
MPI and comparison of models
Lecture 23, cs262a

Ion Stoica & Ali Ghodsi
UC Berkeley
April 16, 2018

MPI
MPI - Message Passing Interface

• Library standard defined by a committee of vendors, implementers, and
parallel programmers

• Used to create parallel programs based on message passing

Portable: one standard, many implementations
• Available on almost all parallel machines in C and Fortran
• De facto standard platform for the HPC community

Groups, Communicators, Contexts

Group: a fixed ordered set of k
processes, with ranks, i.e.,
0, 1, …, k-1

Communicator: specify scope of
communication

• Between processes in a group (intra)
• Between two disjoint groups (inter)

Context: partition of comm. space
• A message sent in one context cannot be

received in another context

This image is captured from:
“Writing Message Passing Parallel
Programs with MPI”, Course Notes,
Edinburgh Parallel Computing Centre
The University of Edinburgh

Synchronous vs. Asynchronous Message Passing

A synchronous communication is not complete until the message
has been received

An asynchronous communication completes before the message
is received

Communication Modes
Synchronous: completes once ack is received by sender

Asynchronous: 3 modes
• Standard send: completes once the message has been sent, which may

or may not imply that the message has arrived at its destination
• Buffered send: completes immediately, if receiver not ready, MPI buffers

the message locally
• Ready send: completes immediately, if the receiver is ready for the

message it will get it, otherwise the message is dropped silently

Blocking vs. Non-Blocking

Blocking, means the program will not continue until the
communication is completed

• Synchronous communication
• Barriers: wait for every process in the group to reach a point in execution

Non-Blocking, means the program will continue, without waiting
for the communication to be completed

MPI library

Huge (125 functions)

Basic (6 functions)

MPI Basic

Many parallel programs can be written using just these six
functions, only two of which are non-trivial;

– MPI_INIT
– MPI_FINALIZE
– MPI_COMM_SIZE
– MPI_COMM_RANK
– MPI_SEND
– MPI_RECV

Skeleton MPI Program (C)

#include <mpi.h>

main(int argc, char** argv)
{

MPI_Init(&argc, &argv);

/* main part of the program */

/* Use MPI function call depend on your data
* partitioning and the parallelization architecture
*/
MPI_Finalize();

}

A minimal MPI program (C)

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
printf(“Hello, world!\n”);
MPI_Finalize();
return 0;

}

A minimal MPI program (C)

#include “mpi.h” provides basic MPI definitions and types.

MPI_Init starts MPI

MPI_Finalize exits MPI

Notes:
• Non-MPI routines are local; this “printf” run on each process
• MPI functions return error codes or MPI_SUCCESS

Improved Hello (C)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
/* rank of this process in the communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
/* get the size of the group associates to the communicator */
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Improved Hello (C)
/* Find out rank, size */
int world_rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
int number;
if (world_rank == 0) {

number = -1;
MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (world_rank == 1) {
MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("Process 1 received number %d from process 0\n", number);

}

Rank of
destination Default

communicator

Tag to identify
messageNumber of

elements

Rank of
source Status

Many other functions…

MPI_Bcast: send same piece of
data to all processes in the group

MPI_Scatter: send different pieces
of an array to different processes
(i.e., partition an array across
processes)

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Many other functions…

MPI_Gather: take elements from
many processes and gathers them
to one single process

• E.g., parallel sorting, searching

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Many other functions…

MPI_Reduce: takes an array of
input elements on each process
and returns an array of output
elements to the root process
given a specified operation

MPI_Allreduce: Like MPI_Reduce
but distribute results to all
processes

From: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

MPI Discussion
Gives full control to programmer

• Exposes number of processes
• Communication is explicit, driven by the program

Assume
• Long running processes
• Homogeneous (same performance) processors

Little support for failures (checkpointing), no straggler mitigation

Summary: achieve high performance by hand-optimizing jobs but
requires experts to do so, and little support for fault tolerance

Today’s Paper

A High-Performance, Portable Implementation of the MPI
Message Passing Interface Standard,
William Gropp, Ewing Lusk, Nathan Doss, Anthony Skjellum, Journal of Parallel
Computing, Vol 22, Issue 6, Sep 1996
https://ucbrise.github.io/cs262a-spring2018/notes/MPI.pdf

MPI Chameleon

• Many MPI implementations existed. MPICH’s goal was
to create an implementation that was both

• Portable (hence the name CHameleon)
• Performant

Portability

MPICH is portable and leverages:
• High performance switches

• Supercomputers where different node communicate over switches
(Paragon, SP2, CM-5)

• Shared memory architectures
• Implement efficient message passing on these machines (SGI Onyx)

• Networks of workstations
• Ethernet connected distributed systems communicating using TCP/IP

Performance

• MPI standard already allowed to optimizations where usability
wasn’t restricted.

• MPICH comes with performance test suite (mpptest), it works
both on MPICH but also on top of other MPI implementations!

Performance & Portability tradeoff

• Why is there a tradeoff?
• Custom implementation for each hardware (+performance)
• Shared re-usable code across all hardware (+quick portability)

• Keep in mind that this was the era of super computers
• IBM SP2, Meiko CS-2, CM-5, NCube-2 (fast switching)
• Cray T3D, SGI Onyx, Challenge, Power Challenge, IBM SMP (shared

memory)
• How do you use all the advanced hardware features ASAP?

• This paper shows you how to have your cake and eat it too!

How to eat your cake and have it too?

• Small narrow Abstract Device Interface (ADI)
• Implemented on lots of different hardwares
• Highly tuned and performant
• Uses an even smaller (5 function) Channel Interface.

• Implement all of MPI on top of ADI and the Channel interface
• Porting to a new hardware requires porting ADI/Channel

implementations.
• All of the rest of the code is re-used (+portability)
• Super fast message passing for various hardwares (+performance)

MPICH Architecture

ADI functions

1. Message abstraction
2. Moving messages from MPICH to actual hardware
3. Managing mailboxes (messages received/sent)
4. Providing information about the environment

If some hardware doesn’t support the above, then emulate it.

Channel Interface

Implements transferring data or envelope (e.g. communicator,
length, tag) from one process to another
1. MPID_SendChannel to send a message
2. MPID_RecvFromChannel to receive a message
3. MPID_SendControl to send control (envelope) information
4. MPID_ControlMsgAvail checks if new ctrl msgs available
5. MPID_RecvAnyControl to receive any control message

Assuming that the hardware implements buffering. Tradeoff!

Eager vs Rendezvous

• Eager mode immediately sends data to receiver
• Deliver envelope and data immediately without checking with recv

• Rendezvous
• Deliver envelope, but check that receiver is ready to recv before

sending data

• Pros/Cons? Why needed?
• Buffer overflow, asynchrony!
• Speed vs robustness

How to use Channel Interface?

Shared memory
• Complete channel implementation with malloc, locks, mutex:es

Specialized
• Bypass shard memory portability, use hardware directly

available in SGI and HPI shared memory systems

Scalable Coherent Interface (SCI)
• Special implementation that uses the SCI standard

Competitive performance vs vendor specific
solutions

Summary

• Many super computer hardware implementations
• Difficult to port MPI to all of them and use all specialized

hardware
• Portability vs Performance tradeoff

• MPICH achieved both by carefully designing a kernel API (ADI)
• Many ADI implementations that leverage hardware (performance)
• All of MPICH build on ADI (portability)

Discussion
MPI OpenMP Ray Spark / MapReduce

Environment,
Assumptions

Supercomputers
Sophisticated
programmers
High performance
Hard to scale hardware

Single node, multiple
core, shared memory

Commodity clusters
Python programmers

Commodity clusters
Java programmers
Programmer productivity
Easier, faster to scale up
cluster

Computation
Model

Message passing
Lowest level

Shared memory
Low level

Data flow / task parallel
High level

Data flow / BSP
Highest level

Strengths Fastest asynchronous
code

Simplifies parallel
programming on multi-
cores

Very high performance
Very flexible

Very easy to use for parallel
data processing (seq. control)
Maximum fault tolerance

Weaknesses Fault tolerance
Easy to end up with
non-deterministic code
(if not using barriers),
more code

Pretty complex, need
to be careful about
race conditions

Need to understand
program structure for
best performance;
Inefficient fault-tolerance
for actors

Harder to implement irregular
computations (e.g., nested
parallelism, ignore stragglers);
Lower performance

