Mesos and Borg and Kubernetes
Lecture 13, cs262a

lon Stoica & Ali Ghodsi
UC Berkeley
March 5, 2018

Today’s Papers

Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center,

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, lon Stoica, NSDI'11

Large-scale cluster management at Google with Borg,

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, John Wilkes, EuroSys’15

Motivation

e Rapid innovation in cloud computing

X& Prege J

e Today
e No single framework optimal for all applications

e Each framework runs on its dedicated cluster or cluster
partition

Computation Model: Frameworks

e A framework (e.g., Hadoop, MPI) manages one or
more jobs in a computer cluster

e A job consists of one or more tasks

e A task (e.g., map, reduce) is implemented by one or
more processes running on a single machine

CI [Pl P
Executor Executor

task 1 _|lq task2 § Y :tasks 1,2, 3,4
Ttask6 || : Job 2: tasks 5, 6, 7
: Framework

Executor /_:;:::=q Scheduler (e.g.,
,, Executor|,1 | Job Tracker)
~ task 3 mp 1
S l(e.g. Task vl

One Framework Per Cluster Challenges

50%

e Inefficient resource usage

E.g., Hadoop cannot use available
resources from Pregel’ s cluster

No opportunity for stat. multiplexin = =

e Hard to share data

Copy or access remotely, expensive

H
e Hard to cooperate adoop
E.g., Not easy for Pregel to use ﬂ
graphs generated by Hadoop Pregel

Need to run multiple frameworks on same cluster

What do we want?

e Common resource sharing layer

e Abstracts (“virtualizes”) resources to frameworks
e Enablediverse frameworks to share cluster

e Make it easier to develop and deploy new frameworks (e.g., Spark)

Resource
Management System

-~ s o - - -

Uniprograming

ing

Fine Grained Resource Sharing

e Task granularity both in time & space

Multiplexnode/time between tasks belonging to different
jobs/frameworks

e Tasks typically short; median ~= 10 sec, minutes

e Why fine grained?
Improve data locality
Easier to handle node failures

Goals

Efficient utilization of resources
Support diverse frameworks (existing & future)
Scalability to 10,000’s of nodes

Reliability in face of node failures

Approach: Global Scheduler

Organization policies —>
Resource availability:>

lobal
Job requirements—> Cllolok

Scheduler
* Response time
* Throughput
* Availability

Approach: Global Scheduler

Organization policies —>
Resource availability:>

Job requirements —>
Job execution plan —

e Task DAG

Global
Scheduler

* |nputs/outputs

10

Approach: Global Scheduler

Organization policies —>
Resource availability:>

Job requirements —>
Job execution plan —

Estimates :>

* Task durations
* |nputsizes
* Transfer sizes

Global
Scheduler

Approach: Global Scheduler

Organization policies —>
Resource availability:>

Job requirements —>
Job execution plan >

Estimates :>

Global
Scheduler

— >Task schedule

e Advantages: can achieve optimal schedule

e Disadvantages:

Complexity = hard to scale and ensure resilience

Hard to anticipate future frameworks’ requirements

Need to refactor existing frameworks

12

Mesos

Resource Offers

e Unit of allocation: resource offer

Vector of available resources on a node
E.g., nodel: <1CPU, 1GB>, node2: <4CPU, 16GB>

e Master sends resource offersto frameworks

e Frameworks select which offers to accept and which
tasks to run

Push task scheduling to frameworks

14

Mesos Architecture: Example

4 _)
Slaves continuously

send status updates

s

| ecru 2668 |

é \) :
04
.4’&6

Sek

o°’

\
aboutresources Framework executors
launch tasks and ma
STave 51 | Y
persist across tasks
¢
GS/VJ.'<4CP ter
Slave S2 gy 2GR,
task 2 ' (83.
- 53_ <6CpU4 s
52:<8CPU,16GB> | task JGCPU' GBs
’ GGB_\}
Slave S3

Pluggable schedulerto
pick framework to
send an offer to

Framework scheduler
selects resources and
provides tasks

Why does it Work?

e A framework can just wait for an offer that matches

its constraints or preferences!
e Reject offers it does notlike

e Example: Hadoop’s job input is blue file

(Accept: both S2 A
and S3 store the
\blue file

Two Key Questions

e How long does a framework need to wait?

e How do you allocate resources of different types?

E.g., if framework A has (1CPU, 3GB) tasks, and framework
B has (2CPU, 1GB) tasks, how much we should allocate to A
and B?

17

Two Key Questions

» How long does a framework need to wait?

e How do you allocate resources of different types?

18

How Long to Wait?

e Depend on
Distribution of task duration
“Pickiness” — set of resources satisfying framework constraints

e Hard constraints: cannot run if resources violate
constraints

Software and hardware configurations (e.g., OS type and version,
CPU type, publicIP address)

Special hardware capabilities (e.g., GPU)
e Soft constraints: can run, but with degraded performance

Data, computation locality

19

Model

One job per framework
One task per node
No task preemption

Pickiness, p = k/n
k—number of nodesrequired by job, e.g., it’s target allocation

n — number of nodes satisfying framework’s constraints in the
cluster

Ramp-Up Time

e Ramp-Up Time: time job waits to get its target allocation

e Example:

e Job’ starget allocation, k=3
e Number of nodes job can pick from, n =5

L ———
s [
Sk |
2
$1 [

— ramp- T

job ready "@mp-up time

» time

Pickiness: Ramp-Up Time

Estimated ramp-up time of a job with pickiness p
is = (100p)-th percentile of task duration distribution

e E.g.,if p=0.9, estimated ramp-up time is the 90-th
percentile of task duration distribution (7)

e Why? Assume: k=3, n=2J5, p=k/n

S5 / * job needs to wait for first k (= p Xn) tasks to finish
s4 * Ramp-up time: k-th order statistics of task
S3 durationdist. sample, i.e., (100p)th perc. of dist.

s
S1 0 [[]

| | » time
/_'_l

job ready f@amp-up time 22

Alternate Interpretations

e If p =1, estimated time of a job getting fraction g of its
allocation is = (100g)-th percentile of T

E.g., estimate time of a job getting 0.9 of its allocation is the 90-
th percentileof T’

e |f utilization of resources satisfying job’s constraints is g,
estimated time to get its allocation is = (100g)-th perc. of
T

E.g., if resource utilizationis 0.9, estimated time of a job to get its
allocationis the 90-th percentile of T

23

Ramp-up Time (7,,,,, X)

Ramp-Up Time: Mean

e Impact of heterogeneity of task duration distribution

8

7

6

5 e==J nif.
p<05-> ramp-up < 27,,..., ==Pareto (a=1.1)

3 ramp-up<T,.,, 2 ——Pareto (a=1.5)

2 . — ===Pareto (a=1.9)

1

O Frrrrrerrrrrrrrrrrrrrrrrr e rerrrrrrrrrrrrrr e rrrr e rrrrrrr rrrrrrrrrrrrrr T e rrrrrrrnrThi PiCkynESS(p)

0.01
0.06
0.11
0.16
0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.56
0.61
0.66
0.71
0.76
0.81

0.86
0.91
0.96

Ramp-up Time: Traces

1000000 - Facebook (Oct’ 10) ~ 10000000 - MS Bing (' 10)
100000 |, et @ =1.944 1000000 - oot a=1.887
10000 - 3
“ & 10000 -
S 1000 - 0
2 é 1000 -
E 100 -
3 3 100
10 - 10 -
1 n T I] | 1 a T ‘ —
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

Task Duration (s) Task Duration (s)

shape parameter, a = 1.9
Ramp-up formula

mean (u) (a-1) % Liean 0.5 Theqy 0.68 T4,
a (1 _ p)l/a

stdev (o) &« p o017, 004T,.,,

a \n(l-p)

Improving Ramp-Up Time?

Preemption: preempt tasks

Migration: move tasks around to increase choice, e.g.,

constraintset={m1, m2, m3, m4} -- wait!

Job 2 constraintset={m1, m2}

task task

Existing frameworks implement

e No migration: expensive to migrate short tasks

e Preemption with task killing (e.g., Dryad’s Quincy): expensive
to checkpoint data-intensive tasks

26

Macro-benchmark

e Simulate an 1000-node cluster

Job and task durations: Facebook traces (Oct 2010)
Constraints: modeled after Google*

e Allocation policy: fair sharing

e Scheduler comparison

Resource Offers: no preemption, and no migration (e.g.,
Hadoop' s Fair Scheduler + constraints)

Global-M: global scheduler with migration
Global-MP: global scheduler with migration and preemption

*Sharma et al., “Modeling and Synthesizing Task Placement Constraints in Google Compute Clusters”, ACM SoCC, 2011.

Facebook: Job Completion Times
1 /
0.8 //

//

CDF

0.4

0.2

1 10 100 1000 10000

Job Duration (s)

— res. offers —Global-M —Global-MP

Facebook: Pickiness

e Average cluster utilization: 82%

e Much higher than at Facebook, which is < 50%

e Mean pickiness: 0.11

CDF (% of jobs)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

/_'\K
yd

90t perc. 2> p=04

50t perc. 2 p=0.014

0.2 0.4 0.6 0.8
Pickiness

1.2

29

Summary: Resource Offers

e Ramp-up time low under most scenarios

e Barely any performance differences between global
and distributed schedulers in Facebook workload

e Optimizations

Master doesn’t send an offer already rejected by a
framework (negative caching)

Allow frameworks to specify white and black lists of nodes

30

Lookback

e Why resource offers?
e What was the main contribution?
e How important was fine grained task scheduling?

31

h

presspot on Apr 22, 2014 [-]

Mesos is exceptionally good at managing long-running service and that use case represents
about 50% of the workloads I've seen on large production clusters.

"Scheduling" long-running services is straightforward, as they typically only need to be run
"once." It's trivial to use something like Marathon [0] to do that, and you then immediately
benefit from Mesos' fault-tolerance and self-healing. Marathon also makes it easy to
elastically scale the long-running processes (e.g., start more Rails servers when traffic
increases).

necubi on Apr 21, 2014 [-]

I haven't read the Omega paper yet, but plenty of people are running long-running tasks in
Mesos (Marathon [0] is a framework for doing just that).

32

My biased summary

e AirBnB built Marathon, a framework for Mesos that takes
detailed job descriptions and scheduleslong running tasks

Ben’s high school friend, was behind Marathon. It was written in Scala
and was dubbed “crontab for Mesos”. Both are co-founders of
Mesosphere

e Ben joined Twitter full time to ensure Mesos adoption
Twitter mainly used Mesos for long-runningtasks
Twitter was important when other companies adopted Mesos

33

My biased summary

e Mesos “heavily” influenced the YARN design

The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction and Pregel steps). However, this is currently difficult
because applications are written independently, with no

Clusters of commodity servers have become a major . . .)
» common interfaces for accessing resources and data.

e e i b,

34

My biased summary

Apache YARN

The Data Operating System for Hadoop 2.0

Flexible

Enables other purpose-built data
processing models beyond
MapReduce (batch), such as
interactive and streaming

Efficient

Increase processing IN Hadoop
on the same hardware while
providing predictable
performance & quality of service

Shared

Provides a stable, reliable,
secure foundation and
shared operational services
across multiple workloads

Data Processing Engines Run Natively IN Hadoop

HNRENTAR PEERREINS > $DEBREASES SOSRRIG] MIRERNRS

BATCH | |INTERACTIVE|| ONUNE | |STREAMING: | GRAPH | |MICROSOFT . SAS || ..o
MopReduce Tez HBase \Storm, S4, ..., | Giroph | REEF ::usn,m:.
= & & & =

YARN: Cluster Resource Management

M © Hortorwors inc. 2013 - Confidarnsal

35

My biased summary

e Why was Mesos so successful?

Ben working at Twitter?
The Datacenter OS vision?

The availability of open source software that worked with
modern tech (Hadoop etc)?
The academic impact? The Berkeley brand?

The fact that it solved a real and important problem?

36

Borg

Borg

Cluster management system at Google that achieves
high utilization by:

e Admission control

e Efficient task-packing
e Over-commitment

e Machine sharing

38

The User Perspective

e Users: Google developers and system administrators
mainly

e The workload: Production and batch, mainly
e Cells, around 10K nodes

e Jobs and tasks

39

The User Perspective

e Allocs
Reserved set of resources

e Priority, Quota, and Admission Control
Job has a priority (preempting)

Quotais used to decide which jobs to admit for scheduling

e Naming and Monitoring
50.jfoo.ubar.cc.borg.google.com

Monitoring health of the task and thousands of
performance metrics

40

Scheduling a Job

jJob hello world = {

runtime = { cell = “ic¢” } //what cell should run it in?
binary = ‘../hello world webserver’ //what program to run?
args = { port = ‘Sports’ }

requirements = {

RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

41

Borg Architecture

config
file ‘ : g
borgcfg] [::;);Fsmand-lme]] [web browsers]]
e Borgmaster N P
_ Cell =T
e Main Borgmaster process & Borghtaster | 220U |
hard
Scheduler = ...
scheduler — (Paxos)
e Five replicas ik shard

e Borglet Iy /\\- /

£ fa ,/' NG

e Manage and monitor tasks and ool aer |Borg,et| B

resource -
D }

U%

e Borgmaster polls Borglet every
few seconds

42

Borg Architecture

config
‘fl p e ||
& borgcfg] [fggsmand-lme]] [web browsers]}
e Fauxmaster: high-fidelity N e
Cell =i

BorgMaster | read/Ul
shard

Borgmaster simulator
persistent store

e Simulate previousruns from s
Paxos
checkpoints o

e Containsfull Borg code /\\

® Used for dEbugglngl CapaCIty I'B_orgﬁ [Borglet| IBorgIet | Borglet |

planning, evaluate new :] U - }
.. : | I G
policies and algorithms) =

—

scheduler

U%

43

Scalability

config
UL b command-line
orgcfg tools web browsers

e Separate scheduler N P
Cell — :&,r‘
e Separate threads to poll the Borgastr | eadlU
shard
BO rg|etS scheduler — f:ggsmsm
e Partition functions across the Inkarerd SRS ||
five replicas) , ,/\\)
o SCO re c achlng [Borglet IBorgIet | IBorgIet LI Borglet |
%D :] C]l:] } 0

e Relaxed randomization

44

Scheduling

config
file “ . “
borgcfg] [fggsmand-lme]] [web browsers]]

e Feasibility checking: find N P

machines for a given job R =i
e Scoring: pick one machines schodler Ji—s g;;s;;;e):ths?;?e
e User prefs & built-in criteria ink shard 1 |
Minimize the numberand priorityof |) /\\)
the !oreemptéd tasks Iﬁﬁ I;orglt;tll IBorgIet | !%_o?ﬁ

Picking machines that already havea
copy of the task’s packages

U%

.:]UDD}Q,

spreadingtasks across power and
failure domains

Packing by mixing high and low
priority tasks

45

Scheduling

config
file ‘ : “
borgcfg] [tc;)(;rsmand-llne]] [web browsers]]

e Feasibility checking: find | | ﬁ/'

Cell =

L
L 1
S 1
>

machines for a given job sw— T
e Scoring: pick one machines sheder Jh—s gggg;e):thjﬁe
o User prefs & build-in criteria inkshard | ||
e E-PVM (Enhanced-Parallel Virtual , , /\\ ,
Machine) vs best-fit ﬁﬁ [;orglt;t/| IBo,g,et| ,V?—O:ﬁ

Hybrid approach

U%

o=l

/E./

=

Borg’s Allocation Algorithms and Policies

Advanced Bin-Packing algorithms:

e Avoid stranding of resources

Evaluation metric: Cell-compaction

e Find smallest cell that we can pack the workload into...

e Remove machines randomly from a cell to maintain cell
heterogeneity

Evaluated various policies to understand the cost, in terms
of extra machines needed for packing the same workload

47

Should we Share Clusters...

e ... between production and non-production jobs?

100

(00
o

®
o

N
o

Percentage of cells

N
o

0
-10 0 10 20 30 40 50 60
Overhead from segregation [%)]

48

Should we use Smaller Cells?

100
P 801 .
©
(&)
S 60 -
()]
O
©
o 40f :
o
5
o0+ ~ 2 subcells -
—— 5 subcells
0 . 1 10 subcells
-50 0 50 100 150 200 250

Overhead from partitioning [%]

49

Would fixed resource bucket
sizes be better?

100
o 80 |-
X
(7))
o
5 60
()
O) o
s :
c 40 - :
3 s
5 ¢
& = non-prod CPU

20 - prod memory =ss==s==: —

non-prod memory
O lmemoryl-to-CPU-[ratlo lIllllIIIlIl

0.01 0.1 1 10 100 1000
Requested limit [cores, GiB, GiB/core]

50

Kubernetes (K8s)

The Datacenter Needs an Operating System
Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,

[] (]
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

Clusters of commodity servers have become a major

e The datacenter is the new computer!
Modern apps will be distributed on the datacenter

e It needs everything an OS had

Processes

Filesystem

IPC

Scheduler

Cache

Software patches (+)
Hardware upgrades (++)

52

Fault-tolerance

KUBERNETES MASTER

KUBERNETES NODE KUBERNETES NODE

e https://www.tutorialspoint.com/kubernetes/kubernetes architecture.htm 53

Kubernetes Project

1 Introduction

Cluste:

The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

and Pregel steps). However, this is currently difficult
because applications are written independently, with no

rs of commodity servers have become a major . X N .
. el e of tadas’e common interfaces for accessing resources and data.

e The datacenter is the new computer!
Modern apps will be distributed on the datacenter

e It needs everything an OS had

Processes > Docker (threads?) & PODs (processes?)

Filesystem = volumes
IPC = K8s Proxy

Scheduler =2 K8s Scheduler

Cache = etcd

Software patches (+) =2 blue/green updates
Hardware upgrades (++) = pod migration and services

Fault-tolerance = replicasets

54

Summary

e Kubernetesimplements a full fledged operating
system for the datacenter
Write useful software that solves practical problems
42 1,605 contributors

OSS enables massive impact putors
Important to make the system useable

e Potential for you to have software impact is greater
than ever!

55

Kubernetes

Google open source project loosely inspired by Borg

Directly derived

Borglet => Kubelet

alloc => pod

Borg containers => docker
Declarative specifications

Improved

Job => labels

managed ports => IP per
pod

Monolithic master =>
micro-services

56

