
Mesos and	Borg	and	Kubernetes
Lecture	13,	cs262a

Ion Stoica & Ali Ghodsi
UC Berkeley

March 5, 2018



Today’s Papers
Mesos:	A	Platform	for	Fine-Grained	Resource	Sharing	in	the	Data	
Center,	
Benjamin	Hindman,	Andy	Konwinski,	Matei Zaharia,
Ali	Ghodsi,	Anthony	D.	Joseph,	Randy	Katz,	Scott	Shenker,	Ion	Stoica,	NSDI’11	
https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

Large-scale	cluster	management	at	Google	with	Borg,	
AbhishekVerma,	Luis	Pedrosa,	Madhukar R.	Korupolu,	David	Oppenheimer,	
Eric	Tune,	John	Wilkes,	EuroSys’15	
http://static.googleusercontent.com/media/research.google.com/en//pubs/ar
chive/43438.pdf



Motivation
l Rapid	innovation	in	cloud	computing

l Today
l No	single	framework	optimal	for	all	applications
l Each	framework	runs	on	its	dedicated	cluster	or	cluster	

partition	

Dryad

Pregel

CassandraHypertable



Computation	Model:	Frameworks
l A	framework (e.g.,	Hadoop,	MPI)	manages	one	or	
more	jobs in	a	computer	cluster

l A	job consists	of	one	or	more	tasks
l A	task (e.g.,	map,	reduce)	is	implemented	by	one	or	
more	processes	running	on	a	single	machine

4

cluster

Framework
Scheduler	(e.g.,	
Job	Tracker)

Executor
(e.g.,	Task	
Tracker)

Executor
(e.g.,	Task
Traker)

Executor
(e.g.,	Task
Tracker)

Executor	
(e.g.,	Task
Tracker)

task	1
task	5

task	3
task	7 task	4

task	2
task	6

Job	1: tasks	1,	2,	3,	4
Job	2:	tasks	5,	6,	7



One	Framework	Per	Cluster	Challenges
l Inefficient	resource	usage

l E.g.,	Hadoop	cannot	use	available	
resources	from	Pregel’s	cluster

l No	opportunity	for	stat.	multiplexing

l Hard	to	share	data
l Copy	or	access	remotely,	expensive

l Hard	to	cooperate
l E.g.,	Not	easy	for	Pregel	to	use	

graphs	generated	by	Hadoop

5

Hadoop

Pregel

0%#

25%#

50%#

0%#

25%#

50%#

Hadoop

Pregel

2011	slideNeed	to	run	multiple	frameworks	on	same	cluster



What	do	we	want?

l Common	resource	sharing	layer	
l Abstracts	(“virtualizes”)	resources	to	frameworks
l Enable	diverse	frameworks	to	share	cluster
l Make	it	easier	to	develop	and	deploy	new	frameworks	(e.g.,	Spark)

6

MPIHadoop
MPIHadoop

Resource	
Management	System

Uniprograming Multiprograming



Fine	Grained	Resource	Sharing

l Task	granularity	both	in	time	&	space
l Multiplex	node/time	between	tasks	belonging	to	different	

jobs/frameworks	

l Tasks	typically	short;	median	~=	10	sec,	minutes

l Why	fine	grained?
l Improve	data	locality
l Easier	to	handle	node	failures

7



Goals

l Efficient	utilization	of	resources

l Support	diverse	frameworks (existing	&	future)

l Scalability to	10,000’s	of	nodes

l Reliability in	face	of	node	failures



Approach:	Global	Scheduler

9

Global	
Scheduler

Organization	policies
Resource	availability

• Response	time
• Throughput
• Availability
• …

Job	requirements



Approach:	Global	Scheduler

10

Global	
Scheduler

Organization	policies
Resource	availability

• Task	DAG
• Inputs/outputs

Job	requirements
Job	execution	plan



Approach:	Global	Scheduler

11

Global	
Scheduler

Organization	policies
Resource	availability

• Task	durations
• Input	sizes
• Transfer	sizes

Job	requirements
Job	execution	plan

Estimates



Approach:	Global	Scheduler

l Advantages:	can	achieve	optimal	schedule
l Disadvantages:	

l Complexity	à hard	to	scale	and	ensure	resilience
l Hard	to	anticipate	future frameworks’ requirements		
l Need	to	refactor	existing	frameworks		

12

Global	
Scheduler

Organization	policies
Resource	availability

Task	scheduleJob	requirements
Job	execution	plan

Estimates



Mesos



Resource	Offers

l Unit	of	allocation:	resource	offer
l Vector	of	available	resources	on	a	node
l E.g.,		node1:	<1CPU,	1GB>,	node2:	<4CPU,	16GB>	

l Master	sends	resource	offers	to	frameworks

l Frameworks	select	which	offers	to	accept	and	which	
tasks	to	run

14

Push	task	scheduling	to	frameworks



Hadoop
JobTracker

MPI
JobTracker

8CPU,	8GB

Hadoop	
ExecutorMPI	executor

task	1

task	1

8CPU,	16GB

16CPU,	16GB

Hadoop	
Executor

task	2

Allocation	
Module

S1 <8CPU,8GB>
S2 <8CPU,16GB>
S3 <16CPU,16GB>

S1 <6CPU,4GB>
S2 <4CPU,12GB>
S1 <2CPU,2GB>

Mesos	Architecture:	Example

15

S2:<8CPU,16GB>

Slaves	continuously	
send	status	updates	
about	resources

Pluggable	scheduler	to
pick	framework	to	
send	an	offer	to

Framework	scheduler	
selects	resources	and	

provides	tasks

Framework	executors	
launch	tasks	and	may	
persist	across	tasks

task	2:<4CPU,4GB>

Slave	S1

Slave	S2

Slave	S3

Mesos	Master



Why	does	it	Work?
l A	framework	can	just	wait	for	an	offer	that	matches	
its	constraints	or	preferences!
l Reject offers	it	does	not	like

l Example:	Hadoop’s job	input	is	blue file

16

S1

S2

S3

Reject:	S1	doesn’t	
store	blue file

Accept:	both	S2	
and	S3	store	the	
blue	file

Hadoop	
(Job	tracker)

Mesos
master



Two	Key	Questions

l How	long	does	a	framework	need	to	wait?

l How	do	you	allocate	resources	of	different	types?
l E.g.,	if	framework	A	has	(1CPU,	3GB)	tasks,	and	framework	

B	has	(2CPU,	1GB)	tasks,	how	much	we	should	allocate	to	A	
and	B?

17



Two	Key	Questions

Ø How	long	does	a	framework	need	to	wait?

l How	do	you	allocate	resources	of	different	types?

18



How	Long	to	Wait?
l Depend	on

l Distribution	of	task	duration
l “Pickiness” – set	of	resources	satisfying	framework	constraints

l Hard	constraints: cannot	run	if	resources	violate	
constraints
l Software	and	hardware	configurations	(e.g.,	OS	type	and	version,	

CPU	type,	public	IP	address)	
l Special	hardware	capabilities	(e.g.,	GPU)

l Soft	constraints: can	run,	but	with	degraded	performance	
l Data,	computation	locality

19



Model

l One	job	per	framework
l One	task	per	node
l No	task	preemption

l Pickiness,	p = k/n
l k – number	of	nodes	required	by	job,	e.g.,	it’s	target	allocation
l n – number	of	nodes	satisfying	framework’s	constraints	in	the	

cluster



S5
S4
S3

S2
S1

time

Ramp-Up	Time

l Ramp-Up	Time:	time	job	waits	to	get	its	target	allocation
l Example:

l Job’s	target	allocation,	k =	3	
l Number	of	nodes	job	can	pick	from,	n =	5

job	ready job	endsramp-up	time



Pickiness:	Ramp-Up	Time

Estimated	ramp-up time	of	a	job	with	pickiness	p
is	≅ (100p)-th percentile	of	task	duration	distribution

l E.g.,	if	p =	0.9,	estimated	ramp-up	time	is	the	90-th	
percentile	of	task	duration	distribution	(T)

l Why?	Assume:	k = 3, n = 5, p = k/n

S5
S4
S3

S2
S1

time
job	ready ramp-up	time

• job	needs	to	wait	for	first	k (= p×n)	tasks	to	finish
• Ramp-up	time:	k-th	order	statistics	of	task	

duration	dist.	sample,	i.e.,	(100p)th perc.	of	dist.

22



Alternate	Interpretations

23

l If	p =	1,	estimated	time	of	a	job	getting	fraction	q of	its	
allocation	is	≅ (100q)-th percentile	of	T
l E.g.,	estimate	time	of	a	job	getting	0.9	of	its	allocation	is	the	90-

th	percentile	of	T

l If	utilization	of	resources	satisfying	job’s	constraints	is	q,	
estimated	time	to	get	its	allocation	is	≅ (100q)-th perc.	of	
T
l E.g.,	if	resource	utilization	is	0.9,	estimated	time	of	a	job	to	get	its	

allocation	is	the	90-th	percentile	of	T



Ramp-Up	Time:	Mean
l Impact	of	heterogeneity	of	task	duration	distribution	

Ra
m
p-
up

	T
im

e	
(T

m
ea

n×
)

Pickyness	(p)0

1

2

3

4

5

6

7

8

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

0.
96

Unif.

Exp.

0

1

2

3

4

5

6

7

8

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

0.
96

Unif.

Exp.

Pareto	(a=1.1)

Pareto	(a=1.5)

Pareto	(a=1.9)

Pickyness	(p)

p ≤ 0.86	à
ramp-up	≤	2Tmeanp ≤ 0.5	à

ramp-up	≤	Tmean



Ramp-up	Time:	Traces

Ramp-up formula p =0.1 p =0.5 p =0.9 p =0.98
mean	(µ) 0.5	Tmean 0.68	Tmean 1.59	Tmean 3.71Tmean

stdev	(σ) 0.01	Tmean 0.04	Tmean 0.25	Tmean 1.37Tmean

(a−1)
a

×
Tmean
(1− p)1/a

µ
a
×

p
n(1− p)

Facebook	(Oct’10)		
a =	1.944
Tmean =	168s	

MS	Bing	(’10)		
a =	1.887
Tmean =	189s	

shape	parameter,		a = 1.9



l Preemption:	preempt	tasks

l Migration:move	tasks	around	to	increase	choice,	e.g.,

l Existing	frameworks	implement
l No	migration:	expensive	to	migrate	short	tasks	
l Preemption	with	task	killing	(e.g.,	Dryad’s	Quincy):	expensive	

to	checkpoint	data-intensive	tasks

Job	1 constraint	set	=	{m1,	m2,	m3,	m4}
Job	2 constraint	set	=	{m1,	m2}

m1 m2 m3 m4

Improving	Ramp-Up	Time?

26

wait!

task task

task	 task



Macro-benchmark
l Simulate	an	1000-node	cluster

l Job	and	task	durations:	Facebook	traces	(Oct	2010)
l Constraints:	modeled	after	Google*

l Allocation	policy:	fair	sharing	

l Scheduler	comparison
l Resource	Offers:	no	preemption,	and	no	migration	(e.g.,	

Hadoop’s	Fair	Scheduler	+	constraints)
l Global-M:	global	scheduler	with	migration
l Global-MP:	global	scheduler	with	migration	and	preemption

*Sharma	et	al.,	“Modeling	 and	Synthesizing	 Task	Placement	Constraints	in	Google	Compute	Clusters”,	 ACM	SoCC,	 2011.	



Facebook:	Job	Completion	Times

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Job Duration (s)

Choosy Global-M Global-MPres.	offers



Facebook:	Pickiness
l Average	cluster	utilization:	82%

l Much	higher	than	at	Facebook,	which	is	<	50%

l Mean	pickiness:	0.11

29

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 0.2 0.4 0.6 0.8 1 1.2

C
D

F 
(%

 o
f j

ob
s)

Pickiness

50th perc.	à p = 0.014

90th perc.	à p = 0.4



Summary:	Resource	Offers

l Ramp-up	time	low	under	most	scenarios

l Barely	any	performance	differences	between	global	
and	distributed	schedulers	in	Facebook	workload

l Optimizations
l Master	doesn’t	send	an	offer	already	rejected	by	a	

framework	(negative	caching)
l Allow	frameworks	to	specify	white	and	black	lists	of	nodes

30



Lookback

l Why	resource	offers?
l What	was	the	main	contribution?
l How	important	was	fine	grained	task	scheduling?

31



32



My	biased	summary

l AirBnB built	Marathon,	a	framework	for	Mesos that	takes	
detailed	job	descriptions	and	schedules	long	running	tasks
l Ben’s	high	school	friend,	was	behind	Marathon.	It	was	written	in	Scala

and	was	dubbed	“crontab for	Mesos”.	Both	are	co-founders	of	
Mesosphere

l Ben	joined	Twitter	full	time	to	ensure	Mesos adoption
l Twitter	mainly	used	Mesos for	long-running	tasks
l Twitter	was	important	when	other	companies	adopted	Mesos

33



My	biased	summary

l Mesos “heavily”	influenced	the	YARN	design

34



My	biased	summary

35



My	biased	summary

l Why	was	Mesos so	successful?
l Ben	working	at	Twitter?
l The	Datacenter	OS	vision?
l The	availability	of	open	source	software	that	worked	with	

modern	tech	(Hadoop etc)?
l The	academic	impact?	The	Berkeley	brand?
l The	fact	that	it	solved	a	real	and	important	problem?

36



Borg



Borg

Cluster	management	system	at	Google	that	achieves	
high	utilization	by:
l Admission	control
l Efficient	task-packing
l Over-commitment
l Machine	sharing

38



The	User	Perspective

l Users:	Google	developers	and	system	administrators	
mainly

l The	workload:	Production	and	batch,	mainly
l Cells,	around	10K	nodes
l Jobs	and	tasks

39



The	User	Perspective

l Allocs
l Reserved	set	of	resources

l Priority,	Quota,	and	Admission	Control	
l Job	has	a	priority	(preempting)
l Quota	is	used	to	decide	which	jobs	to	admit	for	scheduling

l Naming	and	Monitoring
l 50.jfoo.ubar.cc.borg.google.com	
l Monitoring	health	of	the	task	and	thousands	of	

performance	metrics

40



Scheduling	a	Job

41

job hello_world = {
runtime = { cell = “ic” } //what cell should run it in?
binary = ‘../hello_world_webserver’ //what program to run?
args = { port = ‘%port%’ }
requirements = {
RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

}



Borg	Architecture

l Borgmaster
l Main	Borgmaster	process	&	

Scheduler	
l Five	replicas	

l Borglet
l Manage	and	monitor	tasks	and	

resource	
l Borgmaster	polls	Borglet	every	

few	seconds	

42



Borg	Architecture

l Fauxmaster:	high-fidelity	
Borgmaster	simulator
l Simulate	previous	runs	from	

checkpoints
l Contains	full	Borg	code

l Used	for	debugging,	capacity	
planning,	evaluate	new	
policies	and	algorithms

43



Scalability

l Separate	scheduler
l Separate	threads	to	poll	the	
Borglets	

l Partition	functions	across	the	
five	replicas

l Score	caching	
l Equivalence	classes	
l Relaxed	randomization	

44



Scheduling

l Feasibility	checking:	find	
machines	for	a	given	job

l Scoring:	pick	one	machines
l User	prefs &	built-in	criteria

l Minimize	the	number	and	priority	of	
the	preempted	tasks

l Picking	machines	that	already	have	a	
copy	of	the	task’s	packages

l spreading	tasks	across	power	and	
failure	domains

l Packing	by	mixing	high	and	low	
priority	tasks

45



Scheduling

l Feasibility	checking:	find	
machines	for	a	given	job

l Scoring:	pick	one	machines
l User	prefs &	build-in	criteria
l E-PVM	(Enhanced-Parallel	Virtual	

Machine)	vs best-fit
l Hybrid	approach

46



Borg’s	Allocation	Algorithms	and	Policies

Advanced	Bin-Packing	algorithms:
l Avoid	stranding	of	resources
Evaluation	metric:	Cell-compaction
l Find	smallest	cell	that	we	can	pack	the	workload	into…
l Remove	machines	randomly	from	a	cell	to	maintain	cell	
heterogeneity

Evaluated	various	policies	to	understand	the	cost,	in	terms	
of	extra	machines	needed	for	packing	the	same	workload

47



Should	we	Share	Clusters…
l …	between	production	and	non-production	jobs?

48



Should	we	use	Smaller	Cells?

49



Would	fixed	resource	bucket
sizes	be	better?

50



Kubernetes	(K8s)

51



Vision	of	Mesos

l The	datacenter	is	the	new	computer!
l Modern	apps	will	be	distributed	on	the	datacenter

l It	needs	everything	an	OS	had
l Processes
l Filesystem
l IPC
l Scheduler
l Cache
l Software	patches	(+)
l Hardware	upgrades	(++)
l Fault-tolerance 52



53l https://www.tutorialspoint.com/kubernetes/kubernetes_architecture.htm



Kubernetes Project

l The	datacenter	is	the	new	computer!
l Modern	apps	will	be	distributed	on	the	datacenter

l It	needs	everything	an	OS	had
l Processes	à Docker (threads?)	&	PODs	(processes?)
l Filesystemà volumes
l IPC	à K8s	Proxy
l Scheduler	à K8s	Scheduler
l Cache	à etcd
l Software	patches	(+)	à blue/green	updates
l Hardware	upgrades	(++)	à pod	migration	and	services
l Fault-tolerance	à replicasets 54



Summary

l Kubernetes implements	a	full	fledged	operating	
system	for	the	datacenter
l Write	useful	software	that	solves	practical	problems
l OSS	enables	massive	impact
l Important	to	make	the	system	useable

l Potential	for	you	to	have	software	impact	is	greater	
than	ever!	

55



Kubernetes

Directly	derived

l Borglet	=>	Kubelet
l alloc	=>	pod
l Borg	containers	=>	docker
l Declarative	specifications

Improved

l Job	=>	labels
l managed	ports	=>	IP	per	

pod
l Monolithic	master	=>	

micro-services

56

Google	open	source	project	loosely	inspired	by	Borg			


