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Objectives For Today

» Infroduce the machine learning lifecycle
» Challenges and Opportunities
» Science vs Engineering

» Review Key Concepts in Readings
» Hyperparameters
» Model Pipelines, Features, and Feature Engineering
» Warm Starting and Fine Tuning
» Feedback Loops, Retraining and Continuous Training

» Important context for papers and what to expect
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In Data Science, 80% of time spent prepare
data, 20% of time spent complain about
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Features and Feature Engineering

» Features: properties or characteristic of the input

» Click Prediction Example: ATIETE BIEPEIES Jor X

Information about
User and Content

Probability user will
click on the content

Features function extract

Simple Logistic Model:

d
("Perceptron)” fo(z) =0 (Z Or dx fE)) o)==
k=1

Useful features?

e.g., Recurrent NN

» User Features:
tput..
» age, gender, and click history oUbY

» Product Features: o e.g., Language Model
» Price, popularity, and description... Embedding

» Combined (Cross) features:
> 1(20 < age < 30, male, “xbox"” in desc)... Uerad] cocled faerures

* Technically the original perceptron used a 0/1 non-linearity but this is a common abuse of terminology.




Additional Notes on Features

> Feature Joins: combine multiple data source in a feature

» Feature Reuse: good features can aid in many tasks
» Example: product embeddings, user tags, ...

> Predictions as Features: predictions for one task (e.g., products in an
iImage) can be useful features for another (e.g., ad targeting)

> Feature Tables/Caches: features are often pre-computed and cached
» Requires tracking data and compute and feature versions

» Dynamic Features: features can offen be modified faster than models

» Useful for addressing fast changing dynamics (e.g., user preferences can be
encoded in click history features).

> Issue: resulting potential covariate shift can be problematic



Hyperparameters

» the parameters and more generally configuration details
that are not directly determined through training

» set by hand or funed using cross validation
» why not learn directly?

» Find the Hyperparameters:

Training Algorithm

Objective:
1 mn
arg min — ZL@ (fo(xi), vi) +®R(9) ul? %@u(t Y "‘@ L@ fo(wi), yi)) o
MArrHoctore: =l Architecture is
) sometimes treated as
separate from
hyperparameters Stochastic Gradient ———

Descent

Can be learned...
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Why is It @

to directly produce

trained models from model developmenti?

With just a trai

1. reftrain moc

2. track data and coo

ned model we are unable to

els with

new dato

e for debugging

3. capture dependencies for deployment
4. audit training for compliance (e.g., GDPR)
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Training Pipelines Capfture the
Code and Data Dependencies

» Description of how to frain the model from data sources

Training Pipelines
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Training
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Training models at scale
on live data

Retraining on new data

Automatically validate
prediction accuracy

Manage model versioning

Requires minimal expertise
IN machine learning
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Warm Start Training
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Warm Starts Train

] ) New training data arrives and
changes the loss surface.

2 ) Instead of starting over from
random weights start at
previous solution.

Stochastic
Gradient
Descen’r

INQ

Works well it data is changing slowly.
More challenging for model changes.

Wo_porome’rer model.

AN




Additional Thoughts on Warm Starfing

» A form of transfer learning across fime.

» Useful for situations where new data is arriving
» Data distribution is not changing rapidly (but changing...)

> lssues:

» Need a mechanism to set learning rates appropriately
> Typically start much smaller

» Could geft stuck in suboptimal solution for non-convex settings
» Though this is frue in general

» Catasirophic forgetting: if you only frain on new data may
degrade model on old data

» Can address by continuing to train on old data



Fine Tuning

» Using small learning rates 1o train pre-trained or partially
pre-frained model for a new dataset or prediction task.

» enables both faster training and improved accuracy

f@ X y Add new top layer(s) 2 e ———
old I I I < Features”
X <
¥

warm Warm $

Starting

Starfing $ > |
X Z X < X <
JOne ﬁ H1- H JFH
Training just Training all
Change in the the top layers

Small Change +
Additional Data

prediction task oner
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Context

How, What, & Whove

» How was the model or data createds

> What is the latest or best version?

» Who is responsib

"—
Partial T \‘
Solution M Em—

Training Pipelines

e¢ (blame...)

Track relationships between
1. Code versions €y git
2. Model & Data versions
3. People (versionse)




Composition

Models are being composed to solve new problems
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Models are being composed to solve new problems

Puppy
Detector

Ezi )—+‘Yes
Cuteness
/ \ Detector
2 K)‘ Cutel
Ball

\ Detector

‘Yes




Composition

Models are being composed to solve new problems
Detector helpful...
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Composition

Models are being composed to solve new problems
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Composition

Models are being composed to solve new problems
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Need to frack composition and
validate end-to-end accuracy.

Need unit and integration testing
for models.
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Inference

Prediction Service
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Incorporating Feedback

» Model updates: retrained as new data arrives

> Periodically: leverage batch processing and validation
» Model could be out-of-date for extended periods of time

» Continuously (online learning): most fresh model
» Needs validation, learning ratese ... complicated

> Feature updates: new data may change features

» Example: update click history for a users = new predictions
» Can be more robust than online learning

Feedback




Feedback Cycles

@
» Models can bias the data they collect SIZANEN, g S
> Example: content recommendation
» Future models may reflect earlier model bias N m ‘
> Exploration — Exploitation Trade-off !é e
» Exploration: observe diverse outcomes S

> Exploitation: leverage model to take =
predicted best action

> Solutions
» Randomization (e-greedy): occasionally ignore the model

> Bandit Algorithms/Thompson Sampling: optimally balance
exploration and exploitation =2 active area of research

s F 5mart or



Machine Learning Lifecycle
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We will cover each phase in more detail throughout the semester but this week we focus

on managing the entire process.



Objectives For Today

» Infroduce the machine learning lifecycle
» Challenges and Opportunities
» Science vs Engineering

» Review Key Concepts in Readings
» Hyperparameters
» Model Pipelines, Features, and Feature Engineering
» Warm Starting and Fine Tuning
» Feedback Loops, Retraining and Continuous Training

» Important Context for Papers and what to expect.



Reading for the Week

» Hidden Technical Debt in Machine Learning Systems
> NeurlPS’15, widely cited
» Provides an overview of the challenges from Google

» TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform

» KDD'17, now part of https://www.tensorflow.org/tfx (sort of)
» Googles solution to the challenges in the first paper

» Towards Unified Data and Lifecycle Management for Deep
Learning
» |ICDE'17, Video Demo
» An alternative database community solution



https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://ai.google/research/pubs/pub46484.pdf
https://www.tensorflow.org/tfx
https://arxiv.org/pdf/1611.06224.pdf
https://youtu.be/4JVehm5Ohg4

Related Systems Efforts

>

YV V. V Y V

Doing Machine Learning the Uber Way: Five Lessons From the

First Three Years of Michelangelo

Introducing FBLearner Flow: Facebook’s Al backbone

KubeFlow: Kubernetes Pipeline Orchestration Framework

DeepBird: Twitters ML Deployment Framework

Mlflow: A System 1o Accelerate the Machine Learning Lifecycle

Data Engineering Bullefin on the Machine Learning Lifecycle

> Full disclosure: | was the editor


https://towardsdatascience.com/doing-machine-learning-the-uber-way-five-lessons-from-the-first-three-years-of-michelangelo-da584a857cc2
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://www.kubeflow.org/
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://www.sysml.cc/doc/2019/demo_33.pdf
http://sites.computer.org/debull/A18dec/issue1.htm

Hidden Technical Delbt T e

Configuration Data Collection

IN Machine Learning B oo |

Feature P

m E .~ | |  Process
ys e S Aectel Management Tools

» Technical Debt: long term development and maintenance
costs incurred by expedient design decisions

> Key ldea: machine learning deployments often incur
substantial technical debt (compared to traditional software)

» Contribution: this paper characterizes the forms of technical
debt and alludes to possible compensating actions



: Integrated Frontend for Job Management, Maonitoring, Debugging, Data/Model/Evaluation Visualization
T F X L A Te n S O r F | OW_ B O S e d ( Shared Configuration Framework and Job Orchestration
. , .
Tuner |
P I _|_ ° S | M | ® Facus of this paper \ )
rO U C I O I I_ C O e O C I I I e . Data | Data 1| Data | Data ; _ Madel Evaluation Cons
| Ingestion ||| Analysis | | Transformation | Validation | | Trene | |  and Validation >erving Logging
[ ] - ol \ g\ / ’ \ ) L J
Le O r' . I | I g P | O -l-fo r' I ' Shared UtiRties for Garbage Collection, Data Access Controls
Pipelne Storage

» Describes solutions to many of the problem outlined in the
technical debt paper.

> Key ldea: Adapt best practices for software development to
address machine learning lifecycle

» empathetic to the reality of “machine learning developers”

» Contributions: actual system, inferesting ideas around dato
and model validation, schema enforcement, and meaningful
errors.



Towards Unified Data and :23;?,2,7;}":];,"“,31“:’“'] ‘_'i"”'"
Lifecycle Management e ] ||
for Deep LeOrning LomlDLVIRopom_og_ P‘u”

» Describes a system (ModelHub) for managing, querying, and
manipulating models and their related metadata.

> Key ldea(?): Model lifecycle management combines code and data
(parameters) - a natural APl would then combine version control
commands with SQL-like querying.

» Solution: Combines a git-like client APl with a SQL-like querying interface
to enable basic actions and more complex queries.

» Leverages optimizations to store model weights more efficiently.
» (necessary?)



What to think about when reading

» How does the work differentiate between engineering
and research challenges?

» What innovations in machine learning are needed?

» What are the key research challenges proposed and
addressed?

» Are the proposed solutions too opinionated
» Would they require top down mandates for adoption?
» Would you use these systems?
> Are they sufficiently flexible to support innovation
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