Al-Systems
Big Ideas

Joseph E. Gonzalez
Co-director of the RISE Lab
jegonzal@cs.berkeley.edu
Logistics

- Go to website: https://ucbrise.github.io/cs294-ai-sys-fa19/
- Make sure you are on the course Piazza
 - Needed for announcements
- Signup for 3 discussion slots as different roles here:
 - https://tinyurl.com/aisysfa19signup
Logistics

- Limited to 45 spots due to maximum room occupancy
 - Unable to change lecture room
- Please do the fist few assignments
 - I will ask people to drop the class if they do not
- If you are planning to drop the class do it soon
- I plan to teach the class again next Fall
Recap
Design Complexity

Model

Training

Machine Learning

Accuracy

Parallelism

Network

Large-Scale Systems

Stragglers

Locality

Scheduling

Fault Tolerance
Managing Complexity Through Abstraction

Learning Algorithm
Common Patterns

Abstraction (API)

System
1. Parallelism
2. Data Locality
3. Network
4. Scheduling
5. Fault-tolerance
6. Stragglers

Identify common patterns
Define a narrow interface
Exploit limited abstraction to address system design challenges
PhD in Machine Learning from CMU 2013

Machine Learning

Abstractions

Scalable Systems

Graphical Model Inference

Vertex Program

GraphLab/GraphX System
Machine learning community has had an evolving focus on AI Systems

2009
- Fast Algorithms
 - ML for Systems

2019
- Distributed Algorithms
 - Machine Learning Frameworks
- Deep Learning Frameworks
 - RL for Systems
- Integration of Communities
Waves of AI Research & Connection to Systems

- **1950 to 1974: Birth of AI**
 - 1951 Marvin Minsky builds first neural network machine (SNARC)

- **1974 to 1980: First AI Winter**
 - Limited processing power and data

- **1980 to 1987: Second Wave of AI**
 - XCON (AI for Systems) for DEC → saves $40M annually

- **1987 to 1993: Second AI Winter**
 - Collapse of the AI Hardware Market

- **1993 to 2011: AI Goes Stealth Mode (aka Machine Learning)**
 - Confluence of ideas + compute + data → AI starts to work but we call it ML

- **2011 to 2019: Third Wave (AI Goes Deep)**
 - Compute + data + abstractions → Emergence of AI developers
New Forces Driving AI Revolution

Data

Compute

Abstractions

Benchmarks

Advances in Algorithms and Models

Stochastic Gradient Descent

TensorFlow

Convolutional Networks
Overview of the Reading
Required Reading

- **Perspective on Machine Learning**
 - *A Few Useful Things to Know About Machine Learning*
 - **Goal:** Provide some context on high-level ideas in ML

- **Perspective on Systems**
 - *Principles of Computer System Design*
 - **Goal:** Provide some context on high-level ideas in Systems

- **Views on the field of AI-Systems**
 - *SysML: The New Frontier of Machine Learning Systems*
 - *A Berkeley View of Systems Challenges for AI* (Mini PC)
 - **Goal:** Observe two recent framings of AI-Systems Research
A Few Useful Things to Know About Machine Learning

Pedro Domingos (CACM’12)
Context

- **When:** 2012
 - Right before explosion in deep learning

- **Why?**
 - Provides an overview of several of the **big ideas in ML**
 - Describes **essential ingredients** of machine learning
 - Outlines **key trade-offs**

- **Issues**
 - Pretty focused on classic problems
Big Ideas in ML Research

- Generalization (Underfitting/Overfitting)
 - What is being “learned”?

- Inductive Biases and Representations
 - What assumptions about domain enable efficient learning?

- Efficiency (Data and Computation)
 - How much data and time are needed to learn?

- Details: Objectives/Models/Algorithms
Machine Learning ≈ Function Approximation

Object Recognition

Label: Cat

Speech Recognition

“The cat in the hat”

Robotic Control

Machine Translation

El gato en el sombrero

The cat in the hat.
Supervised Machine Learning

- Given data containing the function inputs and outputs:

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
<td>Goal</td>
</tr>
<tr>
<td>X_1</td>
<td>Y_1 cat</td>
<td>$\theta^* = \arg \min_{\theta} \mathbb{E}D [L(f\theta(x), y)]$</td>
</tr>
<tr>
<td>X_2</td>
<td>Y_2 baby</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>X_n</td>
<td>Y_n baby</td>
<td></td>
</tr>
</tbody>
</table>

Model: $f_\theta(x) \rightarrow y$

Loss:

- Over future data:

Training (approximates the goal over training data):

$$\hat{\theta} = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(f_\theta(x_i), y_i)$$
Much of the research focus

\[f_\theta(x) \rightarrow y \]

- How do we make our functions sufficiently expressive
- **Inductive Bias:** capture domain knowledge and assumptions
- Easy to train \(\rightarrow\) differentiable and
Architectures for Different kinds of inputs

Convolutional Networks
- spatial reasoning tasks
 - The quick brown fox...

Recurrent Networks
- Sequential reasoning tasks
 - El gato en el sombrero
 - The cat in the hat.

Reinforcement Learning

Speech recognition
Architectures for Different kinds of inputs

Convolutional Networks

- Sequential reasoning tasks
- Spatial reasoning tasks
- Speech recognition

Recurrent Networks

- The quick brown fox...
- "The cat in the hat.
- El gato en el sombrero"

Reinforcement Learning

Graph Networks

- Operating on graph data
- Link Prediction
- Graph Embedding
The Bias Variance Tradeoff

- Fundamental trade-off in ML (classically)

- High Bias
 - Low Variance
 - Low bias learning techniques
 - Typically higher variance ...

- Low Bias
 - High Variance
 - Increasing data supports
 - Higher variance techniques

- Deep neural networks?
 - Focus on **training procedure** not models to control tradeoff
 - Initialization, SGD, Dropout, learning rates, early stopping, ...
Training and Validation

- **Error**
- **Time**

Training Error

Test* Error

If you are making modeling decisions based on this then it should be called validation error.

This is the thing we want to minimize.

This is what our training algorithm tries to minimize.
On Dataset Size and Learning

- Data is a resource! (e.g., like processors and memory)
 - Is having lots of processors a problem?

- You don’t have to use all the data!
 - Though using more data can often help

- More data often* dominates models and algorithms

*More data also enables more sophisticated.
Machine Learning is not Magic

- Requires data/interaction with signal

- Requires some assumptions about the learned process

THIS IS YOUR MACHINE LEARNING SYSTEM?
YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.
WHAT IF THE ANSWERS ARE WRONG?
JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

Place ball in one of the cups
Required Reading

- **Perspective on Machine Learning**
 - *A Few Useful Things to Know About Machine Learning*
 - **Goal:** Provide some context on high-level ideas in ML

- **Perspective on Systems**
 - *Principles of Computer System Design*
 - **Goal:** Provide some context on high-level ideas in Systems

- **Views on the field of AI-Systems**
 - *SysML: The New Frontier of Machine Learning Systems*
 - *A Berkeley View of Systems Challenges for AI* (Mini PC)
 - **Goal:** Observe two recent framings of AI-Systems Research
Principles of Computer System Design
(Chapter 1)
Context

- **What?**
 - MIT Systems (6.033) Course Textbook

- **Why?**
 - Really well written book
 - Provides an overview of several of the **big ideas in systems**
 - Discusses the **fundamental challenges** addressed in systems research

- **Related Reading**
 - “Hints for Computer System Design” Butler Lampson (Berkeley PhD, Turing Award Winner)
Big Ideas in Systems Research

- Managing Complexity
 - Abstraction, modularity, layering, and hierarchy

- Tradeoffs
 - What are the fundamental constraints?
 - How can you reach new points in the trade-off space?

- Problem Formulation
 - What are the requirements and assumptions?
Sources of Complexity in Systems

- **Emergent Properties**: properties of a system that are not evident in the individual components
 - Difficult to anticipate system behavior based on the behavior of the individual parts
 - A system is often greater than the sum of its parts.
Sources of Complexity in Systems

- **Propagation of Effects**: a small change in one part of the system can affect many other parts of the system.

 “There are no small changes in a large system”

- **Implications**
 - Difficult to reason about affects of changes
 - Slows down innovation
Sources of Complexity in Systems

- **Incommensurate Scaling**: not all parts of a system scale at the same rate.
- A 10x change in performance or scale → changes in design
- Solving a bigger problem can often require new designs

Examples?
- CPU speeds and memory bandwidth
Sources of Complexity in Systems

- **Tradeoffs**: Finding the right balance of competing objectives or requirements.

- **Examples?**
 - Bias and Variance from earlier.

- **Issue?**
 - Pushing the frontier
 - Moving through the tradeoff space
 - Finding the right balance
Sources of Complexity in Systems

- **Excessive Generality**
 - If it is good for everything, it is good for nothing.

- Examples?
Sources of Complexity in Systems

- Cascading and interacting requirements:
 - the quantity and interaction between requirements can disproportionately complicate system design.

- Principle of Escalating Complexity
 - Adding a requirement increases complexity out of proportion

- Identifying the **right (minimal) requirements** is often a key contribution in systems research
Coping with Complexity

- **Modularity and Abstraction:** dividing the system into smaller parts with well-defined boundaries
Abstraction

- Good abstraction design can have substantial impact
 - Often a key contribution in systems research

- Examples?
 - Theano → Caffe → TensorFlow → PyTorch

- What makes a good abstraction?
 - **Simplicity** → matches user’s expectations
 - **Expressiveness** → captures user’s intent

- What makes a bad abstraction?
 - **Leaky Abstractions**: requires understanding design decision of underlying system
Coping with Complexity

- **Layering and Hierarchy:** mechanisms for composing modules

- Examples?
Coping with Complexity

- **Iteration**: start simple and evaluate design decisions incrementally
 - Take small steps, measure often, be prepared to abandon designs, study failures

![Waterfall and Iterative Development Models](image)
Coping with Complexity

- **Adopt Sweeping Simplifications:** seek the minimal design and leverage simplifying assumptions.

- **Minimal Design:** when in doubt throw it out.
 - Good systems are defined by what they leave out.

- **Simplifying Assumptions:**
 - The choice of assumptions can be a contribution
 - **State** and **justify** your assumptions
Required Reading

- **Perspective on Machine Learning**
 - *A Few Useful Things to Know About Machine Learning*
 - **Goal**: Provide some context on high-level ideas in ML

- **Perspective on Systems**
 - *Principles of Computer System Design*
 - **Goal**: Provide some context on high-level ideas in Systems

- **Views on the field of AI-Systems**
 - *SysML: The New Frontier of Machine Learning Systems*
 - *A Berkeley View of Systems Challenges for AI (Mini PC)*
 - **Goal**: Observe two recent framings of AI-Systems Research
PC Meeting for
“A Berkeley View of Systems Challenges for AI”*

*Important Disclaimer: I am a co-author on this paper.
In Class PC Meeting Format (V.0)

Each paper has allocated ~30 Minutes for discussion

- **Neutral:** recap of the paper (neutral opinion) [5 Minutes]
- **Advocate:** Strengths of the paper [5 Minutes]
- **Critic:** Weaknesses of the paper [5 Minutes]
- Class will discuss *rebuttal* and *improvements* [10 Minutes]
- Brief in-class vote for acceptance into the AI-Sys prelim
Neutral Presenter
ABSTRACT
With the increasing commoditization of computer vision, speech recognition and machine translation systems and the widespread deployment of learning-based back-end technologies such as digital advertising and intelligent infrastructures, AI (Artificial Intelligence) has moved from research labs to production. These changes have been made possible by unprecedented levels of data and computation, by methodological advances in machine learning, by innovations in systems software and architectures, and by the broad accessibility of these technologies.

The next generation of AI systems promises to accelerate these developments and increasingly impact our lives via frequent interactions and making (often mission-critical) decisions on our behalf, often in highly personalized contexts. Realizing this promise, however, raises daunting challenges. In particular, we need AI systems that make timely and safe decisions in unpredictable environments, that are robust against sophisticated adversaries, and that can process ever increasing amounts of data across organizations and individuals without compromising confidentiality. These challenges will be exacerbated by the end of the Moore’s Law, which will constrain the amount of data these technologies can store and process. In this paper, we propose several open research directions in systems, architectures, and security that can address these challenges and help unlock AI’s potential to improve lives and society.

KEYWORDS
AI, Machine Learning, Systems, Security

1 INTRODUCTION
Conceived in the early 1960’s with the vision of emulating human

A Berkeley View of Systems Challenges for AI
Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael W. Mahoney, Randy Katz, Anthony D. Joseph, Michael Jordan, Joseph M. Hellerstein, Joseph Gonzalez, Ken Goldberg, Ali Ghodsi, David Culler, Pieter Abbeel

Is this view shared by everyone at Berkeley?
The **Neutral** Presenter will Summarize

- What is the **problem** being solved?
- **Related work**
- What was the **solution**? (Summary!)
- What **metrics** did they use to evaluate their solution?
 - What were the **Baselines** of comparison?
- What was the **key insight** or **enabling idea**?
- What are the **claimed technical contributions**?

Unfortunately, this is a View Paper so this guidance won’t quite work.
What is the Problem?

- **View Paper** → Frames but doesn’t solve problems

- **Provides context to the problem domain**
 - Credits recent success of AI on advances in systems, large datasets, and accessibility (open-source + cloud)
 - Future advances in AI require systems innovations
 - Discusses trends in technology and their implications on AI

- **Summary Description:** *This paper describes the key research directions at the intersection of AI and Systems.*
Summary of Problems

Which problems do you remember?

- Systems that learn and act continuously in dynamic env.
- Preserving privacy and security in AI systems
 - Learning across competing entities
 - Addressing corrupted or fraudulent data and queries
- End of Moore’s law and implications on AI hardware
 - AI hardware’s role in security
- Ensuring actions taken by AI systems can be explained
- Managing the compositions of models and software in complex systems
- Provisioning AI across the cloud and edge boundaries
Related Work

- **SysML: The New Frontier of Machine Learning Systems**
 - Required reading ...

- **“Who will Control the Swarm”**
 - Focuses more on real-time AI/Control in the cloud
 - Slightly more provocative position (cloud is central to swarms)

- **“Infrastructure for Usable Machine Learning: The Stanford DAWN Project”** (DAWN Project is like the RISE Lab)
 - Stronger emphasis on “usability”
 - Slightly sharper description of specific projects
 - Missed security …
Example Problem: Systems that learn and act continuously in a dynamic env.

Potential Requirements
- Need to update model or latent state in response to observations (state management)
- Need render predictions and learn interactively (latency)
- Need to reason about environment (modeling/simulation)

Proposed Solutions
- Focus on reinforcement learning
- Leverage dynamic parallelization and simulation

Metrics
- Learning: Accuracy/Reward + delay in responding to concept drift
- System: Action Latency, consistency, resource efficiency, …
Key Insights and/or Enabling Ideas

- Emphasis on **whole system** and not just **training**
 - Continuous training and inference
 - Focus on **composition** of models and traditional software

- Interaction between **security** and **AI**
 - **Hardware:** neural network accelerator → security accelerator
 - **Incentives:** enabling competing parties to learn together
 - **Provenance:** use system to track relationship between data and models → use for explanation
Technical Contributions

- Algorithms: none
- Theoretical Results: none
- Experimental Results: none

This is common with view/survey papers.

→ Doesn’t mean it won’t have impact.
The Advocate

This was an amazing paper ...
Advocate and Critic Will Discuss

- **Novelty and Impact**
 - Are the problem and solution novel and how will the solution affect future research?

- **Technical Qualities**
 - Are the problem framing and assumptions reasonable
 - Discuss merits of the technical contributions
 - Does the evaluation support claims and reveal limitations of the proposed approach?

- **Presentation**
 - Discuss the writing clarity and presentation of results
 - Positioning of related work
Novelty and Impact

What was novelty?

- **Context:** Framing the role of systems in AI today
 - Discussion around open-source and cloud

- **Proposed Problems:**
 - Emphasis on whole system support and composition of models
 - Interaction between security, hardware, and AI
 - Learning across competing organizations

- **Proposed Solutions:** (not the focus)
 - Interesting ideas around role of simulation, enclaves, and use of provenance

Impact:

- Defined research agenda for the RISE Lab
- Helped position NSF expedition proposal (successful)
Technical Qualities

- **Assumptions and Framing**
 - AI is the future and demands system innovation
 - Emphasis on RL and parallel computing
 - Already an explosion in Deep RL work and parallel systems for AI
 - Need to address training and inference
 - Early evidence of this need in content recommendation systems

- **Contributions**
 - Articulates significance of systems in AI and open challenges
 - Clearly frames a set of interesting well motivated research directions
 - Proposes first steps towards studying some of these problems

- **Evaluation:** None
Presentation

- Great use of summary text to highlight key points
- Attempts to separate challenges from solutions
The Critic

This was an amazing paper ...
Novelty and Impact

What was novelty?

- **Context:** A fair amount of the context is well established.

- **Problems:**
 - Many of the problems (e.g., lifelong learning, robust learning, adversarial inputs, secure data, online learning) are well established
 - Problems around RL were not well grounded in applications

- **Solutions:** (not the focus)
 - Many of the problems didn’t have clear directions for solutions or were sufficiently established to already have a large body of solutions

Impact:

- Has not yet been well cited.
Technical Qualities

- **Assumptions and Framing**
 - Some assumptions about requirements for AI systems (e.g., need for real-time simulation and online learning) are not justified
 - Many of the assumptions/framing statement are not particularly novel

- **Contributions**
 - While there are a few interesting directions outlined, much of this paper is a summary of several active research agendas

- **Evaluation:** None
Summary of Problems

Which problems are novel?

- Systems that learn and act continuously in dynamic env.
- Preserving privacy and security in AI systems
 - Learning across competing entities
 - Addressing corrupted or fraudulent data and queries
- End of Moore’s law and implications on AI hardware
 - AI hardware’s role in security
- Ensuring actions taken by AI systems can be explained
- Managing the compositions of models and software in complex systems
- Provisioning AI across the cloud and edge boundaries
Presentation

- This reads like a paper written by committee
 - ... it was

- **Lack of focus:** Too many research directions and ideas

- **Not enough “view”:**
 - Doesn’t really take a controversial stance
 - It looks more to the present than the future...

- **Writing is a bit disorganized**
 - Several sections repeat standard motivations about importance of ML
 - Lifelong learning is injected in a few random places without much discussion
Class Discussion
Rebuttal

- How could the authors address the critic’s concerns?
- How might the authors have improved the paper?
 - Technically
 - Presentation
Voting

- Would you recommend this paper to a colleague?

- Would you recommend this be part of future reading assignments?

- Should this be part of the AI-Systems Prelim Exam
 - Taken by graduate students to begin research in the field