance the load (e.g., multiple web servers running in VMs)

Maintenance: update the configuration of a machine
• Change/upgrade HDD
• Upgrade guest OS (e.g., Xen)

Thus, need to migrate VMs on a different machine



Why VM instead of Process migration?

Avoid complex dependencies between processes and local 
services

Separation of concerns between users and operators
• Users can fully control the software within their VMs
• Operators don’t care about what’s inside the VM



Live VM Migration

Move VMs across distinct physical hosts transparently
• Little or no downtime for running services
• Services unaware about migration, e.g.,

– Maintain network connectivity of the guest OS
• VM is treated as a black box



Challenges

Minimize service downtime
Minimize migration duration
Avoid disrupting running service

.BI
N

.V
SV.X

M
L

.V
H
D

Source Host Destination Host
Storage



Handling Resources during Migration

Open network connections
• Keep IP addresses while migrating VM
• Use ARP (Address Resolution Protocol) to map IP to new host MAC
• Broadcast ARP new routing information

– Some routers might ignore to prevent spoofing
– However, guest OS aware of migration can avoid this problem

Local storage
• Assume Network Attached Storage



Handling Resources during Migration

Virtual MachineVirtual Machine

Source Destination



Migration Techniques

Pre-copy: bounded
• iterative push phase, plus 
• very short stop-and-copy phase

Careful to avoid service degradation

Phase service downtime migration duration
push - -

stop-and-copy longest shortest
pull (demand) shortest longest



Design Overview



Migrate Writable Working Sets

Transfer memory pages that are subsequently modified
§ Good candidates for push phase: pages seldom or never modified.
§ Writeable working set (WWS): Pages are written often, and should best

be transferred via stop-and-copy

WWS behavior
• WWS varies significantly between different sub-benchmarks
• Migration results depend on workload and when migration happens



Challenge: Migrate Writable Working Sets

Transfer memory pages that are subsequently modified
§ Good candidates for push phase: Pages seldom or never modified.
§ Writeable working set (WWS): Pages are written often, and should best

be transferred via stop-and-copy

WWS behavior
• WWS varies significantly between different sub-benchmarks
• Migration results depend on workload and when migration happens



Managed & Self migration
Managed migration

• Performed by a migration daemon running in management VM
Self migration

• Within migratee OS; a small stub required on destination host

Difference Managed Self

Track WWS shadow page table +
bitmap bitmap + a spare bit in PTE

Stop-and-copy suspend OS to obtain a
consistent checkpoint

two-stage stop-and-copy,
ignore page updates in last

transfer



Managed Migration (1/2)

Use shadow page table to track dirty pages in each push round
1. Xen inserts shadow pages under guest OS
2. Shadow pages are marked read-only
3. If OS tries to write to a page, resulting page fault is trapped by Xen.
4. Xen checks OS's original page table and forwards appropriate write 

permission
5. Simultaneously, Xen marks page as dirty in bitmap.



Managed Migration (2/2)

At the beginning of next push round
• Last round’s bitmap is copied, Xen’s bitmap is cleared
• Shadow pages are destroyed and recreated, all write permissions lost



Self Migration

Most implementation within OS being migrated (source machine)

Migration stub must run on destination machine 
• Listen for incoming migration requests, create an app

Pre-copying scheme similar

Challenge: transfer a consistent OS checkpoint
• Cannot suspend migratee (as it is doing migration!)



Logically OS Checkpointing

1. Disables all OS activity except for migration 
– Final scan of dirty bitmap; clear bit as each page is transferred. 
– Pages dirtied during final scan, copied to a shadow buffer

2. Transfer the contents of the shadow buffer 
– Page updates are ignored during this transfer.



Dynamic Rate Limiting
Tradeoff:

• More network bandwidth less downtime
• Less network bandwidth more impact on running services

Dynamically adapt bandwidth limit during each push round
-Set a min and a max bandwidth limit, begin with the min limit

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)*+, = dirty	𝑟𝑎𝑡𝑒67889:; + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡
𝑑𝑖𝑟𝑡𝑦	𝑟𝑎𝑡𝑒BCDD*), = 𝑑𝑖𝑟𝑡𝑦	𝑝𝑎𝑔𝑒𝑠/𝑑𝑢𝑟𝑎𝑡𝑖on

When terminate push, and switch to stop-and-copy?
𝑑𝑖𝑟𝑡𝑦	𝑟𝑎𝑡𝑒67889:; > 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎLM+

𝑑𝑖𝑟𝑡𝑦	𝑝𝑎𝑔𝑒𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (e.g., 256 KB)

downtime Perfor-
mance



Evaluation-simple web server

A highly loaded server with relative small WWS
• Controlled impact on live services
• Short downtime

Migration starts



Evaluation-rapid page dirtying

• In the third round, the transfer rate is scaled up to 500Mbit/s (max)
• Switch to stop-and-copy, resulting in 3.5s downtime
• Diabolical workload may suffer considerable service downtime

Stop-and-copy



Conclusion

OS-level live migration
Pre-copy: iterative push and short stop-and-copy
Dynamically adapting network-bandwidth

-Balance service downtime and service performance degradation
Minimize service downtime and impact on running service



VMs vs Containers





Linux Containers (LXC)
Linux kernel provides the “control groups” (cgroups) functionality 

• Allows limitation and prioritization of resources (CPU, memory, block I/O, 
network, etc)

“namespace isolation” functionality
• Allows complete isolation of an applications' view of the OS, e.g.,

– Process trees
– Networking
– User IDs
– Mounted file systems.



LXC Features
Runs in the user space

• Own process space
• Own network interface
• Own /sbin/init (coordinates the rest of the boot process and configures 

the environment for the user)
• Run stuff as root

Share kernel with the host
No device emulation



Near-zero overhead

Processes are isolated, but run straight on host

CPU performance = native performance

Memory performance = a few % for (optional) accounting

Network performance = small overhead; can be reduced to zero



Docker

Standard format for containers

Allows to create and share images
• Standard, reproducible way to easily build trusted images (Dockerfile)

Public repository of Docker images
• https://hub.docker.com/



Kernel-based VM

Hypervisor embedded in the Linux kernel itself
• Every VM is a regular Linux process, scheduled by Linux scheduler
• KVM makes use of hardware virtualization to virtualize processor states

KVM supports live migration



Network Configuration



TCP bulk transfer efficiency 



Random I/O Throughput



Random read latency CDF



MySQL Throughput vs. Concurrency



MySQL Throughput vs. Concurrency



Summary

KVM performance has improved considerably since its creation
• Leverage virtualization support in modern processors

Docker not without overhead
• E.g., NAT introduces overhead for workloads with high packet rates

“Bad” news for containers?
• Containers started with near-zero overhead so no room to improve!


