
Key-Value Tables:
Chord and DynamoDB

(Lecture 16, cs262a)

Ali Ghodsi and Ion Stoica,
UC Berkeley

March 14, 2018

Today’s Papers
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications,
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan, SIGCOMM’02
(https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf)

Dynamo: Amazon's Highly Available Key-value Store,
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan,
Sivasubramanian, Peter Vosshall, and Werner Vogels, SOSP’07
(www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf)

Key Value Storage
Interface

– put(key, value); // insert/write “value” associated with “key”
– value = get(key); // get/read data associated with “key”

Abstraction used to implement
– File systems: value content à block
– Sometimes as a simpler but more scalable “database”

Can handle large volumes of data, e.g., PBs
– Need to distribute data over hundreds, even thousands of

machines

Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Distributed file systems
– Key: Block ID
– Value: Block

Key Values: Examples

System Examples
Google File System, Hadoop Dist. File Systems (HDFS)

Amazon
– Dynamo: internal key value store used to power Amazon.com

(shopping cart)
– Simple Storage System (S3)

BigTable/Hbase: distributed, scalable data storage

Cassandra: “distributed data management system” (Facebook)

Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

Key Value Store
Also called a Distributed Hash Table (DHT)
Main idea: partition set of key-values across many machines

key, value

…

Challenges

Fault Tolerance: handle machine failures without losing
data and without degradation in performance
Scalability:

– Need to scale to thousands of machines
– Need to allow easy addition of new machines

Consistency: maintain data consistency in face of node
failures and message losses
Heterogeneity (if deployed as peer-to-peer systems):

– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

Key Questions

put(key, value): where do you store a new (key, value) tuple?
get(key): where is the value associated with a given “key”
stored?

And, do the above while providing
– Fault Tolerance
– Scalability
– Consistency

Directory-Based Architecture
Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with
the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

put(K14, V14)

Directory-Based Architecture
Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with
the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

get(K14)
V14

Directory-Based Architecture
Having the master relay the requests à recursive query
Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
put(K14, V14)

N3

Directory-Based Architecture
Having the master relay the requests à recursive query
Another method: iterative query

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
get(K14)

V14
N3

Discussion: Iterative vs. Recursive Query

Recursive Query:
– Advantages:

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go through master

Iterative Query
– Advantages: more scalable
– Disadvantages: slower, harder to enforce data consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

Fault Tolerance
Replicate value on several nodes
Usually, place replicas on different racks in a datacenter to
guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)

Fault Tolerance
Again, we can have

– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

Scalability
Storage: use more nodes

Request throughput:
– Can serve requests from all nodes on which a value is

stored in parallel
– Master can replicate a popular value on more nodes

Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different

masters/directories (see Chord)

Scalability: Load Balancing
Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage
available

What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

What happens when a node fails?
– Need to replicate values from fail node to other nodes

Replication Challenges
Need to make sure that a value is replicated correctly

How do you know a value has been replicated on every node?
– Wait for acknowledgements from every node

What happens if a node fails during replication?
– Pick another node and try again

What happens if a node is slow?
– Slow down the entire put()? Pick another node?

In general, with multiple replicas
– Slow puts and fast gets

Consistency
How close does a distributed system emulate a single machine in
terms of read and write semantics?

Q: Assume put(K14, V14’) and put(K14, V14’’) are concurrent,
what value ends up being stored?
A: assuming put() is atomic, then either V14’ or V14’’, right?

Q: Assume a client calls put(K14, V14) and then get(K14), what
is the result returned by get()?
A: It should be V14, right?

Above semantics, not trivial to achieve in distributed systems

Concurrent Writes (Updates)
If concurrent updates (i.e., puts to same key) may need to
make sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’

• put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order

• What does get(K14) return?
• Undefined!

Concurrent Writes (Updates)
If concurrent updates (i.e., puts to same key) may need to
make sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14,
V14’’) reach N1 and N3 in
reverse order

• What does get(K14) return?
• Undefined!

Read after Write
Read not guaranteed to return value of latest write

– Can happen if Master processes requests in different threads

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory

get(K14)

K14 V14

put(K14, V14’)

K14 V14’K14 V14’

• get(K14) happens right after
put(K14, V14’)

• get(K14) reaches N3 before
put(K14, V14’)!

V14

Consistency (cont’d)

Large variety of consistency models (we’ve already seen):
– Atomic consistency (linearizability): reads/writes (gets/puts) to

replicas appear as if there was a single underlying replica
(single system image)

» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency; used by many systems
in practice

– And many others: causal consistency, sequential consistency,
strong consistency, …

Strong Consistency
Assume Master serializes all operations

Challenge: master becomes a bottleneck
– Not addressed here

Still want to improve performance of reads/writes à
quorum consensus

Quorum Consensus
Improve put() and get() operation performance

Define a replica set of size N
put() waits for acks from at least W replicas
get() waits for responses from at least R replicas W+R > N

Why does it work?
– There is at least one node that contains the update

Why you may use W+R > N+1?

Quorum Consensus Example
N=3, W=2, R=2
Replica set for K14: {N1, N2, N4}
Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Quorum Consensus Example
Now, for get() need to wait for any two nodes out of three to
return the answer

N1 N2 N3 N4

K14 V14K14 V14
get(K14)

nill

Chord

Scaling Up Directory
Challenge:

– Directory contains a number of entries equal to number
of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in the
system!

Solution: consistent hashing
Associate to each node a unique id in an uni-
dimensional space 0..2m-1

– Partition this space across M machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the smallest

ID larger than Key

Recap: Key to Node Mapping
Example

m = 6 à ID space: 0..63
Node 8 maps keys [5,8]
Node 15 maps keys [9,15]
Node 20 maps keys [16, 20]
…
Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0

Scaling Up Directory

With consistent hashing, directory contains only a number of
entries equal to number of nodes

– Much smaller than number of tuples

Next challenge: every query still needs to contact the directory

Scaling Up Directory
Given a key, find the node storing that key

Key idea: route request from node to node until reaching the node
storing the request’s key

Key advantage: totally distributed
– No point of failure; no hot spot

Chord: Distributed Lookup (Directory)
Service

Key design decision
– Decouple correctness from efficiency

Properties
– Each node needs to know about O(log(M)), where M is the

total number of nodes
– Guarantees that a tuple is found in O(log(M)) steps

Many other lookup services: CAN, Tapestry, Pastry,
Kademlia, …

Lookup

Each node maintains
pointer to its successor

Route packet (Key, Value)
to the node responsible for
ID using successor
pointers

E.g., node=4 lookups for
node responsible for
Key=37

4

20

3235

8

15

44

58

lookup(37)

node=44 is
responsible
for Key=37

Stabilization Procedure
Periodic operation performed by each node n to maintain
its successor when new nodes join the system

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x; // if x better successor, update
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’; // if n’ is better predecessor, update

€

∈

€

∈

Joining Operation

4

20

3235

8

15

44

58

50

Node with id=50 joins
the ring
Node 50 needs to know
at least one node
already in the system
- Assume known node is

15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

Joining Operation

4

20

3235

8

15

44

58

50

n=50 sends join(50) to
node 15
n=44 returns node 58
n=50 updates its
successor to 58

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=50 executes
stabilize()
n’s successor (58)
returns x = 44

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=50 executes
stabilize()

x = 44
succ = 58

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=50 executes
stabilize()

x = 44
succ = 58

n=50 sends to it’s
successor (58)
notify(50)

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=58 processes
notify(50)

pred = 44
n’ = 50

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’

€

∈

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=58 processes
notify(50)

pred = 44
n’ = 50

set pred = 50

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’

€

∈

succ=58

pred=50

Joining Operation

4

20

3235

8

15

44

58

50

n=44 runs
stabilize()
n’s successor (58)
returns x = 50

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

x=50

Joining Operation

4

20

3235

8

15

44

58

50

n=44 runs
stabilize()

x = 50
succ = 58

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

Joining Operation

4

20

3235

8

15

44

58

50

n=44 runs
stabilize()

x = 50
succ = 58

n=44 sets succ=50

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

succ=50

Joining Operation

4

20

3235

8

15

44

58

50

n=44 runs stabilize()
n=44 sends
notify(44) to its
successor

pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);

€

∈

succ=58

notify(44)

Joining Operation

4

20

3235

8

15

44

58

50

n=50 processes
notify(44)

pred = nil

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’

€

∈

succ=58

notify(44)

Joining Operation

4

20

3235

8

15

44

58

50

n=50 processes
notify(44)

pred = nil
n=50 sets pred=44

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’

€

∈

succ=58

notify(44)

pred=44

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

This completes the
joining operation!

succ=58

succ=50

pred=44

pred=50

Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25 (80 + 26) mod 27 = 16
0

Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

Achieving Fault Tolerance for
Lookup Service

To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

In the pred() reply message, node A can send its k-1
successors to its predecessor B

Upon receiving pred() message, B can update its
successor list by concatenating the successor list
received from A with its own list

If k = log(M), lookup operation works with high probability
even if half of nodes fail, where M is number of nodes in
the system

Storage Fault Tolerance

Replicate tuples on
successor nodes
Example: replicate
(K14, V14) on nodes
20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

Storage Fault Tolerance

If node 15 fails, no
reconfiguration
needed

Still have two replicas
All lookups will be
correctly routed

Will need to add a
new replica on node
35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

Iterative vs. Recursive Lookup

Iteratively:
– Example: node 44

issue query(31)

Recursively
– Example: node 44

issue query(31)

4

8

15

32
35

50

58

44
25

25

32
4

8

15

32
35

50

58

44
2532

Dynamo

Motivation
Build a distributed storage system:

– Scale
– Symmetry: every node should have same functionality
– Simple: key-value
– Highly available
– Heterogeneity: allow adding nodes with different

capacities
– Guarantee Service Level Agreements (SLA)

System Assumptions and Requirements

ACID Properties: Atomicity, Consistency, Isolation, Durability
– Weaker Consistency, i.e., eventual consistency
– High Availability
– No Isolation guarantees
– Only single key updates.

SLA (Service Level Agreement): 99.9% performance guarantees
– E.g., 500ms latency for 99.9% of its requests for a peak client load of

500 requests per second
– average, median, variance not representative for user’s experience

Other Assumptions: internal service, no security related requirements

Architecture
Service oriented
architecture: modular,
composable

Challenge: end-to-end
SLAs
– Each service should

provide even tighter
latency bounds

Design Consideration
Sacrifice strong consistency for availability

Conflict resolution is executed during read instead of
write, i.e. “always writeable”.

Other principles:
– Incremental scalability
– Symmetry
– Decentralization
– Heterogeneity

Summary of techniques used in Dynamo
and their advantages

Problem Technique Advantage
Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available.

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the
background.

Membership and failure
detection

Gossip-based
membership protocol and

failure detection.

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information.

Data Versioning
A put() call may return to its caller before the update has
been applied at all the replicas

A get() call may return many versions of the same object.

Challenge: an object having distinct version sub-histories,
which the system will need to reconcile in the future.

Solution: uses vector clocks in order to capture causality
between different versions of the same object.

Vector clock

Vector clock: a list of (node, counter) pairs

Every object version is associated with one vector clock

v2 > v1, if the counter of every node in v2 is greater or
equal to the counter of every node in v1

Vector clock example

Sloppy Quorum

Read and write operations are performed on the first N
healthy nodes from the preference list

– May not always be the first N nodes encountered while
walking the consistent hashing ring.

Recall: latency of a get (or put) operation is dictated by the
slowest of the R (or W) replicas

Other techniques

Replica synchronization:
– Merkle hash tree

» Hash tree where leaves are hashes of individual key values
» Parent nodes hashes of their respective children
» Each branch of the tree can be checked independently

without requiring nodes to download the entire data set

Membership and Failure Detection:
– Gossip

Implementation
Java

Local persistence:
– BerkeleyDB
– MySQL
– BDB Java Edition, etc.

Evaluation

Conclusions: Key Value Stores

Very large scale storage systems
Two operations

– put(key, value)
– value = get(key)

Challenges
– Fault Tolerance à replication
– Scalability à serve get()’s in parallel; replicate/cache hot

tuples
– Consistency à quorum consensus to improve put()

performance

