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Motivation
l Rapid	innovation	in	cloud	computing

l Today
l No	single	framework	optimal	for	all	applications
l Each	framework	runs	on	its	dedicated	cluster	or	cluster	

partition	

Dryad

Pregel

CassandraHypertable



Computation	Model:	Frameworks
l A	framework (e.g.,	Hadoop,	MPI)	manages	one	or	
more	jobs in	a	computer	cluster

l A	job consists	of	one	or	more	tasks
l A	task (e.g.,	map,	reduce)	is	implemented	by	one	or	
more	processes	running	on	a	single	machine
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One	Framework	Per	Cluster	Challenges
l Inefficient	resource	usage

l E.g.,	Hadoop	cannot	use	available	
resources	from	Pregel’s	cluster

l No	opportunity	for	stat.	multiplexing

l Hard	to	share	data
l Copy	or	access	remotely,	expensive

l Hard	to	cooperate
l E.g.,	Not	easy	for	Pregel	to	use	

graphs	generated	by	Hadoop
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What	do	we	want?

l Common	resource	sharing	layer	
l Abstracts	(“virtualizes”)	resources	to	frameworks
l Enable	diverse	frameworks	to	share	cluster
l Make	it	easier	to	develop	and	deploy	new	frameworks	(e.g.,	Spark)
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Fine	Grained	Resource	Sharing

l Task	granularity	both	in	time	&	space
l Multiplex	node/time	between	tasks	belonging	to	different	

jobs/frameworks	

l Tasks	typically	short;	median	~=	10	sec,	minutes

l Why	fine	grained?
l Improve	data	locality
l Easier	to	handle	node	failures
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Goals

l Efficient	utilization	of	resources

l Support	diverse	frameworks (existing	&	future)

l Scalability to	10,000’s	of	nodes

l Reliability in	face	of	node	failures



Approach:	Global	Scheduler
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Approach:	Global	Scheduler
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Approach:	Global	Scheduler
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Approach:	Global	Scheduler

l Advantages:	can	achieve	optimal	schedule
l Disadvantages:	

l Complexity	à hard	to	scale	and	ensure	resilience
l Hard	to	anticipate	future frameworks’ requirements		
l Need	to	refactor	existing	frameworks		
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Mesos



Resource	Offers

l Unit	of	allocation:	resource	offer
l Vector	of	available	resources	on	a	node
l E.g.,		node1:	<1CPU,	1GB>,	node2:	<4CPU,	16GB>	

l Master	sends	resource	offers	to	frameworks

l Frameworks	select	which	offers	to	accept	and	which	
tasks	to	run
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Push	task	scheduling	to	frameworks
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Executor
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Module

S1 <8CPU,8GB>
S2 <8CPU,16GB>
S3 <16CPU,16GB>

S1 <6CPU,4GB>
S2 <4CPU,12GB>
S1 <2CPU,2GB>

Mesos	Architecture:	Example
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Why	does	it	Work?
l A	framework	can	just	wait	for	an	offer	that	matches	
its	constraints	or	preferences!
l Reject offers	it	does	not	like

l Example:	Hadoop’s job	input	is	blue file
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Two	Key	Questions

l How	long	does	a	framework	need	to	wait?

l How	do	you	allocate	resources	of	different	types?
l E.g.,	if	framework	A	has	(1CPU,	3GB)	tasks,	and	framework	

B	has	(2CPU,	1GB)	tasks,	how	much	we	should	allocate	to	A	
and	B?
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Two	Key	Questions

Ø How	long	does	a	framework	need	to	wait?

l How	do	you	allocate	resources	of	different	types?
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How	Long	to	Wait?
l Depend	on

l Distribution	of	task	duration
l “Pickiness” – set	of	resources	satisfying	framework	constraints

l Hard	constraints: cannot	run	if	resources	violate	
constraints
l Software	and	hardware	configurations	(e.g.,	OS	type	and	version,	

CPU	type,	public	IP	address)	
l Special	hardware	capabilities	(e.g.,	GPU)

l Soft	constraints: can	run,	but	with	degraded	performance	
l Data,	computation	locality
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Model

l One	job	per	framework
l One	task	per	node
l No	task	preemption

l Pickiness,	p = k/n
l k – number	of	nodes	required	by	job,	e.g.,	it’s	target	allocation
l n – number	of	nodes	satisfying	framework’s	constraints	in	the	

cluster



S5
S4
S3

S2
S1

time

Ramp-Up	Time

l Ramp-Up	Time:	time	job	waits	to	get	its	target	allocation
l Example:

l Job’s	target	allocation,	k =	3	
l Number	of	nodes	job	can	pick	from,	n =	5

job	ready job	endsramp-up	time



Pickiness:	Ramp-Up	Time

Estimated	ramp-up time	of	a	job	with	pickiness	p
is	≅ (100p)-th percentile	of	task	duration	distribution

l E.g.,	if	p =	0.9,	estimated	ramp-up	time	is	the	90-th	
percentile	of	task	duration	distribution	(T)

l Why?	Assume:	k = 3, n = 5, p = k/n

S5
S4
S3

S2
S1

time
job	ready ramp-up	time

• job	needs	to	wait	for	first	k (= p×n)	tasks	to	finish
• Ramp-up	time:	k-th	order	statistics	of	task	

duration	dist.	sample,	i.e.,	(100p)th perc.	of	dist.
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Alternate	Interpretations
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l If	p =	1,	estimated	time	of	a	job	getting	fraction	q of	its	
allocation	is	≅ (100q)-th percentile	of	T
l E.g.,	estimate	time	of	a	job	getting	0.9	of	its	allocation	is	the	90-

th	percentile	of	T

l If	utilization	of	resources	satisfying	job’s	constraints	is	q,	
estimated	time	to	get	its	allocation	is	≅ (100q)-th perc.	of	
T
l E.g.,	if	resource	utilization	is	0.9,	estimated	time	of	a	job	to	get	its	

allocation	is	the	90-th	percentile	of	T



Ramp-Up	Time:	Mean
l Impact	of	heterogeneity	of	task	duration	distribution	
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Ramp-up	Time:	Traces

Ramp-up formula p =0.1 p =0.5 p =0.9 p =0.98
mean	(µ) 0.5	Tmean 0.68	Tmean 1.59	Tmean 3.71Tmean

stdev	(σ) 0.01	Tmean 0.04	Tmean 0.25	Tmean 1.37Tmean

(a−1)
a

×
Tmean
(1− p)1/a

µ
a
×

p
n(1− p)

Facebook	(Oct’10)		
a =	1.944
Tmean =	168s	

MS	Bing	(’10)		
a =	1.887
Tmean =	189s	

shape	parameter,		a = 1.9



l Preemption:	preempt	tasks

l Migration:move	tasks	around	to	increase	choice,	e.g.,

l Existing	frameworks	implement
l No	migration:	expensive	to	migrate	short	tasks	
l Preemption	with	task	killing	(e.g.,	Dryad’s	Quincy):	expensive	

to	checkpoint	data-intensive	tasks

Job	1 constraint	set	=	{m1,	m2,	m3,	m4}
Job	2 constraint	set	=	{m1,	m2}

m1 m2 m3 m4

Improving	Ramp-Up	Time?
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Macro-benchmark
l Simulate	an	1000-node	cluster

l Job	and	task	durations:	Facebook	traces	(Oct	2010)
l Constraints:	modeled	after	Google*

l Allocation	policy:	fair	sharing	

l Scheduler	comparison
l Resource	Offers:	no	preemption,	and	no	migration	(e.g.,	

Hadoop’s	Fair	Scheduler	+	constraints)
l Global-M:	global	scheduler	with	migration
l Global-MP:	global	scheduler	with	migration	and	preemption

*Sharma	et	al.,	“Modeling	 and	Synthesizing	 Task	Placement	Constraints	in	Google	Compute	Clusters”,	 ACM	SoCC,	 2011.	



Facebook:	Job	Completion	Times
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Facebook:	Pickiness
l Average	cluster	utilization:	82%

l Much	higher	than	at	Facebook,	which	is	<	50%

l Mean	pickiness:	0.11
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Summary:	Resource	Offers

l Ramp-up	time	low	under	most	scenarios

l Barely	any	performance	differences	between	global	
and	distributed	schedulers	in	Facebook	workload

l Optimizations
l Master	doesn’t	send	an	offer	already	rejected	by	a	

framework	(negative	caching)
l Allow	frameworks	to	specify	white	and	black	lists	of	nodes
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Lookback

l Why	resource	offers?
l What	was	the	main	contribution?
l How	important	was	fine	grained	task	scheduling?

31



32



My	biased	summary

l AirBnB built	Marathon,	a	framework	for	Mesos that	takes	
detailed	job	descriptions	and	schedules	long	running	tasks
l Ben’s	high	school	friend,	was	behind	Marathon.	It	was	written	in	Scala

and	was	dubbed	“crontab for	Mesos”.	Both	are	co-founders	of	
Mesosphere

l Ben	joined	Twitter	full	time	to	ensure	Mesos adoption
l Twitter	mainly	used	Mesos for	long-running	tasks
l Twitter	was	important	when	other	companies	adopted	Mesos
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My	biased	summary

l Mesos “heavily”	influenced	the	YARN	design
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My	biased	summary
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My	biased	summary

l Why	was	Mesos so	successful?
l Ben	working	at	Twitter?
l The	Datacenter	OS	vision?
l The	availability	of	open	source	software	that	worked	with	

modern	tech	(Hadoop etc)?
l The	academic	impact?	The	Berkeley	brand?
l The	fact	that	it	solved	a	real	and	important	problem?
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Borg

Cluster	management	system	at	Google	that	achieves	
high	utilization	by:
l Admission	control
l Efficient	task-packing
l Over-commitment
l Machine	sharing
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The	User	Perspective

l Users:	Google	developers	and	system	administrators	
mainly

l The	workload:	Production	and	batch,	mainly
l Cells,	around	10K	nodes
l Jobs	and	tasks
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The	User	Perspective

l Allocs
l Reserved	set	of	resources

l Priority,	Quota,	and	Admission	Control	
l Job	has	a	priority	(preempting)
l Quota	is	used	to	decide	which	jobs	to	admit	for	scheduling

l Naming	and	Monitoring
l 50.jfoo.ubar.cc.borg.google.com	
l Monitoring	health	of	the	task	and	thousands	of	

performance	metrics
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Scheduling	a	Job

41

job hello_world = {
runtime = { cell = “ic” } //what cell should run it in?
binary = ‘../hello_world_webserver’ //what program to run?
args = { port = ‘%port%’ }
requirements = {
RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

}



Borg	Architecture

l Borgmaster
l Main	Borgmaster	process	&	

Scheduler	
l Five	replicas	

l Borglet
l Manage	and	monitor	tasks	and	

resource	
l Borgmaster	polls	Borglet	every	

few	seconds	
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Borg	Architecture

l Fauxmaster:	high-fidelity	
Borgmaster	simulator
l Simulate	previous	runs	from	

checkpoints
l Contains	full	Borg	code

l Used	for	debugging,	capacity	
planning,	evaluate	new	
policies	and	algorithms

43



Scalability

l Separate	scheduler
l Separate	threads	to	poll	the	
Borglets	

l Partition	functions	across	the	
five	replicas

l Score	caching	
l Equivalence	classes	
l Relaxed	randomization	
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Scheduling

l Feasibility	checking:	find	
machines	for	a	given	job

l Scoring:	pick	one	machines
l User	prefs &	built-in	criteria

l Minimize	the	number	and	priority	of	
the	preempted	tasks

l Picking	machines	that	already	have	a	
copy	of	the	task’s	packages

l spreading	tasks	across	power	and	
failure	domains

l Packing	by	mixing	high	and	low	
priority	tasks
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Scheduling

l Feasibility	checking:	find	
machines	for	a	given	job

l Scoring:	pick	one	machines
l User	prefs &	build-in	criteria
l E-PVM	(Enhanced-Parallel	Virtual	

Machine)	vs best-fit
l Hybrid	approach
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Borg’s	Allocation	Algorithms	and	Policies

Advanced	Bin-Packing	algorithms:
l Avoid	stranding	of	resources
Evaluation	metric:	Cell-compaction
l Find	smallest	cell	that	we	can	pack	the	workload	into…
l Remove	machines	randomly	from	a	cell	to	maintain	cell	
heterogeneity

Evaluated	various	policies	to	understand	the	cost,	in	terms	
of	extra	machines	needed	for	packing	the	same	workload
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Should	we	Share	Clusters…
l …	between	production	and	non-production	jobs?
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Should	we	use	Smaller	Cells?
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Would	fixed	resource	bucket
sizes	be	better?
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Kubernetes	(K8s)
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Vision	of	Mesos

l The	datacenter	is	the	new	computer!
l Modern	apps	will	be	distributed	on	the	datacenter

l It	needs	everything	an	OS	had
l Processes
l Filesystem
l IPC
l Scheduler
l Cache
l Software	patches	(+)
l Hardware	upgrades	(++)
l Fault-tolerance 52



53l https://www.tutorialspoint.com/kubernetes/kubernetes_architecture.htm



Kubernetes Project

l The	datacenter	is	the	new	computer!
l Modern	apps	will	be	distributed	on	the	datacenter

l It	needs	everything	an	OS	had
l Processes	à Docker (threads?)	&	PODs	(processes?)
l Filesystemà volumes
l IPC	à K8s	Proxy
l Scheduler	à K8s	Scheduler
l Cache	à etcd
l Software	patches	(+)	à blue/green	updates
l Hardware	upgrades	(++)	à pod	migration	and	services
l Fault-tolerance	à replicasets 54



Summary

l Kubernetes implements	a	full	fledged	operating	
system	for	the	datacenter
l Write	useful	software	that	solves	practical	problems
l OSS	enables	massive	impact
l Important	to	make	the	system	useable

l Potential	for	you	to	have	software	impact	is	greater	
than	ever!	
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Kubernetes

Directly	derived

l Borglet	=>	Kubelet
l alloc	=>	pod
l Borg	containers	=>	docker
l Declarative	specifications

Improved

l Job	=>	labels
l managed	ports	=>	IP	per	

pod
l Monolithic	master	=>	

micro-services
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Google	open	source	project	loosely	inspired	by	Borg			


