
Serverless Computing
(Lecture 14, cs262a)

Ali Ghodsi and Ion Stoica,
UC Berkeley

March 7, 2018

Today’s Papers
Serverless Computing: Current Trends and Open
Problems, Ioana Baldini, Paul Castro, Kerry Chang, Perry
Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Aleksander Slominski, Philippe
Suter (https://arxiv.org/abs/1706.03178)

Serverless Computation with OpenLambda
Authors: Scott Hendrickson, Stephen Sturdevant, and Tyler
Harter, Venkateshwaran Venkataramani, Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseauz
(https://www.usenix.org/node/196323)

Why care?

Rapidly growing in popularity

Change the way we write applications and expose new challenges

“The future of AWS”
– Marvin Theimer,

Distinguished Engineer at AWS

#thecloudistoodamnhard

What type of instances?

How many to spin up?

What base image?

What price spot?

And then wait to start…..

What it is?

Core capability
1. Manage a set of user defined functions
2. Take an event sent over HTTP or received from an event source
3. Determine function(s) to which to dispatch the event
4. Find an existing instance of function or create a new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed.

Basic architecture

A virtualization story

Virtualizing the client

Virtualizing the server

Virtualizing the cluster

Virtualizing the cloud

Classic web stack

Hardware

OS

Server

ApplicationRPC

Weak virtualization

(based on slides at https://www.usenix.org/node/196323)

1st Generation: Virtual Machines

Hardware

OS

Server

ApplicationRPC

Virtual hardware

(based on slides at https://www.usenix.org/node/196323)

1st Generation: Virtual Machines

Hardware

OS

Server

Application
RPC

Virtual hardware
OS

Server

Application

(based on slides at https://www.usenix.org/node/196323)

2nd Generation: Containers

Hardware

Server

Application
RPC

Virtual OS
OS

Server

Application

(based on slides at https://www.usenix.org/node/196323)

3rd Generation: Lambdas

Hardware

Server

Application
RPC

Virtual servers

OS

Application

(based on slides at https://www.usenix.org/node/196323)

Tradeoffs

Lambdas Containers VMs
Isolation

Overhead
(resources,
startup, ..)

Flexibility

First serverless app: BigQuery

Fully managed Data Warehouse
• “Arbitrarily” large data and queries
• Pay per bytes being processed
• No concept of cluster

Other similar systems
• AWS Athena
• Snowflake
• …

AWS lambdas

Serverless functions: typically read/write data from/to S3
• 300 seconds
• single-core (AVX2)
• 512 MB in /tmp
• 1.5GB RAM
• Python, Java, Node
• Sub-second billing: 3,600 threads for one second → 10¢

Lambda Scalability
Compute Data

A case study: PyWren API

+

How it works?

pull	job	 from	s3
download	anaconda	runtime
python	 to	run	code
pickle	result
stick	in	S3

your	laptop the	cloud

future = runner.map(fn, data)

Serialize	func	and	data
Put	on	S3
Invoke	Lambda

func datadatadata

future.result()

poll	S3
unpickle	and	return

result

You can do A LOT OF work with map!

ETL parameter
tuning

ImageNet example
Preprocess	1.4M	images	from	

IMAGENET
Compute	GIST	
image	descriptor
(some	random	
python	code	off
the	internet)

Start

Delete	non-AVX2	MKL

strip	shared	libs

conda	clean

eliminate	pkg

delete	pyc

977	MB

1205MB

441MB

946	MB

670	MB

510MB

Want	our	 runtime	 to	include	

Understanding host allocation

Beyond Maps…

Numpywren: linear algebra library on top of Pywren/Lambdas

Use Amazon S3 to store sharded intermediate data, stream
shards to CPUs for parallel computation

How well does it work?

N D Cores Dgemm
runtime

Aggregate
FLOPS Peak FLOPS

1.2
Millon 4096 3000 1320s 8.9 TFLOPs 40 TFLOPs

1.2
Million 18432 3000 2520s 21 TFLOPs 40 TFLOPs

N	x	D
D	x	N

N	x	Nx =

How well does it work?

N D Cores Dgemm
runtime

Aggregate
FLOPS Peak FLOPS

1.2
Millon 4096 3000 1320s 8.9 TFLOPs 40 TFLOPs

1.2
Million 18432 3000 2520s 21 TFLOPs 40 TFLOPs

D	x	N
N	x	Nx =

0.5 * Peak
FLOPS!

N	x	D

From Map to MapReduce

Map()

…

A	baby	analytics	job:	word	count

function

The missing piece: Shuffle

Map()

…

A	baby	analytics	job:	word	count

function

The missing piece: Shuffle

map	phase shuffle	&	sort

S3 S3S3

Now	we	can	do	everything!

… …

Or	is	it?

Rate-limiting on S3 (SlowDown error)

Doing 100TB Sort
CloudSort record: Spark completes in 2983s with $144

Back of envelope calculation for serverless sort:

• 1GB per container: 100000 mappers, 100000 reducers

• 10,000,000,000 = 10^10 files to shuffle

• 10^10 / 6000 = 19 days! and $$$$$$$

S3 S3S3

Elastic memory in cloud

Redis

…

map phase shuffle & sort

…

elastic memory: high throughput
expensive?

S3: cheap for storage/access
low throughput

PyWren: 2945 secs $163 ($143 Lambda + $32 Redis)
Spark on VMs: 2983 secs $144

Doing 100TB Sort

TPC-DS Queries

Comparable	performance	for	shuffle-intensive	queries.

ExCamera

People can make changes to a word-processing document
• The changes are instantly visible for the others

Goal: people can interactively edit and transform a video
• The changes are instantly visible for the others

Encoding,	Fast	and	Slow:	Low-Latency	Video	Processing	Using	Thousands	of	Tiny	Threads,	
Sadjad Fouladi,	Riad S.	Wahby,	and	Brennan	Shacklett, Stanford	University;	
Karthikeyan Vasuki	Balasubramaniam,University	of	California,	San	Diego;		William	Zeng, Stanford	University;	
Rahul	Bhalerao,University	of	California,	San	Diego;		Anirudh Sivaraman,Massachusetts	Institute	of	Technology;	
George	Porter,University	of	California,	San	Diego;	Keith	Winstein, Stanford	University,.	NSDI	2017.
https://ex.camera

(slide from https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

(slide from https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

(slide from https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

Video Encoding/Compression

Exploit the temporal redundancy in adjacent images.
• Store the first image on its entirety: a key frame.
• For other images, only store a "diff" with nearby images: an interframe.

4K video @15Mbps: key frame ~1 MB; an interframe is ~25 KB

Video Encoding/Compression

Key idea:
• split video in very small chunks
• encode chunks in parallel
• stitch the encoded chunks

Challenge: Inter-frames are stateful, i.e., need state from other
frames to reconstruct/encode

Parallel encoder

Split into tiny
chunks & encode
each chunk
(VP8 encoder)

Stitch chunks;
Need to exchange
state!

(based on slides at https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

mu, supercomputing as a service

Library for designing and deploying general-purpose parallel
computations on a commercial “cloud function” service.

Starts thousands of threads in seconds and manages
interthread communication (https://github.com/excamera/mu)

• Computation no longer stateless!
• Needed because S3 has high latency

(based on slides at https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

(slide from https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi)

Are Lambdas limitations fundamental?

Recall:
• 300 seconds
• single-core (AVX2)
• 512 MB in /tmp
• 1.5GB RAM

Challenges

Fast, elastic storage
• Needed for shuffle
• Would enable ExCamera like appls without interthread communication

– We implemented ExCamera with Redis, simpler, more robust, and as fast

What do we need from such fast storage:
• Elasticity
• Key-value or similar API
• Notification based mechanism (think Chuby)

Performance Isolation

Compute performance has
higher variance on Lambda

Network performance has
higher variance on Lambda

Challenges

Fast, elastic storage
Performance isolation
Others:

• Security
• Start up time

Summary

Serverless, the next level of virtualizing and multiplexing cloud

Initially restricted to maps, but only a matter of time before
extending to other programming models

• Video editing in real time
• Linear algebra
• MpaReduce

