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Context (1970s—1990s)
Supercomputers the pinnacle of computation

• Solve important science problems, e.g., 
– Airplane simulations
– Weather prediction
– …

• Large national racing for most powerful computers
• In quest for increasing power à large scale 

distributed/parallel computers (1000s of processors)

Question: how to program these supercomputers?



Shared memory vs. Message passing

Message passing: exchange data 
explicitly via IPC

Application developers define protocol 
and exchanging format, number of 
participants, and each exchange  

Client
send(msg)

MSG

Client
recv(msg)

MSG

MSG IPC

Shared memory: all multiple processes 
to share data via memory

Applications must locate and and map 
shared memory regions to exchange 
data

Client
send(msg)

Client
recv(msg)

Shared
Memory



Shared memory    vs.     Message passing

Easy to program; just like a 
single multi-threaded machines

Hard to write high perf. apps:
• Cannot control which data is 

local or remote (remote mem. 
access much slower)

Hard to mask failures

Message passing: can write 
very high perf. apps

Hard to write apps:
• Need to manually decompose 

the app, and move data
Need to manually handle 
failures



MPI
MPI - Message Passing Interface

• Library standard defined by a committee of vendors, implementers, and 
parallel programmers 

• Used to create parallel programs based on message passing

Portable: one standard, many implementations
• Available on almost all parallel machines in C and Fortran
• De facto standard platform for the HPC community



Groups, Communicators, Contexts

Group: a fixed ordered set of k
processes, i.e., 0, 1, .., k-1

Communicator: specify scope of 
communication

• Between processes in a group
• Between two disjoint groups

Context: partition of comm. space 
• A message sent in one context cannot be 

received in another context

This image is captured from:
“Writing Message Passing Parallel 
Programs with MPI”, Course Notes, 
Edinburgh Parallel Computing Centre
The University of Edinburgh



Synchronous vs. Asynchronous Message Passing

A synchronous communication is not complete until the message 
has been received

An asynchronous communication completes before the message 
is received 



Communication Modes
Synchronous: completes once ack is received by sender

Asynchronous: 3 modes
• Standard send: completes once the message has been sent, which may 

or may not imply that the message has arrived at its destination
• Buffered send: completes immediately, if receiver not ready, MPI buffers 

the message locally
• Ready send: completes immediately, if the receiver is ready for the 

message it will get it, otherwise the message is dropped silently



Blocking vs. Non-Blocking

Blocking, means the program will not continue until the 
communication is completed

• Synchronous communication
• Barriers: wait for every process in the group to reach a point in execution

Non-Blocking, means the program will continue, without waiting 
for the communication to be completed



MPI library

Huge (125 functions)

Basic (6 functions)



MPI Basic

Many parallel programs can be written using just these six 
functions, only two of which are non-trivial;

– MPI_INIT
– MPI_FINALIZE
– MPI_COMM_SIZE
– MPI_COMM_RANK
– MPI_SEND
– MPI_RECV



Skeleton MPI Program (C)

#include <mpi.h>

main(int argc, char** argv) 
{

MPI_Init(&argc, &argv);

/* main part of the program */

/* Use MPI function call depend on your data
* partitioning and the parallelization architecture
*/
MPI_Finalize();

}



A minimal MPI program (C)

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
printf(“Hello, world!\n”);
MPI_Finalize();
return 0;

}



A minimal MPI program (C)

#include “mpi.h” provides basic MPI definitions and types.

MPI_Init starts MPI

MPI_Finalize exits MPI

Notes:
• Non-MPI routines are local; this “printf” run on each process
• MPI functions return error codes or MPI_SUCCESS



Improved Hello (C)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size; 
MPI_Init(&argc, &argv);
/* rank of this process in the communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
/* get the size of the group associates to the communicator */
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}



Improved Hello (C)
/* Find out rank, size */
int world_rank, size; 
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); 
MPI_Comm_size(MPI_COMM_WORLD, &world_size); 
int number; 
if (world_rank == 0) { 

number = -1; 
MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (world_rank == 1) { 
MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("Process 1 received number %d from process 0\n", number); 

}

Rank of 
destination Default 

communicator

Tag to identify 
messageNumber of 

elements

Rank of 
source Status



Many other functions…

MPI_Bcast: send same piece of 
data to all processes in the group

MPI_Scatter: send different pieces 
of an array to different processes 
(i.e., partition an array across 
processes)

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



Many other functions…

MPI_Gather: take elements from 
many processes and gathers them 
to one single process 

• E.g., parallel sorting, searching 

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



Many other functions…

MPI_Reduce: takes an array of 
input elements on each process 
and returns an array of output 
elements to the root process 
given a specified operation

MPI_Allreduce: Like MPI_Reduce
but distribute results to all 
processes

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/



MPI Discussion
Gives full control to programmer

• Exposes number of processes
• Communication is explicit, driven by the program

Assume 
• Long running processes
• Homogeneous (same performance) processors

Little support for failures, no straggler mitigation

Summary: achieve high performance by hand-optimizing jobs but 
requires experts to do so, and little support for fault tolerance 



Today’s Papers

MapReduce: Simplified Data Processing on Large Clusters, Jeffrey 
Dean and Sanjay Ghemawat, OSDI’04
http://static.googleusercontent.com/media/research.google.com/en//archive/m
apreduce-osdi04.pdf

Spark: Cluster Computing with Working Sets,  
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion 
Stoica, NSDI’12 
https://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf



Context (end of 1990s)

Internet and World Wide Web taking off

Search as a killer applications 
• Need to index and process huge amounts of data
• Supercomputers very expensive; also designed for computation intensive 

workloads vs data intensive workloads

Data processing: highly parallel



Bulk Synchronous Processing (BSP) Model*

Super-step

Processors

…

Super-step

Processors

…

DataData Shuffle Data

Super-step

Shuffle

*Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990



MapReduce as a BSP System

Super-step
(Map phase)

Maps

…

Super-step
(Reduce phase)

Reduce

…

PartitionsPartitions Shuffle



Example: Word Count



Context (2000s)
MapReduce and Hadoop de facto standard for big 
data processing à great for batch jobs 

… but not effective for 
• Interactive computations
• Iterative computations

26



Spark, as a BSP System

stage (super-step)

tasks 
(processors)

…

stage (super-step)

tasks 
(processors)

…

RDDRDD Shuffle • all tasks in same stage 
impl. same operations,

• single-threaded, 
deterministic execution

Immutable 
dataset

Barrier implicit by 
data dependency



Spark, really a generalization of MapReduce

DAG computation model vs two stage computation model (Map 
and Reduce)

Tasks as threads vs. tasks as JVMs

Disk-based vs. memory-optimized

So for the rest of the lecture, we’ll talk mostly about Spark



More context (2009): Application Trends
Iterative computations, e.g., Machine Learning

• More and more people aiming to get insights from data

Interactive computations, e.g., ad-hoc analytics
• SQL engines like Hive and Pig drove this trend

29



More context (2009): Application Trends
Despite huge amounts of data, many working 

sets in big data clusters fit in memory

30



2009: Application Trends

31*G Ananthanarayanan,  A. Ghodsi, S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS
2011

Memory (GB) Facebook 
(% jobs)

Microsoft 
(% jobs)

Yahoo! 
(% jobs)

8 69 38 66

16 74 51 81

32 96 82 97.5

64 97 98 99.5

128 98.8 99.4 99.8

192 99.5 100 100

256 99.6 100 100
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Operations on RDDs

Transformations f(RDD) => RDD
§ Lazy (not computed immediately)
§ E.g., “map”, “filter”, “groupBy”

Actions:
§ Triggers computation
§ E.g. “count”, “collect”, “saveAsTextFile”



Working With RDDs

RDD

textFile = sc.textFile(”SomeFile.txt”)

34



Working With RDDs

RDDRDDRDDRDD

Transformations

linesWithSpark = textFile.filter(lambda line: "Spark” in 
line)

textFile = sc.textFile(”SomeFile.txt”)

35



Working With RDDs

RDDRDDRDDRDD

Transformations

Action
Val
ue

linesWithSpark = textFile.filter(lambda line: "Spark” in 
line)

linesWithSpark.count()
74

linesWithSpark.first()
# Apache Spark

textFile = sc.textFile(”SomeFile.txt”)

36



Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns
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Driver
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Example: Log Mining
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Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns
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Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns
lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()
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Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns
lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

Driver

Cache your data è Faster Results
Full-text search of Wikipedia
• 60GB on 20 EC2 machines
• 0.5 sec from mem vs. 20s for on-disk

Partition 1

Partition 2

Partition 3



Language Support
Standalone Programs
Python, Scala, & Java

Interactive Shells
Python & Scala

Performance
Java & Scala are faster due 

to static typing
…but Python is often fine

Python
lines = sc.textFile(...)
lines.filter(lambda s: “ERROR” in s).count()

Scala
val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

Java
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();



Expressive API
map reduce



Expressive API
map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save    ...



Fault Recovery: Design Alternatives
Replication: 

• Slow: need to write data over network
• Memory inefficient

Backup on persistent storage:
• Persistent storage still (much) slower than memory
• Still need to go over network to protect against machine failures

Spark choice:
• Lineage: track seq. of operations to efficiently reconstruct lost RRD 

partitions
• Enabled by determinist execution and data immutability 



Fault Recovery Example

Two-partition RDD A={A1, A2} stored on disk
1) filter and cache à RDD B
2) joinà RDD C
3) aggregate à RDD D

A1

A2

RD
D 

A

agg. D

filter

filter B2

B1 join

join C2

C1



Fault Recovery Example

C1 lost due to node failure before “aggregate” finishes

A1

A2

RD
D 

A

agg. D

filter

filter B2

B1 join

join C2

C1



Fault Recovery Example

C1 lost due to node failure before reduce finishes
Reconstruct C1, eventually, on different node

A1

A2

RD
D 

A

agg. D

filter

filter B2

B1

join C2

agg. D

join C1



Fault Recovery Results
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Process large data streams at second-scale latencies
• Site statistics, intrusion detection, online ML

To build and scale these apps users want
• Fault-tolerance: both for crashes and stragglers
• Exactly one semantics
• Integration: with offline analytical stack

Spark Streaming: Motivation



Spark Streaming

Data streams are chopped into batches 
• A batch is an RDD holding a few 100s ms worth of data

Each batch is processed  in Spark

data streams

re
ce

iv
er

s

batches



Streaming

How does it work?

Data streams are chopped into batches 
• A batch is an RDD holding a few 100s ms worth of data

Each batch is processed  in Spark
Results pushed out in batches

data streams

re
ce

iv
er

s

batches results



Streaming Word Count

val lines = context.socketTextStream(“localhost”, 9999)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

wordCounts.print()

ssc.start()

print some counts on screen

count the words

split lines into words

create DStream
from data over socket 

start processing the stream



Word Count

object NetworkWordCount {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val context = new StreamingContext(sparkConf, Seconds(1))

val lines = context.socketTextStream(“localhost”, 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

wordCounts.print()
ssc.start()
ssc.awaitTermination()

}
}



Word Count

object NetworkWordCount {
def main(args: Array[String]) {

val sparkConf = newSparkConf().setAppName("NetworkWordCount")
val context = new StreamingContext(sparkConf, Seconds(1))

val lines = context.socketTextStream(“localhost”, 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

wordCounts.print()
ssc.start()
ssc.awaitTermination()

}
}

Spark Streaming

public class WordCountTopology {
public static class SplitSentence extends ShellBolt implements IRichBolt {

public SplitSentence() {
super("python", "splitsentence.py");

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));
}

@Override
public Map<String, Object> getComponentConfiguration() {

return null;
}

}

public static class WordCount extends BaseBasicBolt {
Map<String, Integer> counts = new HashMap<String, Integer>();

@Override
public void execute(Tuple tuple, BasicOutputCollector collector) {

String word = tuple.getString(0);
Integer count = counts.get(word);
if (count == null)
count = 0;

count++;
counts.put(word, count);
collector.emit(new Values(word, count));

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word", "count"));
}

}

Storm

public static void main(String[] args) throws Exception {

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new 

Fields("word"));

Config conf = new Config();
conf.setDebug(true);

if (args != null && args.length > 0) {
conf.setNumWorkers(3);

StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
}
else {

conf.setMaxTaskParallelism(3);

LocalCluster cluster = new LocalCluster();
cluster.submitTopology("word-count", conf, builder.createTopology());

Thread.sleep(10000);

cluster.shutdown();
}



Spark 2.0
Dataframes/datasets instead of RDDs 

• Like tables in SQL
• Far more efficient:

– Can directly access any field (dramatically reduce I/O and 
serialization/deserialization)

– Can use column oriented access

Dataframe APIs (e.g., Python, R, SQL) use same optimizer: Catalyst
New libraries or old libraries revamped to use dataframe APIs

• Spark Streaming à Structured Streaming
• GraphX



General
Unifies batch, interactive, streaming workloads
Easy to build sophisticated applications

• Support iterative, graph-parallel algorithms
• Powerful APIs in Scala, Python, Java, R

Spark Core

Spark
StreamingSparkSQL MLlib GraphX SparkR



Summary

MapReduce and later Spark jump-started Big Data processing

Lesson learned
• Simple design, simple computation model can go a long way
• Scalability, fault-tolerance first, performance next 

– With Dataframes and SparkSQL now Spark implements DB like 
optimizations which significantly increase performance



Discussion
OpenMP/Cilk MPI MapReduce / Spark

Environment,
Assumptions

Single node, multiple 
core, shared memory

Supercomputers
Sophisticate programmers
High performance
Hard to scale hardware

Commodity clusters
Java programmers
Programmer productivity
Easier, faster to scale up cluster

Computation 
Model

Fine-grained task 
parallelism

Message passing Data flow / BSP

Strengths Simplifies parallel 
programming on multi-
cores

Can write very fast 
asynchronous code 

Fault tolerance

Weaknesses Still pretty complex, 
need to be careful 
about race conditions

Fault tolerance
Easy to end up with non-
deterministic code (if not 
using barriers)

Not as high performance as MPI


