Making Information Flow Explicit in HiStar
Lecture 25, cs262a

lon Stoica & Ali Ghodsi
UC Berkeley
April 23, 2018

Today’s Paper

Making Information Flow Explicit in HiStar,
Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazieres
https://people.csail.mit.edu/nickolai/papers/zeldovich-histar. pdf

Motivation

« Security vulnerabilities discovered in all kinds of apps

Buffer overflows, format string issues, SQL injection, JS injection, temp file
races, integer overflows

« Security implemented at many different levels
- Web app implements its own logic, e.g. private Facebook posts
Web servers implement access to different directories (.htaccess)
« OS implements its own ACLs, users, SU, ...
- Hardware implements security, page tables, etc

« Bugs could exist anywhere, high level info can be leaked at any level!
Meltdown leaking secret webapp info to another tenant

Main idea

- Small kernel (20k LoC) that controls information flow
Don’t care about bugs in programs, make sure kernel isn’t buggy
- Control the information flow between potentially buggy programs
- Seen this idea before?

« Example
Antivirus needs to scan all your files.
« [t will see confidential information.
- If the AV code is malicious, it can communicate that code out over the Internet
Kernel can simply now allow AV to send info anywhere

Military research in the 70s: Bell LaPadula

« Bell Lapadula
Preserve confidentiality
- Subjects reading/writing Objects
- Subjects and Objects given alevel, e.g. 1...4 (unclassified...top secret)

« No read up
Subject at level i cannot read object at level j when i < |
e.g. anonymous user reading root’s files (could leak /etc/passwd)

« No write down
- Subject at level i cannot write object at level jwhen i > j
e.g. root writing to /user/anonymous (could leak secret info to anonymous)

Military research in the 70s: Biba

- Biba
Preserve integrity / trustworthiness
- Who would you trust when receiving information”?

« No write up
- Subject at level i cannot write object at level jwhen i <j
- Cannot authoritatively provide information to the upper levels

« No read down
- Subject at level i cannot read object at level | when i > |
Cannot trust information from lower levels

Military Operating Systems

« Early OS:s implemented these ideas for file systems

Policies on how top secret or classified information could be handled
Reading and writing of files were protected
How is it different from today’s file systems and their security?

« Application level concepts wouldn’t get these benefits

OS doesn’t know about the app data

HiStar exposes these security mechanisms to all apps
Information Flow as basic OS mechanisms exposed to apps!
Can implement Bell Lapadula and Biba in any app!

Information Flow Control (IFC)

« How should we track information flow?
- Associate a Label with the data
- Label follows data when it moves around

« Labels determine what you can do with the data
* e.g. SSN cannot be sent to any other computer

Example: Virus Scanner

« AV Scanner/Helper
- Read virus DB (signatures)
« Read all files
« Read/write tmp files
« Write to screen scan status

« Update daemon

« Read/write data to Internet to fetch latest virus DB

AV

Helper

/tmp

User Data

Virus DB

« Write to the virus DB to update it

« (Can we protect files from corruption and leakage to outside?

Problems today
« Any process can get hacked

« Ways in leaks could happen?
Send private data to Internet

« Prevent AV scanner to communicate with the Internet!

Problems today

« Any process can get hacked

« Ways in leaks could happen?
Collude with Update DM
Update DM needs Inet

« Prevent IPC too!

Problems today

« Any process can get hacked / av AV User | [Update
Helper Scanner TTY Daemon
« Ways in leaks could happen? ‘ l
« AV write data to tmp files

- Update DM read tmp files /tmp | |UserData| | Virus DB Network |

Problems today

« OS today have protection o

« File systems with RBAC Helper

« Process protection
- Memory protection

« What’s the problem?

: . . /tmp
« They ignore information flow

User Data

Virus DB

l Network)

« Process P can read a secret file it has access to and write it to a

public file

« P does so either maliciously or by getting hacked, e.g. buffer overflow
« OS:s allow violating Bell Lapadula (no write down violated)

Information Flow to save us!

« Information Flow Solution
Files & processes colored
LLabel private stuff RED
LLabel public stuff GREEN

« Enforce the arrows in the
chart

Kernels Objects

Six kernel objects
« Segment (data itself), array of bytes
« Thread

Address space

Device (network)

Gate (IPC)*
- Container (“directory”), ever kernel object inside a container

All of Unix implemented on top of the 6 objects!

Information Flow: Labels & Categories

Every Kernel Object has a label

« Label tells you the security property of the information inside an object

« Since an object (e.g. Thread) might contain multiple types of information,
labels contain multiple Categories (think of a category as a color)

HiStar will only allow kernel objects to interact (information to flow) if two kernel
objects have “consistent” labels, i.e. implement Bell Lapadula/Biba

[]
Segment — Segment
(Data Array) UlreEt t (Data Array)

Antivirus example fixed with information flow

N
/tmp User Data Virus DB

Great. But how do we get the AV result to the terminal screen?

-« Process creating a category (color) owns X it: it can declassify it and bypass
restrictions on that category.

Small 140 line wrapper script extracts the AV output and prints it

AV explained in full /fpe
{brx,v3,1}

« Colors (categories) have levels, ;
% own, O lowest, 1 default, 4 highest

« Bob marks all User Data as color)

{b,,0,b,3,1}, i.e. color bobyte=0, Private /tmp| | User Data | | Virus DB C\letworlﬁ
bob,e.q=3, all other colors = 1 {b:3,v3,1} | |{bw0,b3,1} {1} {1}

« wrap creates andyk owns Vv (virus)
category, and owns read category (can downgrade and bypass v and r restrictions)
e wrap spawns virus scanner and helper with v level 3, /tmp with v level 3

« AV/helper cannot communicate with network, update daemon, because they
don’t have color v=3, it can write secrets to /tmp (but others cannot read it)

- AV/helper cannot corrupt files, because they don’t have b,, permission
« All communication through trusted 140 line wrap

Unix vs IFC

How is this different from Unix?
We just have to be careful with

permissions, right? H

« No, HiStar tracks information flow! |Private /tmp| | User Data | | Virus DB C\Ietwork]

- Any information flow out of AV ®:3,v3,1} | [{bw0b:3, 1 { iy
gets tainted as special virus permission v3

« If you don’t have v3, AV scanner cannot leak to you. No matter how buggy AV/Helper
IS, Nno matter how many buffer overflows or malicious code snippets it has!

« In Unix, AV scanner might by mistake leak information to a public file, screen, or
network

Conclusion

« Current OSs have too many aspects that need to be secured
« Sloppy code in many places lead to vulnerabilities

« HiStar offers a minimalistic kernel that exposes information flow
« Six objects in the kernel
« Each object has a label (categories/colors)
« Information flow controlled between objects
« All of Unix implemented on top of these few abstractions
« New applications can implement security using these abstractions

Zooming out

« Radically different approach to OSs.
« DAC vs MAC

« Attacks the problem with a small microkernel
« Everything else implemented on top of it
« All future applications benefit from the security of HiStar

« Great bold paper! Realistic implementation.
« Why didn’t it have more impact?

