Multi-tenancy in Datacenters: to each according to his ...

> Lecture 15, cs262a Ion Stoica & Ali Ghodsi UC Berkeley, March 10, 2018

Cloud Computing

• IT revolution happening in-front of our eyes

Above the Clouds: A Berkeley View of Cloud Computing

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia (Comments should be addressed to above the clouds@cs.berkeley.edu)

> UC Berkeley Reliable Adaptive Distributed Systems Laboratory * http://radlab.cs.berkeley.edu/

> > February 10, 2009

KEYWORDS: Cloud Computing, Utility Computing, Internet Datacenters, Distributed System Economics

Basic tenet of cloud computing

- Consolidate workloads into datacenters

 Better resource utilization
- Goal: consolidate workloads onto one cluster
 Now powering most of Twitter, Netflix, eBay, etc

Workload Study

Tasks have heterogeneous resource demands

alig@cs.berkeley.edu

How to allocate resources to jobs with heterogeneous resource demands?

Hownoolling Hocate resources to jobs with heterogeneous, resource demands? – A job can consist of many tasks

- A task is a program running on one machine
- Fine-grained scheduling (schedule one task at a time)

Example Problem

Assume two users with equal entitlement – Infinite request of tasks

Single *resource* example

- 1 resource: 1,000,000 CPU
- User 1 wants <1 CPU> per task
- User 2 wants <3 CPU> per task

- 2 resources: CPUs & mem
- User 1 wants <1 CPU, 4 GB> per task
- User 2 wants <3 CPU, 1 GB> per task
- What's a fair allocation?

Why fairness? Equal entitlements?

Fairness policy equivalent to isolation policy Users cannot affect others beyond their fair share

Weighted fairness implements many policies Not equal: user 1 weight 9, User 2 weight 1, ... Priority: User 1 weight 10¹⁰, User 2 weight 10, ...

Fairness generalized by Max-Min Fairness Handles if a user uses less than her fair share e.g. user 1 only uses 20% of it's 33% entitlement

Talk from Bird's-eye View

	Allocation Policy
Single-Resource Fairness	Max-Min Fairness
Multi-Resource Fairness	?

Fair scheduling well studied in many contexts
 – Surprisingly little work on multi-resource fairness

Multi-resource scenario opens many new fundamental challenges

Talk Outline

- Multi-resource fairness DRF
- DRF deployments in organizations
- Applying DRF to modern network routers
- Follow-up work on DRF
- Other research

Talk Outline

• Multi-resource fairness – DRF

- What properties do we want?

- Our proposed solution (DRF)
- How would an economist solve this?
- How well does this work in practice?

Properties of policies

Share guarantee

Strategy-proofness

Pareto efficiency

Envy-freeness

Single resource fairness

Bottleneck resource fairness

Population monotonicity

Resource monotonicity

Properties of policies

Share guarantee

Strategy-proofness

Pareto efficiency

Envy-freeness

Single resource fairness

Bottleneck resource fairness

Population monotonicity

Resource monotonicity

A Natural Policy

• Asset Fairness

Equalize each user's sum of resource shares

Share Guarantee

- Every user should get 1/n of at least one resource
- Intuition:
 - "You shouldn't be worse off than if you ran your own cluster with 1/n of the resources"

Cheating the Scheduler

- Users willing to *game* the system to get more resources
- Real-life examples
 - A familiar company provided dedicated machines to users that could ensure certain level of utilization (e.g. 80%)
 - Users used busy-loops to inflate utilization
 - A cloud provider had quotas on map and reduce slots
 Some users found out that the map-quota was low
 - Users implemented map-reduce in the reduce phase!

Strategy-proofness

- A user should not be able to increase her allocation by lying about her demand
- Intuition:
 - Users are incentivized to make truthful resource requirements

Pareto efficiency

 There should not exist another allocation where at least one user is better off and no user is worse off.

Avoid inefficient solutions
 User 1 wants <1 CPU, 4 GB> per task
 User 2 wants <3 CPU, 1 GB> per task

Challenge

• Max-min fairness for a single resource trivially satisfies all these properties

- Can we find a multi-resource fair sharing policy that provides:
 - Strategy-proofness
 - Share guarantee
 - Pareto efficiency

Talk Outline

• Multi-resource fairness – DRF

- What properties do we want?

- Our proposed solution (DRF)
- How would an economist solve this?
- How well does this work in practice?

Dominant Resource Fairness

- A user's *dominant resource* is the resource she has the biggest share of
 - Example:

Total resources: <10 CPU, 4 GB>

User 1's allocation: <2 CPU, 1 GB>

Dominant resource is memory as 1/4 > 2/10 (1/5)

- A user's *dominant share* is the fraction of the dominant resource she is allocated
 - User 1's dominant share is **25%** (1/4)

Dominant Resource Fairness (2)

- Apply max-min fairness to dominant shares
 - Equalize the dominant share of the users
 - Example:
 Total resources:
 User 1 demand:
 - User 2 demand:

<9 CPU, 18 GB> <1 CPU, 4 GB> dom res: mem <3 CPU, 1 GB> dom res: CPU

Online DRF Scheduler

Whenever there are available resources and tasks to run: *Schedule a task to the user with smallest dominant share*

• O(log *n*) time per decision using binary heaps

Talk Outline

• Multi-resource fairness – DRF

- What properties do we want?

- Our proposed solution (DRF)
- How would an economist solve this?
- How well does this work in practice?

How would an economist solve it?

- Use pricing
 - Set prices for each good
 - Give each user the same budget
 - Let users buy what they want
- Problem
 - How do we determine the right prices for different goods?

The market approach

- Let the market determine the prices
- Competitive Equilibrium from Equal Incomes (CEEI)
 - Give each user 1/n of every resource
 - Let users trade in a perfectly competitive market
 - Analytical solution: max of product of dominant shares
- Violates strategy-proofness

DRF vs CEEI

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 1 GB>
 - DRF more fair, CEEI better utilization

- User 1: <1 CPU, 4 GB> User 2: <3 CPU, 2 GB>
 - User 2 increased her share of both CPU and memory

alig@cs.berkeley.edu

Properties of DRF

- We proved DRF is strategy-proof
 - Assuming linear utilities
 - Others proved it's the only policy satisfying
 Strategy-proofness, sharing incentive, Pareto

Results carried over the economics literature

Properties of Policies

Property	Asset	CEEI	DRF
Share guarantee		v	v
Strategy-proofness	✓		~
Pareto efficiency	v	v	v
Envy-freeness	v	v	~
Single resource fairness	v	v	v
Bottleneck res. fairness		~	~
Population monotonicity	v		v
Resource monotonicity			

Talk Outline

- Multi-resource fairness DRF
 - What properties do we want?
 - Our proposed solution (DRF)
 - How would an economist solve this?
 - DRF variants?

Follow-up papers

	Allocation in Space	Allocation in Time
Single-Resource Fairness	Max-Min Fairness	Fair Queueing
Multi-Resource Fairness	DRF -	

DRFQ broadly applicable: VMs, OSs

DRF in the wild

- DRF de-facto scheduler in Hadoop & Mesos
 - DRF capacity scheduler (HortonWorks)
 - DRF fair scheduler (Cloudera)
 - Mesos cluster of O(10k) nodes at Twitter

Multi-Resource Scheduling

Hierarchical Policies

Challenging

- Hadoop DRF schedulers can break down
 - Leave resources unallocated (not Pareto) or
 - Starve users

Hierarchical Share Guarantee Violated

Follow-up papers

Dominant Resource Fairness

- Share guarantee 1/n share to leafs
- **Pareto efficiency** Work-conservation

H-DRF

- Hierarchical share guarantee 1/n to every node
- **Pareto efficiency** Work-conservation

Talk Outline

- Multi-resource fairness DRF
 - What properties do we want?
 - Our proposed solution (DRF)
 - How would an economist solve this?
 - DRF variants?
 - DRF evaluation

Previous approach: slot-based scheduling

- Hadoop Fair Scheduler
 - Each machine consists of k slots (e.g. k=14)
 - Run at most one task per slot
 - Give jobs "equal" number of slots,

This is what we compare against

State-of-the-art: **bottleneck fairness**

2 flows and 2 res. <CPU μs, NIC μs>
 — Demands <1,6> and <7,1> → bottleneck unclear

• Especially bad for TCP and video/audio traffic

TCP and oscillations

- Implemented Bottleneck Fairness in Click
 - Bottleneck determined every 300 ms
 - 1 BW-bound flow and 1 CPU-bound flow

Scenario	Flow 1 (BW-bound)	Flow 2 (CPU-bound)
Running alone	191 Mbps	33 Mbps
Bottleneck	75 Mbps	32 Mbps
DRFQ	160 Mbps	28 Mbps

Oscillations in Bottleneck degrade performance of TCP

Thank you!

Questions?