
Multi-tenancy in Datacenters:
to each according to his …

Lecture 15, cs262a
Ion Stoica & Ali Ghodsi

UC Berkeley, March 10, 2018

1

Cloud Computing

• IT revolution happening in-front of our eyes

2

Basic tenet of cloud computing

• Consolidate workloads into datacenters
– Better resource utilization

• Goal: consolidate workloads onto one cluster
– Now powering most of Twitter, Netflix, eBay, etc

3

Workload Study

alig@cs.berkeley.edu
4

Most task need ~
<2 CPU, 2 GB RAM>

Some tasks are
memory-intensive

Some tasks are
CPU-intensive

Tasks have heterogeneous resource demands

How to allocate resources to jobs with
heterogeneous resource demands?

5

How to allocate resources to jobs with
heterogeneous resource demands?

6

• Terminology
– Synonymous: jobs, users, applications
– A job can consist of many tasks
– A task is a program running on one machine
– Fine-grained scheduling (schedule one task at a

time)

Example Problem
Assume two users with equal entitlement
– Infinite request of tasks

Single resource example
– 1 resource: 1,000,000 CPU
– User 1 wants <1 CPU> per task
– User 2 wants <3 CPU> per task

Multi-resource example
– 2 resources: CPUs & mem
– User 1 wants <1 CPU, 4 GB> per task
– User 2 wants <3 CPU, 1 GB> per task
– What’s a fair allocation?

alig@cs.berkeley.edu
7CPU

100%

50%

0%
mem

? ?

CP
U

100%

50%

0%

50%

50%

Why fairness? Equal entitlements?

Fairness policy equivalent to isolation policy
Users cannot affect others beyond their fair share

Weighted fairness implements many policies
Not equal: user 1 weight 9, User 2 weight 1, …
Priority: User 1 weight 1010, User 2 weight 10, …

Fairness generalized by Max-Min Fairness
Handles if a user uses less than her fair share
e.g. user 1 only uses 20% of it’s 33% entitlement

8

100%

50%

0%

90%

10%

100%

50%

0%

20%

40%

40%

Talk from Bird’s-eye View

• Fair scheduling well studied in many contexts
– Surprisingly little work on multi-resource fairness

9

Allocation
Policy

Single-Resource
Fairness

Max-Min
Fairness

Multi-Resource
Fairness ?

Multi-resource scenario opens many new
fundamental challenges

Talk Outline

• Multi-resource fairness – DRF

• DRF deployments in organizations

• Applying DRF to modern network routers

• Follow-up work on DRF

• Other research
alig@cs.berkeley.edu

10

Talk Outline

• Multi-resource fairness – DRF
– What properties do we want?

– Our proposed solution (DRF)

– How would an economist solve this?

– How well does this work in practice?

alig@cs.berkeley.edu
11

alig@cs.berkeley.edu
12

Properties of policies
Share guarantee
Strategy-proofness
Pareto efficiency
Envy-freeness
Single resource fairness
Bottleneck resource fairness
Population monotonicity
Resource monotonicity

alig@cs.berkeley.edu
13

Properties of policies
Share guarantee
Strategy-proofness
Pareto efficiency
Envy-freeness
Single resource fairness
Bottleneck resource fairness
Population monotonicity
Resource monotonicity

• Asset Fairness
– Equalize each user’s sum of resource shares

• Cluster with 70 CPUs, 70 GB RAM
– U1 needs <2 CPU, 2 GB RAM> per task
– U2 needs <1 CPU, 2 GB RAM> per task

• Asset fairness yields
– U1: 15 tasks: 30 CPUs, 30 GB (∑=60)
– U2: 20 tasks: 20 CPUs, 40 GB (∑=60)

A Natural Policy

alig@cs.berkeley.edu

CPU

User 1 User 2
100%

50%

0%
RAM

43%

57%

43%

28%

Problem
User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of
the resources

Share Guarantee

• Every user should get 1/n of at least one
resource

• Intuition:
– “You shouldn’t be worse off than if you ran your

own cluster with 1/n of the resources”

15
alig@cs.berkeley.edu

Cheating the Scheduler

• Users willing to game the system to get more resources

• Real-life examples
– A familiar company provided dedicated machines to users

that could ensure certain level of utilization (e.g. 80%)
– Users used busy-loops to inflate utllization

– A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low

– Users implemented map-reduce in the reduce phase!

alig@cs.berkeley.edu
16

Strategy-proofness

• A user should not be able to increase her
allocation by lying about her demand

• Intuition:
– Users are incentivized to make truthful resource

requirements

17
alig@cs.berkeley.edu

Pareto efficiency

• There should not exist another allocation
where at least one user is better off and no
user is worse off.

18
alig@cs.berkeley.edu

• Avoid inefficient solutions
User 1 wants <1 CPU, 4 GB> per task
User 2 wants <3 CPU, 1 GB> per task

CPU

100%

50%

0%
mem

50%
33%

25%

50%

Challenge

• Max-min fairness for a single resource trivially
satisfies all these properties

• Can we find a multi-resource fair sharing policy
that provides:
– Strategy-proofness
– Share guarantee
– Pareto efficiency

alig@cs.berkeley.edu
19

Talk Outline

• Multi-resource fairness – DRF
– What properties do we want?

– Our proposed solution (DRF)

– How would an economist solve this?

– How well does this work in practice?

alig@cs.berkeley.edu
20

Dominant Resource Fairness

• A user’s dominant resource is the resource she
has the biggest share of
– Example:

Total resources: <10 CPU, 4 GB>
User 1’s allocation: <2 CPU, 1 GB>
Dominant resource is memory as 1/4 > 2/10 (1/5)

• A user’s dominant share is the fraction of the
dominant resource she is allocated
– User 1’s dominant share is 25% (1/4)

21
alig@cs.berkeley.edu

Dominant Resource Fairness (2)
• Apply max-min fairness to dominant shares
– Equalize the dominant share of the users

– Example:
Total resources: <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB> dom res: mem
User 2 demand: <3 CPU, 1 GB> dom res: CPU

22

User 1

User 2

100%

50%

0%
CPU

(9 total)
mem

(18 total)

3 CPUs 12 GB

6 CPUs 2 GB

66%

66%

Online DRF Scheduler

• O(log n) time per decision using binary heaps

23
alig@cs.berkeley.edu

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

Talk Outline

• Multi-resource fairness – DRF
– What properties do we want?

– Our proposed solution (DRF)

– How would an economist solve this?

– How well does this work in practice?

alig@cs.berkeley.edu
24

How would an economist solve it?

• Use pricing
– Set prices for each good
– Give each user the same budget
– Let users buy what they want

• Problem
– How do we determine the right prices for

different goods?

alig@cs.berkeley.edu
25

The market approach

• Let the market determine the prices

• Competitive Equilibrium from Equal Incomes (CEEI)
– Give each user 1/n of every resource
– Let users trade in a perfectly competitive market
– Analytical solution: max of product of dominant shares

• Violates strategy-proofness

26
alig@cs.berkeley.edu

DRF vs CEEI
• User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>

– DRF more fair, CEEI better utilization

• User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>
– User 2 increased her share of both CPU and memory

27
alig@cs.berkeley.edu

CPU mem

user 2

user 1

100%

50%

0%

CPU mem

100%

50%

0%

Dominant	
Resource	
Fairness

Competitive	
Equilibrium	from	
Equal	Incomes

66
%

66%

55%

91%

CPU mem

100%

50%

0%

CPU mem

100%

50%

0%

Dominant		
Resource	
Fairness

Competitive	
Equilibrium	from	
Equal	Incomes

66%

66%

60%

80%

Properties of DRF

• We proved DRF is strategy-proof
– Assuming linear utilities
– Others proved it’s the only policy satisfying

Strategy-proofness, sharing incentive, Pareto

Results carried over the economics literature

28

Properties of Policies

alig@cs.berkeley.edu
29

Property Asset CEEI DRF
Share guarantee ✔ ✔

Strategy-proofness ✔ ✔

Pareto efficiency ✔ ✔ ✔

Envy-freeness ✔ ✔ ✔

Single resource fairness ✔ ✔ ✔

Bottleneck res. fairness ✔ ✔

Population monotonicity ✔ ✔

Resource monotonicity

Talk Outline

• Multi-resource fairness – DRF
– What properties do we want?

– Our proposed solution (DRF)

– How would an economist solve this?

– DRF variants?

alig@cs.berkeley.edu
30

Follow-up papers

31

Allocation
in Space

Allocation
in Time

Single-Resource
Fairness

Max-Min
Fairness

Fair
Queueing

Multi-Resource
Fairness DRF DRFQ

DRFQ broadly applicable: VMs, OSs

DRF in the wild

• DRF de-facto scheduler in Hadoop & Mesos
– DRF capacity scheduler (HortonWorks)
– DRF fair scheduler (Cloudera)
– Mesos cluster of O(10k) nodes at Twitter

32

Challenging

• Hadoop DRF schedulers can break down
– Leave resources unallocated (not Pareto) or
– Starve users

33

Multi-Resource	Scheduling Hierarchical	Policies

+
=

50	%

Share	Guarantees:	

Ads

Anlt

Dev

Test QA

50	% 50	%

25	% 25	%

100%

50%

0%
Resource	1 Resource	2

Test :	33% QA :	33%

Anlt :	66% Anlt :	66%

Final	Allocation

Hierarchical Share Guarantee Violated

Dev :	33%

Follow-up papers

35

Dominant	Resource	Fairness H-DRF

+

• Share	guarantee
1/n	share	to	leafs

• Pareto	efficiency
Work-conservation

• Hierarchical		share	
guarantee
1/n	to	every	node	

• Pareto	efficiency
Work-conservation

è

Talk Outline

• Multi-resource fairness – DRF
– What properties do we want?

– Our proposed solution (DRF)

– How would an economist solve this?

– DRF variants?
– DRF evaluation

alig@cs.berkeley.edu
36

Previous approach: slot-based scheduling

• Hadoop Fair Scheduler
– Each machine consists of k slots (e.g. k=14)
– Run at most one task per slot
– Give jobs ”equal” number of slots,

This is what we compare against

37

Experiment: DRF vs Slots
Number of Type 1 Jobs Finished

Number of Type 2 Jobs Finished

Low
utilization

Thrashing

Thrashing

Type 1 jobs <2 CPU, 2 GB> Type 2 jobs <1 CPU, 0.5GB>

Jo
bs

 fi
ni

sh
ed

Jo
bs

 fi
ni

sh
ed

State-of-the-art: bottleneck fairness

• 2 flows and 2 res. <CPU μs, NIC μs>
– Demands <1,6> and <7,1> à bottleneck unclear

• Especially bad for TCP and video/audio traffic
39

TCP and oscillations

• Implemented Bottleneck Fairness in Click
– Bottleneck determined every 300 ms
– 1 BW-bound flow and 1 CPU-bound flow

40

Oscillations in Bottleneck degrade performance of TCP

Thank you!

Questions?

41

