Cilk and OpenMP
(Lecture 20, cs262a)

lon Stoica,
UC Berkeley
April 4, 2018

Today’s papers

“Cilk: An Efficient Multithreaded Runtime System” by
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall and Yuli Zhou

http://supertech.csail.mit.edu/papers/PPoPP95.pdf

“OpenMP: An IndustryStandard API for SharedMemory
Programming”, Leonardo Dagum and Ramesh Menon

https://ucbrise.qgithub.io/cs262a-spring2018/

Message passing vs. S

Client Client
send(msg) recv(msg)
MSG % MSG %
A€ =

Message passing: exchange data
explicitly via IPC

Application developers define protocol
and exchanging format, number of
participants, and each exchange

nared memory

Client Client
send(msg) recv(msg)
% Shared %

Memory

Shared memory: all multiple processes
to share data via memory

Applications must locate and and map
shared memory regions to exchange
data

Architectures

Uniformed Shared Non-Uniformed Shared .
Memory (UMA) Memory (NUMA) “é?;fgﬁégeaggﬂﬁ'
Cray 2 SGI Altix 3700

Orthogonal to programming model

Motivation

Multicore CPUs are everywhere:
« Servers with over 100 cores today
« Even smartphone CPUs have 8 cores

Multithreading, natural programming model
« All processors share the same memory
« Threads in a process see same address space
« Many shared-memory algorithms developed

But...

Multithreading is hard
« Lots of expertise necessary
« Deadlocks and race conditions
- Non-deterministic behavior makes it hard to debug

Example

Parallelize the following code using threads:

for (i=0; i<n; i++) {
sum = sum + sqrt(sin(datal[i]));

}

Why hard?
« Need mutex to protect the accesses to sum
- Different code for serial and parallel version
« No built-in tuning (# of processors?)

Cilk

Based on slides available at http://supertech.csail.mit.edu/cilk/lecture-1.pdf

Cilk

A C language for programming dynamic multithreaded
applications on shared-memory multiprocessors

Examples:
« dense and sparse matrix computations
« N-body simulation
« heuristic search
« graphics rendering

Cilk in one slide

Simple extension to C; just three basic keywords

Cilk programs maintain serial semantics
« Abstracts away parallel execution, load balancing and scheduling

Parallelism
« Processor-oblivious
« Speculative execution

Provides performance “guarantees”

Example: Fibonacci

C (elision)

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n-2);
return (x+y);
}
}

.

Click

cilk int fib (int n) {

if (n<2) return (n);

}

else {

int x,y;

X = spawn fib(n-1);
y = spawn fib(n-2);
sync

return (x+y);

* A Cilk program’s serial elision is always a legal implementation of Cilk semantics
* Cilk provides no new data types.

Cilk basic kewords

Identifies a function as a Cilk

A/ . . .
click int fib (int n) { procedure, capable of being

if (n<2) return (n); spawned in parallel.
else {

int x,y;
X = spawn fib(n-1);
y = spawn fib(n-2);
sync t

return (x+y);

The named child Cilk

procedure can execute in
parallel with the parent caller

Control cannot pass this point
} until all spawned children have
} returned

Dynamic multithreading — example: fib(4)

click int fib (int n) { Initial thread ﬂ>‘]

if (n<2) return (n);
else {
int x,y;
X = spawn fib(n-1);
y = spawn fib(n-2);
sync
return (x+y);

Computation unfolds dynamically

Dynamic multithreading — example: fib(4)

click int fib (int n) { Initial thread i‘]
if (n<2) return (n); \

else {
int x,y;
X = spawn fib(n-1);
y = spawn fib(n-2);
sync

* Execution represented as a graph, G =(V, E)

e Each vertex v & V represents a (Cilk) thread: a maximal
sequence of instructions not containing parallel control
(spawn, sync, return)

* Every edge e € E is either a spawn, a return or a continue edge

Dynamic multithreading — example: fib(4)

click int fib (int n) { Spawn edge 4]
if (n<2) return (n);
else { ~\\\\\‘
int x,y; 3
X = spawn fib(n-1); []
y = spawn fib(n-2);
sync
return (x+y);
}

Dynamic multithreading — example: fib(4)

Continue edge \
click int fib (int n) { 4
if (n<2) return (n);
else {

int x,y; 3
X = spawn fib(n-1);

y = spawn fib(n-2);
sync
return (x+y);

Dynamic multithreading — example: fib(4

click int fib (int n) {
if (n<2) return (n);
else {

)
|

int x,y;
X = spawn fib(n-1);

y = spawn fib(n-2);

sync >
return (x+y); [

Dynamic multithreading — example: fib(4

click int fib (int n) {
if (n<2) return (n);
else {

int x,y;
X = spawn fib(n-1);

y = spawn fib(n-2);
sync >
return (x+y); [

click int fib (int n) {
if (n<2) return (n);
else {

Dynamic multithreading — example: fib(4)

int x,y;
X = spawn fib(n-1);

-@

y = spawn fib(n-2);

sync)
return (x+y); [

Do) (@

Return edge

Dynamic multithreading — example: fib(4)

click int fib (int n) {
if (n<2) return (n);
else {
int x,y;
X = spawn fib(n-1);
y = spawn fib(n-2);

sync)
return (x+y); [

Dynamic multithreading — example: fib(4

Qead

click int fib (int n) {
if (n<2) return (n);
else {
int x,y;
X = spawn fib(n-1);
y = spawn fib(n-2);

sync >
return (x+y); [

Cactus stack

« A stack pointer can be passed from parent to child, but not
from child to parent

Support several views of stack
« Cilk also supports malloc

A B D E ¢

ARRBEL

BB C
D

m W X

Algorithmic complexity

1V

T = execution time on P processors

Algorithmic complexity

T = execution time on P processors
T, = total work

IR,

&

Algorithmic complexity

= execution time on P processors
T, = total work
k. T = critical path length (span)

Algorithmic complexity

= execution time on P processors
T, = total work
k. T = critical path length (span)

Lower bounds
Tp>=T,/P
TP >= TC

Speedup
T',/Tp = speedup on P processors.

If 7,/Tp = O(P) <= P, linear speedup
It T,/T, = P, perfect linear speedup

Parallelism
Since Tp >= T, T,/T-1s maximum speedup

T',/Tp = prallelism, average amount

of work per step along the span

Lﬁ.

Example: fib(4)

Assume each thread takes 1 time unit:
 Work: T, = 17

* Span: T, =8

e Parallelism: 7)/T-= 17/8

Little sense to use more
than 2 processors!

Example: vector addition

void vadd (real *A, real *B, int n){
int i; for (i=0; i<n; i++) A[i]+=B[i];

}

Example: vector addition

void vadd (real *A, real *B, int n){
int i; for (i=0; i<n; i++) A[i]+=B[i];

}

Key idea: convert loops to recursion..

Example: vector addition

void vadd (real *A, real *B, int n){
int i; for (i=0; i<n; i++) A[i]+=B[i];

}

Key idea: convert loops to recursion..

void vadd (real *A, real *B, int n) {
if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {
vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);
}
}

Example: vector addition

cilk void vadd (real *A, real *B, int n) {
if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {
spawn vadd (A, B, n/2);
spawn vadd (A+n/2, B+n/2, n-n/2);
sync;
}
}

BASE

Example: vector addition

Assume BASE = O(1):
Work: T, = O(n)
Span: T = O(log n)
Parallelism: T,/T, = ©®(n/log n)

e data

BASE

Scheduling

» Cilk scheduler maps Cilk threads
onto processors dynamically at
runtime

Greedy scheduling

« Key idea: Do as much as possible on every
step

« Definition: A thread 1s ready 1f all its
predecessors have executed

Lﬁ.

Greedy sechduling

« Key idea: Do as much as possible on every
step

« Definition: A thread 1s ready 1f all its
predecessors have executed

« Complete step
If # ready threads >= P, run any P ready threads

-
!

LC

Greedy scheduling

« Key idea: Do as much as possible on every
step

predecessors have executed

« Complete step
« If#ready threads >= P, run any P ready threads

« Incomplete step
If # ready threads < P run all P ready threads

« Definition: A thread 1s ready 1f all its -
!

-8

Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent *75] Any greedy scheduler achieves

T, <T/P+ T, b

Proof sketch:

« # complete steps < T,/P since each
complete step performs P work

Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent *75] Any greedy scheduler achieves

T, <T/P+ T, b

Proof sketch: k-

« # complete steps < T,/P since each
complete step performs P work

« # iIncomplete steps < T, since each incomplete
step reduces the span of the unexecuted DAG by 1

Optimality of greedy
Corollary: Any greedy scheduler 1s within a factor of 2 of optimal

Proof: Let 7™ be execution time produced by optimal scheduler
Since Tp* > max{7,/P, T} (lower bounds), we have
1o <T,/P+ T,
<2max{T,/P, T}
< 2T,*

Linear speedup

Corollary: Any greedy scheduler achieves near-perfect linear speedup
whenever P << T}/T¢.

Proof: From P << T,/T-we get T << T,/P
From the Greedy Scheduling Theorem gives us

Tp<T)/P+T-=T,/P
Thus, speedup 1s 7;/Tp = P

Work stealing
Each processor has a queue of threads to run
A spawned thread is put on local processor queue

When a processor runs out of work, it looks at queues of other
processors and "steals” their work items
« Typically pick the processor from where to steal randomly

Cilk performance

Cilk’s “work-stealing” scheduler achieves
Tp, = T,/P+ O(T,) expected time (provably);
Tp = T,/P+ O(T,) time (empirically).
Near-perfect linear speedup if P << T,/T,

« Instrumentation in Cilk allows to accurately measure T, and T

« The average cost of a spawn in Cilk-5 is only 2—6 times the cost of an
ordinary C function call, depending on the platform

Summary

C extension for multithreaded programs
« Now available also for C++: Cilk Plus from Intel

Simple; only three keywords: cilk, spawn, sync
« Cilk Plus has actually only two: cilk_spaw, cilk_sync
« Equivalent to serial program on a single core
« Abstracts away parallelism, load balancing and scheduling

Leverages recursion pattern

« Might need to rewrite programs to fit the pattern (see vector addition
example)

OpenMP

Based on the “Introduction to OpenMP” presentation:
(https://webcourse.cs.technion.ac.il/236370/Spring2009/ho/WCFiles/OpenMPLecture.ppt)

OpenMP

A language extension with constructs for parallel programming:
- Critical sections, atomic access, private variables, barriers

Parallelization is orthogonal to functionality

- If the compiler does not recognize OpenMP directives, the code remains
functional (albeit single-threaded)

Industry standard: supported by Intel, Microsoft, IBM, HP

OpenMP execution model

Fork and Join: Master thread spawns a team of threads as

needed
Worker
Thread

Master thread

Parallel
regions

OpenMP memory model

Shared memory model
« Threads communicate by accessing shared variables

The sharing is defined syntactically
« Any variable that is seen by two or more threads is shared

« Any variable that is seen by one thread only is private

Race conditions possible
« Use synchronization to protect from conflicts
« Change how data is stored to minimize the synchronization

OpenMP: Work sharing example

answerl = long computation 1();
answer2 = long computation_ 2();
if (answerl != answer2) { ..}

How to parallelize?

OpenMP: Work sharing example

answerl = long computation 1();
answer2 = long computation 2();
if (answerl != answer2) { ..}

How to parallelize?

#pragma omp sections
{
#pragma omp section
answerl = long_computation 1();
#pragma omp section
answer2 = long computation 2();

}

if (answerl != answer2) { ..}

OpenMP: Work sharing example

Sequential code | for (int i=e; i<N; i++) { a[i]=b[i]+c[i]; }

OpenMP: Work sharing example
Sequential code | for (int i=e; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel

(Semi) manual {
para”enzaﬁon int id = omp_get_thread_num();
int nt = omp_get_num_threads();

int i start = id*N/nt, i _end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

OpenMP: Work sharing example

Sequential code |[for (int i=0; i<N; i++) { a[i]=b[ileclil-

(Semi) manual
parallelization

#pragma omp parallel

{

int id = omp_get_thread num();
int nt = omp_get _num_threads();

 Launch nt threads

» Each thread uses id
and nt variables to
operate on a different
segment of the arrays

int i start = id*N/nt, i _end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

OpenMP: Work sharing example

Sequential code | for (int i=e; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel

(Semi) manual {

parallelization int id r—
int nt Increment:

var++, var--,
Comparison: N var += incr, var -=incr
var op last, where

8 oo <, >, <=, >=
D= 2 =0T One signed

variable in the

I
(@)
S

©

0Q
m
-+
+
>
]
(D

Automatic
para”enzat Initialization:

— init
the for ook

#parallel for

loop (“I”)

for (int 1=@; i<N; i++) { a[i]=b[i]+c[i]; }
}

Challenges of #parallel for

Load balancing
- If all iterations execute at the same speed, the processors are used optimally
« If some iterations are faster, some processors may get idle, reducing the speedup
- We don’t always know distribution of work, may need to re-distribute dynamically

Granularity
« Thread creation and synchronization takes time

« Assigning work to threads on per-iteration resolution may take more time than the
execution itself

- Need to coalesce the work to coarse chunks to overcome the threading overhead

Trade-off between load balancing and granularity of parallelism

Schedule: controlling work distribution

schedule(static [, chunksize])
 Default: chunks of approximately equivalent size, one to each thread
« If more chunks than threads: assigned in round-robin to the threads
« Why might want to use chunks of different size?

schedule(dynamic [, chunksize))
« Threads receive chunk assignments dynamically

« Default chunk size = 1

schedule(guided [, chunksize])
« Start with large chunks

 Threads receive chunks dynamically. Chunk size reduces exponentially,
down to chunksize

OpenMP: Data Environment

Shared Memory programming model

« Most variables (including locals) are shared by threads
{

int sum = 0;
#pragma omp parallel for
for (int i=0; i<N; i++) sum += i;

}
« Global variables are shared

Some variables can be private
« Variables inside the statement block
« Variables in the called functions
« Variables can be explicitly declared as private

Overriding storage attributes

private:

« A copy of the variable is created for
each thread

« There is no connection between
original variable and private copies

- Can achieve same using variables
inside { }
firstprivate:
- Same, but the initial value of the
variable is copied from the main copy
lastprivate:

- Same, but the last value of the
variable is copied to the main copy

int 1;
#pragma omp parallel for private(i)
for (i=0; i<n; i++) { .. }

int 1dx=1;
int x = 10;
#pragma omp parallel for \
firsprivate(x) lastprivate(idx)
for (i=0; i<n; i++) {
if (data[i] == x)
idx = 1i;

Reduction

for (j=0; j<N; j++) {
sum = sum + a[j]*b[j];

}
How to parallelize this code?

« SUM is not private, but accessing it atomically is too expensive
« Have a private copy of sum in each thread, then add them up

Use the reduction clause
#pragma omp parallel for reduction(+: sum)

- Any associative operator could be used: +, -, ||, |, ¥, etc
 The private value is initialized automatically (to O, 1, ~0O ...)

#pragma omp reduction

float dot prod(float* a, float* b, int N)
{
float sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for(int 1 = 0; i < N; i++) {
sum += a[i] * b[i];
}

return sum;

}

Summary

OpenMP: A framework for code parallelization
- Available for C++ and FORTRAN
« Provides control on parallelism
« Implementations from a wide selection of vendors

Relatively easy to use
« Write (and debug!) code first, parallelize later
 Parallelization can be incremental
 Parallelization can be turned off at runtime or compile time
« Code is still correct for a serial machine

Cilk vs OpenMP
Cilk:

« Simpler
« More natural for unstructured programs

OpenMP:
 Provide more control to developer (e.g., set “cunck” size)
« More natural to parallelize for() statemetns
« Wider support from more vendors; also extension for FORTRANT

“If your code looks like a sequence of parallelizable Fortran-style loops,
OpenMP will likely give good speedups. If your control structures are more
involved, in particular, involving nested parallelism, you may find that OpenM~P
isn’t quite up to the job” -- ntto/www.cik.com/mutticore-blog/bic/8583/Comparing-Cilk-and-OpenMP

