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Charles E. Leiserson, Keith H. Randall and Yuli Zhou
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“OpenMP: An IndustryStandard API for SharedMemory
Programming”, Leonardo Dagum and Ramesh Menon
https://ucbrise.github.io/cs262a-spring2018/



Message passing vs. Shared memory

Message passing: exchange data 
explicitly via IPC

Application developers define protocol 
and exchanging format, number of 
participants, and each exchange  

Shared memory: all multiple processes 
to share data via memory

Applications must locate and and map 
shared memory regions to exchange 
data

Client
send(msg)

MSG

Client
recv(msg)

MSG

MSG IPC

Client
send(msg)

Client
recv(msg)

Shared
Memory



Architectures

Uniformed Shared 
Memory (UMA)

Cray 2

Massively Parallel
DistrBluegene/L

Non-Uniformed Shared 
Memory (NUMA)

SGI Altix 3700

Orthogonal to programming model



Motivation

Multicore CPUs are everywhere:
• Servers with over 100 cores today
• Even smartphone CPUs have 8 cores

Multithreading, natural programming model
• All processors share the same memory
• Threads in a process see same address space
• Many shared-memory algorithms developed



But…

Multithreading is hard
• Lots of expertise necessary
• Deadlocks and race conditions
• Non-deterministic behavior makes it hard to debug



Example
Parallelize the following code using threads:

for (i=0; i<n; i++) {
sum = sum + sqrt(sin(data[i]));

}

Why hard?
• Need mutex to protect the accesses to sum
• Different code for serial and parallel version
• No built-in tuning (# of processors?)



Cilk

Based on slides available at http://supertech.csail.mit.edu/cilk/lecture-1.pdf



Cilk

A C language for programming dynamic multithreaded 
applications on shared-memory multiprocessors

Examples:
• dense and sparse matrix computations
• n-body simulation
• heuristic search 
• graphics rendering
• …



Cilk in one slide
• Simple extension to C; just three basic keywords

• Cilk programs maintain serial semantics
• Abstracts away parallel execution, load balancing and scheduling

• Parallelism 
• Processor-oblivious
• Speculative execution

• Provides performance “guarantees” 



Example: Fibonacci

int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = fib(n-1); 
y = fib(n-2); 
return (x+y); 

} 
} 

cilk int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
return (x+y); 

} 
} 

• A Cilk program’s serial elision is always a legal implementation of Cilk semantics 
• Cilk provides no new data types.

C (elision) Click



Cilk basic kewords

click int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
return (x+y); 

} 
} 

Identifies a function as a Cilk
procedure, capable of being 
spawned in parallel.

The named child Cilk
procedure can execute in
parallel with the parent caller

Control cannot pass this point 
until all spawned children have 
returned



Dynamic multithreading – example: fib(4)

click int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
return (x+y); 

} 
} 

4

Computation unfolds dynamically

Initial thread



Dynamic multithreading – example: fib(4)

click int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
return (x+y); 

} 
} 

4Initial thread

• Execution represented as a graph, G = (V, E) 
• Each vertex v ∈ V represents a (Cilk) thread: a maximal 

sequence of instructions not containing parallel control
(spawn, sync, return)

• Every edge e ∈ E is either a spawn, a return or a continue edge



Dynamic multithreading – example: fib(4)

click int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
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} 
} 

4
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Spawn edge
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Dynamic multithreading – example: fib(4)

click int fib (int n) { 
if (n<2) return (n); 
else { 

int x,y; 
x = spawn fib(n-1); 
y = spawn fib(n-2);
sync 
return (x+y); 

} 
} 
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Final thread



Cactus stack
• A stack pointer can be passed from parent to child, but not 

from child to parent
• Support several views of stack 

• Cilk also supports malloc
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Algorithmic complexity

TP = execution time on P processors



Algorithmic complexity

TP = execution time on P processors
T1 = total work
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TC = critical path length (span)



Algorithmic complexity

TP = execution time on P processors
T1 = total work
TC = critical path length (span)

TP >= T1/P
TP >= TC

Lower bounds



Speedup

T1/TP = speedup on P processors.

If T1/TP = Θ(P) <= P, linear speedup
If T1/TP = P , perfect linear speedup



Parallelism

Since TP >= TC , T1/TC is maximum speedup

T1/TP = prallelism, average amount
of work per step along the span



Example: fib(4)

Assume each thread takes 1 time unit:
• Work: T1 = 17
• Span: TC = 8
• Parallelism: T1/TC = 17/8

1 8

2 7

3 4 6

5
Little sense to use more 

than 2 processors!



Example: vector addition
void vadd (real *A, real *B, int n){ 

int i; for (i=0; i<n; i++) A[i]+=B[i]; 
} 
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Example: vector addition
void vadd (real *A, real *B, int n){ 

int i; for (i=0; i<n; i++) A[i]+=B[i]; 
} 

Key idea: convert loops to recursion..

void vadd (real *A, real *B, int n) { 
if (n<=BASE) { 
int i; for (i=0; i<n; i++) A[i]+=B[i]; 

} else { 
vadd (A, B, n/2); 
vadd (A+n/2, B+n/2, n-n/2); 

}
} 

 



Example: vector addition
cilk void vadd (real *A, real *B, int n) { 

if (n<=BASE) { 
int i; for (i=0; i<n; i++) A[i]+=B[i]; 

} else { 
spawn vadd (A, B, n/2); 
spawn vadd (A+n/2, B+n/2, n-n/2);
sync; 

}
} 

BASE



Example: vector addition
Assume BASE = Θ(1):
Work: T1 = Θ(n)
Span: TC = Θ(log n)
Parallelism: T1/TC = Θ(n/log n)

BASE



Scheduling

• Cilk scheduler maps Cilk threads 
onto processors dynamically at 
runtime

Network

Memory I/O

P P P…



Greedy scheduling

• Key idea: Do as much as possible on every 
step

• Definition: A thread is ready if all its 
predecessors have executed
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P = 3



Greedy scheduling

• Key idea: Do as much as possible on every 
step

• Definition: A thread is ready if all its 
predecessors have executed

• Complete step
• If # ready threads >= P, run any P ready threads

• Incomplete step
• If # ready threads < P run all P ready threads

P = 3



Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent ’75] Any greedy scheduler achieves 
TP ≤ T1/P + TC

Proof sketch: 
• # complete steps ≤ T1/P since each 

complete step performs P work

P = 3



Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent ’75] Any greedy scheduler achieves 
TP ≤ T1/P + TC

Proof sketch: 
• # complete steps ≤ T1/P since each 

complete step performs P work
• # incomplete steps ≤ TC, since each incomplete 

step reduces the span of the unexecuted DAG by 1

P = 3



Optimality of greedy

Corollary: Any greedy scheduler is within a factor of 2 of optimal

Proof: Let TP* be execution time produced by optimal scheduler
Since TP* ≥ max{T1/P, TC} (lower bounds), we have

TP ≤ T1/P + TC

≤ 2 max{T1/P, TC}
≤ 2 TP*



Linear speedup

Corollary: Any greedy scheduler achieves near-perfect linear speedup 
whenever P << T1/TC.

Proof: From P << T1/TC we get TC << T1/P
From the Greedy Scheduling Theorem gives us

TP ≤ T1/P + TC ≈ T1/P 
Thus, speedup is T1/TP ≈ P



Work stealing 

Each processor has a queue of threads to run

A spawned thread is put on local processor queue

When a processor runs out of work, it looks at queues of other 
processors and "steals" their work items

• Typically pick the processor from where to steal randomly



Cilk performance

Cilk’s “work-stealing” scheduler achieves
TP = T1/P + O(TC) expected time (provably);

TP ≈ T1/P + O(TC) time (empirically).
Near-perfect linear speedup if P << T1/TC

• Instrumentation in Cilk allows to accurately measure T1 and TC

• The average cost of a spawn in Cilk-5 is only 2–6 times the cost of an 
ordinary C function call, depending on the platform



Summary

C extension for multithreaded programs
• Now available also for C++: Cilk Plus from Intel

Simple; only three keywords: cilk, spawn, sync
• Cilk Plus has actually only two: cilk_spaw, cilk_sync
• Equivalent to serial program on a single core
• Abstracts away parallelism, load balancing and scheduling

Leverages recursion pattern
• Might need to rewrite programs to fit the pattern (see vector addition 

example)



OpenMP

Based on the “Introduction to OpenMP” presentation: 
(https://webcourse.cs.technion.ac.il/236370/Spring2009/ho/WCFiles/OpenMPLecture.ppt) 



OpenMP
A language extension with constructs for parallel programming: 

• Critical sections, atomic access, private variables, barriers

Parallelization is orthogonal to functionality
• If the compiler does not recognize OpenMP directives, the code remains 

functional (albeit single-threaded)

Industry standard: supported by Intel, Microsoft, IBM, HP



OpenMP execution model
Fork and Join: Master thread spawns a team of threads as 
needed

Master threadMaster thread

Worker
Thread

FO
R
K

JO
IN

FO
R
K

JO
IN

Parallel 
regions



OpenMP memory model
Shared memory model

• Threads communicate by accessing shared variables

The sharing is defined syntactically
• Any variable that is seen by two or more threads is shared
• Any variable that is seen by one thread only is private

Race conditions possible
• Use synchronization to protect from conflicts
• Change how data is stored to minimize the synchronization



OpenMP: Work sharing example
answer1 = long_computation_1();
answer2 = long_computation_2();
if (answer1 != answer2) { … }

How to parallelize?



OpenMP: Work sharing example
answer1 = long_computation_1();
answer2 = long_computation_2();
if (answer1 != answer2) { … }

How to parallelize?
#pragma omp sections
{

#pragma omp section
answer1 = long_computation_1();
#pragma omp section
answer2 = long_computation_2();

}
if (answer1 != answer2) { … }



OpenMP: Work sharing example
Sequential code for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }



OpenMP: Work sharing example
Sequential code

(Semi) manual 
parallelization

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}



OpenMP: Work sharing example
Sequential code

(Semi) manual 
parallelization

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

• Launch nt threads
• Each thread uses id

and nt variables to 
operate on a different 
segment of the arrays



OpenMP: Work sharing example
Sequential code

(Semi) manual 
parallelization

Automatic 
parallelization of 
the for loop using
#parallel for

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }

#pragma omp parallel
{

int id = omp_get_thread_num();
int nt = omp_get_num_threads();
int i_start = id*N/nt, i_end = (id+1)*N/nt;
for (int i=istart; i<iend; i++) { a[i]=b[i]+c[i]; }

}

#pragma omp parallel
#pragma omp for schedule(static)
{

for (int i=0; i<N; i++) { a[i]=b[i]+c[i]; }
}

One signed 
variable in the 

loop (“i”)Initialization:
var = init

Comparison: 
var op last, where
op: <, >, <=, >=

Increment:
var++, var--, 
var += incr, var -= incr



Challenges of #parallel for
Load balancing

• If all iterations execute at the same speed, the processors are used optimally
• If some iterations are faster, some processors may get idle, reducing the speedup
• We don’t always know distribution of work, may need to re-distribute dynamically

Granularity
• Thread creation and synchronization takes time
• Assigning work to threads on per-iteration resolution may take more time than the 

execution itself
• Need to coalesce the work to coarse chunks to overcome the threading overhead

Trade-off between load balancing and granularity of parallelism



Schedule: controlling work distribution
schedule(static [, chunksize])

• Default: chunks of approximately equivalent size, one to each thread
• If more chunks than threads: assigned in round-robin to the threads
• Why might want to use chunks of different size?

schedule(dynamic [, chunksize])
• Threads receive chunk assignments dynamically
• Default chunk size = 1

schedule(guided [, chunksize])
• Start with large chunks
• Threads receive chunks dynamically. Chunk size reduces exponentially, 

down to chunksize



OpenMP: Data Environment
Shared Memory programming model

• Most variables (including locals) are shared by threads
{

int sum = 0;
#pragma omp parallel for
for (int i=0; i<N; i++) sum += i;

}

• Global variables are shared

Some variables can be private
• Variables inside the statement block
• Variables in the called functions
• Variables can be explicitly declared as private



Overriding storage attributes
private:

• A copy of the variable is created for 
each thread

• There is no connection between 
original variable and private copies

• Can achieve same using variables 
inside { }

firstprivate:
• Same, but the initial value of the 

variable is copied from the main copy
lastprivate:

• Same, but the last value of the 
variable is copied to the main copy

int i;
#pragma omp parallel for private(i)
for (i=0; i<n; i++) { … }

int idx=1;
int x = 10;
#pragma omp parallel for \

firsprivate(x) lastprivate(idx)
for (i=0; i<n; i++) {

if (data[i] == x) 
idx = i;

}



Reduction
for (j=0; j<N; j++) {

sum = sum + a[j]*b[j];
}

How to parallelize this code?
• sum is not private, but accessing it atomically is too expensive
• Have a private copy of sum in each thread, then add them up

Use the reduction clause
#pragma omp parallel for reduction(+: sum)

• Any associative operator could be used: +, -, ||, |, *, etc
• The private value is initialized automatically (to 0, 1, ~0 …)



#pragma omp reduction

float dot_prod(float* a, float* b, int N) 
{

float sum = 0.0;
#pragma omp parallel for reduction(+:sum)

for(int i = 0; i < N; i++) {
sum += a[i] * b[i];

}
return sum;

}



Summary
OpenMP: A framework for code parallelization

• Available for C++ and FORTRAN
• Provides control on parallelism
• Implementations from a wide selection of vendors

Relatively easy to use
• Write (and debug!) code first, parallelize later
• Parallelization can be incremental
• Parallelization can be turned off at runtime or compile time
• Code is still correct for a serial machine



Cilk vs OpenMP
Cilk: 

• Simpler
• More natural for unstructured programs

OpenMP:
• Provide more control to developer (e.g., set “cunck” size) 
• More natural to parallelize for() statemetns
• Wider support from more vendors; also extension for FORTRANT

“If your code looks like a sequence of parallelizable Fortran-style loops, 
OpenMP will likely give good speedups. If your control structures are more 
involved, in particular, involving nested parallelism, you may find that OpenMP
isn’t quite up to the job” -- http://www.cilk.com/multicore-blog/bid/8583/Comparing-Cilk-and-OpenMP


