
Making Information Flow Explicit in HiStar
Lecture 25, cs262a

Ion Stoica & Ali Ghodsi
UC Berkeley
April 23, 2018

Today’s Paper

Making Information Flow Explicit in HiStar,
Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières
https://people.csail.mit.edu/nickolai/papers/zeldovich-histar.pdf

Motivation

• Security vulnerabilities discovered in all kinds of apps
• Buffer overflows, format string issues, SQL injection, JS injection, temp file

races, integer overflows

• Security implemented at many different levels
• Web app implements its own logic, e.g. private Facebook posts
• Web servers implement access to different directories (.htaccess)
• OS implements its own ACLs, users, SU, …
• Hardware implements security, page tables, etc

• Bugs could exist anywhere, high level info can be leaked at any level!
• Meltdown leaking secret webapp info to another tenant

Main idea

• Small kernel (20k LoC) that controls information flow
• Don’t care about bugs in programs, make sure kernel isn’t buggy
• Control the information flow between potentially buggy programs
• Seen this idea before?

• Example
• Antivirus needs to scan all your files.
• It will see confidential information.
• If the AV code is malicious, it can communicate that code out over the Internet
• Kernel can simply now allow AV to send info anywhere

Military research in the 70s: Bell LaPadula

• Bell Lapadula
• Preserve confidentiality
• Subjects reading/writing Objects
• Subjects and Objects given a level, e.g. 1…4 (unclassified…top secret)

• No read up
• Subject at level i cannot read object at level j when i < j
• e.g. anonymous user reading root’s files (could leak /etc/passwd)

• No write down
• Subject at level i cannot write object at level j when i > j
• e.g. root writing to /user/anonymous (could leak secret info to anonymous)

Military research in the 70s: Biba

• Biba
• Preserve integrity / trustworthiness
• Who would you trust when receiving information?

• No write up
• Subject at level i cannot write object at level j when i < j
• Cannot authoritatively provide information to the upper levels

• No read down
• Subject at level i cannot read object at level j when i > j
• Cannot trust information from lower levels

Military Operating Systems

• Early OS:s implemented these ideas for file systems
• Policies on how top secret or classified information could be handled
• Reading and writing of files were protected
• How is it different from today’s file systems and their security?

• Application level concepts wouldn’t get these benefits
• OS doesn’t know about the app data
• HiStar exposes these security mechanisms to all apps
• Information Flow as basic OS mechanisms exposed to apps!
• Can implement Bell Lapadula and Biba in any app!

Information Flow Control (IFC)

• How should we track information flow?
• Associate a Label with the data
• Label follows data when it moves around
• Labels determine what you can do with the data

• e.g. SSN cannot be sent to any other computer

Example: Virus Scanner

• AV Scanner/Helper
• Read virus DB (signatures)
• Read all files
• Read/write tmp files
• Write to screen scan status

• Update daemon
• Read/write data to Internet to fetch latest virus DB
• Write to the virus DB to update it

• Can we protect files from corruption and leakage to outside?

Problems today

• Any process can get hacked

• Ways in leaks could happen?
• Send private data to Internet

• Prevent AV scanner to communicate with the Internet!

Problems today

• Any process can get hacked

• Ways in leaks could happen?
• Collude with Update DM
• Update DM needs Inet

• Prevent IPC too!

Problems today

• Any process can get hacked

• Ways in leaks could happen?
• AV write data to tmp files
• Update DM read tmp files

Problems today

• OS today have protection
• File systems with RBAC
• Process protection
• Memory protection

• What’s the problem?
• They ignore information flow
• Process P can read a secret file it has access to and write it to a

public file
• P does so either maliciously or by getting hacked, e.g. buffer overflow

• OS:s allow violating Bell Lapadula (no write down violated)

Information Flow to save us!
• Information Flow Solution

• Files & processes colored
• Label private stuff RED
• Label public stuff GREEN

• Enforce the arrows in the
chart

Kernels Objects

Six kernel objects
• Segment (data itself), array of bytes
• Thread
• Address space
• Device (network)
• Gate (IPC)*
• Container (“directory”), ever kernel object inside a container

All of Unix implemented on top of the 6 objects!

Information Flow: Labels & Categories

Every Kernel Object has a label
• Label tells you the security property of the information inside an object
• Since an object (e.g. Thread) might contain multiple types of information,

labels contain multiple Categories (think of a category as a color)
HiStar will only allow kernel objects to interact (information to flow) if two kernel
objects have “consistent” labels, i.e. implement Bell Lapadula/Biba

Segment
(Data Array) Thread Segment

(Data Array)

Antivirus example fixed with information flow

Great. But how do we get the AV result to the terminal screen?
• Process creating a category (color) owns it: it can declassify it and bypass

restrictions on that category.
• Small 140 line wrapper script extracts the AV output and prints it

?

AV explained in full

• Colors (categories) have levels,
own, 0 lowest, 1 default, 4 highest

• Bob marks all User Data as color
{bw0,br3,1}, i.e. color bobwrite=0,
bobread=3, all other colors = 1

• wrap creates and owns v (virus)
category, and owns read category (can downgrade and bypass v and r restrictions)

• wrap spawns virus scanner and helper with v level 3, /tmp with v level 3
• AV/helper cannot communicate with network, update daemon, because they

don’t have color v=3, it can write secrets to /tmp (but others cannot read it)
• AV/helper cannot corrupt files, because they don’t have bw permission
• All communication through trusted 140 line wrap

Unix vs IFC

How is this different from Unix?
We just have to be careful with
permissions, right?
• No, HiStar tracks information flow!
• Any information flow out of AV

gets tainted as special virus permission v3
• If you don’t have v3, AV scanner cannot leak to you. No matter how buggy AV/Helper

is, no matter how many buffer overflows or malicious code snippets it has!
• In Unix, AV scanner might by mistake leak information to a public file, screen, or

network

Conclusion

• Current OSs have too many aspects that need to be secured
• Sloppy code in many places lead to vulnerabilities

• HiStar offers a minimalistic kernel that exposes information flow
• Six objects in the kernel
• Each object has a label (categories/colors)
• Information flow controlled between objects
• All of Unix implemented on top of these few abstractions
• New applications can implement security using these abstractions

Zooming out

• Radically different approach to OSs.
• DAC vs MAC

• Attacks the problem with a small microkernel
• Everything else implemented on top of it
• All future applications benefit from the security of HiStar

• Great bold paper! Realistic implementation.
• Why didn’t it have more impact?

