
Cilk and OpenMP
(Lecture 20, cs262a)

Ion Stoica,
UC Berkeley
April 4, 2018

Today’s papers

“Cilk: An Efficient Multithreaded Runtime System” by
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall and Yuli Zhou
http://supertech.csail.mit.edu/papers/PPoPP95.pdf

“OpenMP: An IndustryStandard API for SharedMemory
Programming”, Leonardo Dagum and Ramesh Menon
https://ucbrise.github.io/cs262a-spring2018/

Message passing vs. Shared memory

Message passing: exchange data
explicitly via IPC

Application developers define protocol
and exchanging format, number of
participants, and each exchange

Shared memory: all multiple processes
to share data via memory

Applications must locate and and map
shared memory regions to exchange
data

Client
send(msg)

MSG

Client
recv(msg)

MSG

MSG IPC

Client
send(msg)

Client
recv(msg)

Shared
Memory

Architectures

Uniformed Shared
Memory (UMA)

Cray 2

Massively Parallel
DistrBluegene/L

Non-Uniformed Shared
Memory (NUMA)

SGI Altix 3700

Orthogonal to programming model

Motivation

Multicore CPUs are everywhere:
• Servers with over 100 cores today
• Even smartphone CPUs have 8 cores

Multithreading, natural programming model
• All processors share the same memory
• Threads in a process see same address space
• Many shared-memory algorithms developed

But…

Multithreading is hard
• Lots of expertise necessary
• Deadlocks and race conditions
• Non-deterministic behavior makes it hard to debug

Example
Parallelize the following code using threads:

for (i=0; i<n; i++) {
sum = sum + sqrt(sin(data[i]));

}

Why hard?
• Need mutex to protect the accesses to sum
• Different code for serial and parallel version
• No built-in tuning (# of processors?)

Cilk

Based on slides available at http://supertech.csail.mit.edu/cilk/lecture-1.pdf

Cilk

A C language for programming dynamic multithreaded
applications on shared-memory multiprocessors

Examples:
• dense and sparse matrix computations
• n-body simulation
• heuristic search
• graphics rendering
• …

Cilk in one slide
• Simple extension to C; just three basic keywords

• Cilk programs maintain serial semantics
• Abstracts away parallel execution, load balancing and scheduling

• Parallelism
• Processor-oblivious
• Speculative execution

• Provides performance “guarantees”

Example: Fibonacci

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = fib(n-1);
y = fib(n-2);
return (x+y);

}
}

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

• A Cilk program’s serial elision is always a legal implementation of Cilk semantics
• Cilk provides no new data types.

C (elision) Click

Cilk basic kewords

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

Identifies a function as a Cilk
procedure, capable of being
spawned in parallel.

The named child Cilk
procedure can execute in
parallel with the parent caller

Control cannot pass this point
until all spawned children have
returned

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

Computation unfolds dynamically

Initial thread

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4Initial thread

• Execution represented as a graph, G = (V, E)
• Each vertex v ∈ V represents a (Cilk) thread: a maximal

sequence of instructions not containing parallel control
(spawn, sync, return)

• Every edge e ∈ E is either a spawn, a return or a continue edge

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

Spawn edge

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3 2

Continue edge

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

2

2

1 11

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

2

2

1 11

1 1

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

2

2

1 11

1 1
Return edge

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

2

2

1 11

1 1

Dynamic multithreading – example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

}
}

4

3

2

2

1 1

1 11

Final thread

Cactus stack
• A stack pointer can be passed from parent to child, but not

from child to parent
• Support several views of stack

• Cilk also supports malloc

A

B C

D E

A A A A

B C

D E

B

A

B

A B D E C

Algorithmic complexity

TP = execution time on P processors

Algorithmic complexity

TP = execution time on P processors
T1 = total work

Algorithmic complexity

TP = execution time on P processors
T1 = total work
TC = critical path length (span)

Algorithmic complexity

TP = execution time on P processors
T1 = total work
TC = critical path length (span)

TP >= T1/P
TP >= TC

Lower bounds

Speedup

T1/TP = speedup on P processors.

If T1/TP = Θ(P) <= P, linear speedup
If T1/TP = P , perfect linear speedup

Parallelism

Since TP >= TC , T1/TC is maximum speedup

T1/TP = prallelism, average amount
of work per step along the span

Example: fib(4)

Assume each thread takes 1 time unit:
• Work: T1 = 17
• Span: TC = 8
• Parallelism: T1/TC = 17/8

1 8

2 7

3 4 6

5
Little sense to use more

than 2 processors!

Example: vector addition
void vadd (real *A, real *B, int n){

int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Example: vector addition
void vadd (real *A, real *B, int n){

int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Key idea: convert loops to recursion..

Example: vector addition
void vadd (real *A, real *B, int n){

int i; for (i=0; i<n; i++) A[i]+=B[i];
}

Key idea: convert loops to recursion..

void vadd (real *A, real *B, int n) {
if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];

} else {
vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

}
}

Example: vector addition
cilk void vadd (real *A, real *B, int n) {

if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];

} else {
spawn vadd (A, B, n/2);
spawn vadd (A+n/2, B+n/2, n-n/2);
sync;

}
}

BASE

Example: vector addition
Assume BASE = Θ(1):
Work: T1 = Θ(n)
Span: TC = Θ(log n)
Parallelism: T1/TC = Θ(n/log n)

BASE

Scheduling

• Cilk scheduler maps Cilk threads
onto processors dynamically at
runtime

Network

Memory I/O

P P P…

Greedy scheduling

• Key idea: Do as much as possible on every
step

• Definition: A thread is ready if all its
predecessors have executed

Greedy sechduling

• Key idea: Do as much as possible on every
step

• Definition: A thread is ready if all its
predecessors have executed

• Complete step
• If # ready threads >= P, run any P ready threads

P = 3

Greedy scheduling

• Key idea: Do as much as possible on every
step

• Definition: A thread is ready if all its
predecessors have executed

• Complete step
• If # ready threads >= P, run any P ready threads

• Incomplete step
• If # ready threads < P run all P ready threads

P = 3

Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent ’75] Any greedy scheduler achieves
TP ≤ T1/P + TC

Proof sketch:
• # complete steps ≤ T1/P since each

complete step performs P work

P = 3

Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent ’75] Any greedy scheduler achieves
TP ≤ T1/P + TC

Proof sketch:
• # complete steps ≤ T1/P since each

complete step performs P work
• # incomplete steps ≤ TC, since each incomplete

step reduces the span of the unexecuted DAG by 1

P = 3

Optimality of greedy

Corollary: Any greedy scheduler is within a factor of 2 of optimal

Proof: Let TP* be execution time produced by optimal scheduler
Since TP* ≥ max{T1/P, TC} (lower bounds), we have

TP ≤ T1/P + TC

≤ 2 max{T1/P, TC}
≤ 2 TP*

Linear speedup

Corollary: Any greedy scheduler achieves near-perfect linear speedup
whenever P << T1/TC.

Proof: From P << T1/TC we get TC << T1/P
From the Greedy Scheduling Theorem gives us

TP ≤ T1/P + TC ≈ T1/P
Thus, speedup is T1/TP ≈ P

Work stealing

Each processor has a queue of threads to run

A spawned thread is put on local processor queue

When a processor runs out of work, it looks at queues of other
processors and "steals" their work items

• Typically pick the processor from where to steal randomly

Cilk performance

Cilk’s “work-stealing” scheduler achieves
TP = T1/P + O(TC) expected time (provably);

TP ≈ T1/P + O(TC) time (empirically).
Near-perfect linear speedup if P << T1/TC

• Instrumentation in Cilk allows to accurately measure T1 and TC

• The average cost of a spawn in Cilk-5 is only 2–6 times the cost of an
ordinary C function call, depending on the platform

Summary

C extension for multithreaded programs
• Now available also for C++: Cilk Plus from Intel

Simple; only three keywords: cilk, spawn, sync
• Cilk Plus has actually only two: cilk_spaw, cilk_sync
• Equivalent to serial program on a single core
• Abstracts away parallelism, load balancing and scheduling

Leverages recursion pattern
• Might need to rewrite programs to fit the pattern (see vector addition

example)

OpenMP

Based on the “Introduction to OpenMP” presentation:
(https://webcourse.cs.technion.ac.il/236370/Spring2009/ho/WCFiles/OpenMPLecture.ppt)

OpenMP
A language extension with constructs for parallel programming:

• Critical sections, atomic access, private variables, barriers

Parallelization is orthogonal to functionality
• If the compiler does not recognize OpenMP directives, the code remains

functional (albeit single-threaded)

Industry standard: supported by Intel, Microsoft, IBM, HP

OpenMP execution model
Fork and Join: Master thread spawns a team of threads as
needed

Master threadMaster thread

Worker
Thread

FO
R
K

JO
IN

FO
R
K

JO
IN

Parallel
regions

OpenMP memory model
Shared memory model

• Threads communicate by accessing shared variables

The sharing is defined syntactically
• Any variable that is seen by two or more threads is shared
• Any variable that is seen by one thread only is private

Race conditions possible
• Use synchronization to protect from conflicts
• Change how data is stored to minimize the synchronization

OpenMP: Work sharing example
answer1 = long_computation_1();
answer2 = long_computation_2();
if (answer1 != answer2) { … }

How to parallelize?

OpenMP: Work sharing example
answer1 = long_computation_1();
answer2 = long_computation_2();
if (answer1 != answer2) { … }

How to parallelize?
#pragma omp sections
{

#pragma omp section
answer1 = long_computation_1();
#pragma omp section
answer2 = long_computation_2();

}
if (answer1 != answer2) { … }

OpenMP: Work sharing example
Sequential code for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

OpenMP: Work sharing example
Sequential code

(Semi) manual
parallelization

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

OpenMP: Work sharing example
Sequential code

(Semi) manual
parallelization

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

• Launch nt threads
• Each thread uses id

and nt variables to
operate on a different
segment of the arrays

OpenMP: Work sharing example
Sequential code

(Semi) manual
parallelization

Automatic
parallelization of
the for loop using
#parallel for

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

#pragma omp parallel
#pragma omp for schedule(static)
{

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }
}

One signed
variable in the

loop (“i”)Initialization:
var = init

Comparison:
var op last, where
op: <, >, <=, >=

Increment:
var++, var--,
var += incr, var -= incr

Challenges of #parallel for
Load balancing

• If all iterations execute at the same speed, the processors are used optimally
• If some iterations are faster, some processors may get idle, reducing the speedup
• We don’t always know distribution of work, may need to re-distribute dynamically

Granularity
• Thread creation and synchronization takes time
• Assigning work to threads on per-iteration resolution may take more time than the

execution itself
• Need to coalesce the work to coarse chunks to overcome the threading overhead

Trade-off between load balancing and granularity of parallelism

Schedule: controlling work distribution
schedule(static [, chunksize])

• Default: chunks of approximately equivalent size, one to each thread
• If more chunks than threads: assigned in round-robin to the threads
• Why might want to use chunks of different size?

schedule(dynamic [, chunksize])
• Threads receive chunk assignments dynamically
• Default chunk size = 1

schedule(guided [, chunksize])
• Start with large chunks
• Threads receive chunks dynamically. Chunk size reduces exponentially,

down to chunksize

OpenMP: Data Environment
Shared Memory programming model

• Most variables (including locals) are shared by threads
{

int sum = 0;
#pragma omp parallel for
for (int i=0; i<N; i++) sum += i;

}

• Global variables are shared

Some variables can be private
• Variables inside the statement block
• Variables in the called functions
• Variables can be explicitly declared as private

Overriding storage attributes
private:

• A copy of the variable is created for
each thread

• There is no connection between
original variable and private copies

• Can achieve same using variables
inside { }

firstprivate:
• Same, but the initial value of the

variable is copied from the main copy
lastprivate:

• Same, but the last value of the
variable is copied to the main copy

int i;
#pragma omp parallel for private(i)
for (i=0; i<n; i++) { … }

int idx=1;
int x = 10;
#pragma omp parallel for \

firsprivate(x) lastprivate(idx)
for (i=0; i<n; i++) {

if (data[i] == x)
idx = i;

}

Reduction
for (j=0; j<N; j++) {

sum = sum + a[j]*b[j];
}

How to parallelize this code?
• sum is not private, but accessing it atomically is too expensive
• Have a private copy of sum in each thread, then add them up

Use the reduction clause
#pragma omp parallel for reduction(+: sum)

• Any associative operator could be used: +, -, ||, |, *, etc
• The private value is initialized automatically (to 0, 1, ~0 …)

#pragma omp reduction

float dot_prod(float* a, float* b, int N)
{

float sum = 0.0;
#pragma omp parallel for reduction(+:sum)

for(int i = 0; i < N; i++) {
sum += a[i] * b[i];

}
return sum;

}

Summary
OpenMP: A framework for code parallelization

• Available for C++ and FORTRAN
• Provides control on parallelism
• Implementations from a wide selection of vendors

Relatively easy to use
• Write (and debug!) code first, parallelize later
• Parallelization can be incremental
• Parallelization can be turned off at runtime or compile time
• Code is still correct for a serial machine

Cilk vs OpenMP
Cilk:

• Simpler
• More natural for unstructured programs

OpenMP:
• Provide more control to developer (e.g., set “cunck” size)
• More natural to parallelize for() statemetns
• Wider support from more vendors; also extension for FORTRANT

“If your code looks like a sequence of parallelizable Fortran-style loops,
OpenMP will likely give good speedups. If your control structures are more
involved, in particular, involving nested parallelism, you may find that OpenMP
isn’t quite up to the job” -- http://www.cilk.com/multicore-blog/bid/8583/Comparing-Cilk-and-OpenMP

