
Erlang
Lecture 21, cs262a

Ion Stoica & Ali Ghodsi
UC Berkeley
April 9, 2018

My personal take on Erlang

• Language created for a purpose
• Build modern mobile phone switches

• What kind of requirements do such switches have?
• Highly reliable and scalable!

• In particular
• Reliable
• Scale up (multiprocessors)
• Scale out (distribution)
• Fault tolerant
• High available

Achieving the requirements

• Reliable
• Avoid sharing and be stateless à functional based on message passing

• Scale up (multiprocessors)
• High concurrency à support millions of threads

• Scale out (distribution)
• Same model for single-machine and distributed (message passing everywhere)

• Fault tolerant
• Supervisor model, very powerful

• High available
• Hot swapping code

Erlang

Making hard things simple, and simple things difficult

myfunc([]) -> [];

myfunc([First|Rest]) ->
myfunc([Front || Front <- Rest, Front < First]) ++
[First] ++
myfunc([Back || Back <- Rest, Back >= First]).

What is this?
• 100% correct quick sort!

Impact

• Hugely successful at Ericsson
• 70% of all worldwide calls in early 2000 went through an Erlang switch
• Almost no downtime over 6 years

My years in grad school

• Erlang was almost dead
• OO was on a rise, and JVM was a standard
• Most research was on type theory (static typing)
• Multi-paradigm languages were popular (Mozart, Scala, …)
• Erlang had issues (not always tail-recursive, weird k/v store)

• Joe remained bullish
• “Humans pass messages, they don’t edit each others brains”

Popularity of the language picks up

• Erlang uptick
• Joe publishes ”Programming Erlang”, big hit
• Silicon Valley picks up the language:

WhatsApp, CouchDB, RabbitMQ, Facebook Messenger …

• Why?
• Erlang was built with a purpose:

building highly scalable and reliable distributed systems
• With Moore’s law ending, and web-scale computing, a highly relevant purpose
• Joe was extremely stubborn and pursued his vision & dream
• End story

