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Today’s lecture

Abadi et al., “TensorFlow: A System for Large-Scale Machine 
Learning”, OSDI 2016
(https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf)

Crankshaw et al., “Clipper: A Low-Latency Online Prediction 
Serving System”, NSDI 2017
(https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/crankshaw)



A short history of Neural Networks

1957: Perceptron (Frank Rosenblatt): one layer network neural 
network

1959: first neural network to solve a real world problem, i.e., 
eliminates echoes on phone lines (Widrow & Hoff) 

1988: Backpropagation (Rumelhart, Hinton, Williams): learning a 
multi-layered network



A short history of NNs
1989: ALVINN: autonomous driving car
using NN (CMU)

1989: (LeCun) Successful application to recognize handwritten 
ZIP codes  on mail using a “deep” network

2010s: near-human capabilities for image recognition, speech 
recognition, and language translation



Perceptron

Invented by Frank Rosenblatt (1957): simplified mathematical 
model of how the neurons in our brains operate

From: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/



Perceptron

Could implement AND, OR, but not XOR

From: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/



Hidden layers
Hidden layers can find features within the data and allow 
following layers to operate on those features

• Can implement XOR

From: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/



Learning: Backpropagation

From: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/



Context (circa 2015)

Deep learning already claiming big successes

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdfz

Imagenet
challenge 
classification 
task



Context (circa 2015)

Deep learning already claiming big successes

Number of developers/researchers exploding

A “zoo” of tools and libraries, some of questionable quality…



What is TensorFlow?

Open source library for numerical computation using data flow graphs

Developed by Google Brain Team to conduct machine learning research
• Based on DisBelief used internally at Google since 2011

“TensorFlow is an interface for expressing machine learning algorithms, 
and an implementation for executing such algorithms”



What is TensorFlow

Key idea: express a numeric computation as a graph

Graph nodes are operations with any number of inputs and 
outputs

Graph edges are tensors which flow between nodes



Programming model



Variables are stateful nodes which 
output their current value. State is 
retained across multiple executions 
of a graph

(mostly parameters)

Programming model



Programming model

Placeholders are nodes 
whose value is fed in at 
execution time

(inputs, labels, …)



Programming model

Mathematical operations:
MatMul: Multiply two matrices
Add: Add elementwise
ReLU: Activate with elementwise 
rectified linear function

ReLu(x) = 
0, x <= 0

x, x > 0



Code
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)



Running the graph

Deploy graph with a session: a 
binding to a particular execution 
context (e.g. CPU, GPU) CPU

GPU



End-to-end

So far:
• Built a graph using variables and placeholders
• Deploy the graph onto a session, i.e., execution environment

Next: train model
• Define loss function
• Compute gradients



Defining loss

Use placeholder for labels

Build loss node using labels and prediction

prediction = tf.nn.softmax(...)  #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)



Gradient computation: Backpropagation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) 
adds optimization operation to computation graph

TensorFlow graph nodes have attached gradient operations
Gradient with respect to parameters computed with 
backpropagation … automatically



Design Principles
Dataflow graphs of primitive operators

Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/ placeholders
2. Executes optimized version of program on set of available devices

Common abstraction for heterogeneous accelerators
1. Issue a kernel for execution
2. Allocate memory for inputs and outputs
3. Transfer buffers to and from host memory



Dynamic Flow Control

Problem: support ML algos that contain conditional and iterative 
control flow, e.g.  

• Recurrent Neural Networks (RNNs)
• Long-Short Term Memory (LSTM)

Solution: Add conditional (if statement) and iterative (while loop) 
programming constructs



TensorFlow high-level architecture
Core in C++

• Very low overhead
Different front ends for specifying/driving the computation 

• Python and C++ today, easy to add more

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf



TensorFlow architecture
Core in C++

• Very low overhead
Different front ends for specifying/driving the computation 

• Python and C++ today, easy to add more

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf



Detailed architecture

From: https://www.tensorflow.org/extend/architecture



Key components

Similar to MapReduce, Apache Hadoop, Apache Spark, …

From: https://www.tensorflow.org/extend/architecture



Client

From: https://www.tensorflow.org/extend/architecture



Master

From: https://www.tensorflow.org/extend/architecture



Computation graph partition

From: https://www.tensorflow.org/extend/architecture



Computation graph partition

From: https://www.tensorflow.org/extend/architecture



Execution

From: https://www.tensorflow.org/extend/architecture



Fault Tolerance

Assumptions: 
• Fine grain operations: “It is unlikely that tasks will fail so often that 

individual operations need fault tolerance” ;-)
• “Many learning algorithms do not require strong consistency”

Solution: user-level checkpointing (provides 2 ops)
• save(): writes one or more tensors to a checkpoint file
• restore(): reads one or more tensors from a checkpoint file



Discussion

Eager vs. deferred (lazy) execution

Transparent vs. user-level fault tolerance

Easy of use



Discussion
OpenMP/Cilk MPI MapReduce / Spark

Environment,
Assumptions

Single node, multiple 
core, shared memory

Supercomputers
Sophisticate programmers
High performance
Hard to scale hardware

Commodity clusters
Java programmers
Programmer productivity
Easier, faster to scale up cluster

Computation 
Model

Fine-grained task 
parallelism

Message passing Data flow / BSP

Strengths Simplifies parallel 
programming on multi-
cores

Can write very fast 
asynchronous code 

Fault tolerance

Weaknesses Still pretty complex, 
need to be careful 
about race conditions

Fault tolerance
Easy to end up with non-
deterministic code (if not 
using barriers)

Not as high performance as MPI


