Al-Systems
Machine Learning

Lifecycle

Joseph E. Gonzalez
Co-director of the RISE Lab

legonzal@cs.berkeley.edu

Objectives For Today

» Infroduce the machine learning lifecycle
» Challenges and Opportunities
» Science vs Engineering

» Review Key Concepts in Readings
» Hyperparameters
» Model Pipelines, Features, and Feature Engineering
» Warm Starting and Fine Tuning
» Feedback Loops, Retraining and Continuous Training

» Important context for papers and what to expect

What is the
Machine Learning Lifecycle?

Model Development Training Inference
Prediction Service
"- Quer
- :__‘\.—) - = K)“ BZD’\ —y
=
'T-,-.-’- o ’ Prediction
raining Pipelines Models
—)
DL T Ii Validation ’ Feedback '

Data ‘ Data ‘ Data ‘
Scien’ris’r‘ Engineer‘ Engineer‘

Model Development - |
Identifying potential

Data Clering & sources of data
— Collection Visualization
I. Joining data from
— ! g multiple sources
- Training & « Feature Eng. & . L.
Validation Model Design Addressing missing

Offline o
Trining values and outliers

Data Helpl
@/eﬂ Plotting trends to

Sata identify anomalies

Scientist A

Model Development - |
Identifying potential

Data Clering & sources of data

— Collection Visualization

I. Joining data from
— ! g multiple sources
- Training & « Feature Eng. & . L.
Off Validation Model Design Addressing missing

1815 .

Training values and outliers

Happy ’ro
Data |
w L\/OIN Plotting trends to

DOTO Dom identify anomalies

Scenhs’r‘ Engmeer‘

Big Data Borat C >
Follow V2
e @BigDataBorat

In Data Science, 80% of time spent prepare
data, 20% of time spent complain about
need for prepare data.

6:47 PM - 26 Feb 2013

533 Retweets 330 Likes * @ (G ‘ @ ‘ @ @

QO 12 11 533) 330

Andre| Karpathy (Tesla Auto Pilot Team)

—

A
] —

: How many of you
XA 2 4

=22 have ever worked
B with real data?

Model Development - |
Identifying potential

Data Clering & sources of data

— Collection Visualization

I. Joining data from
— ! g multiple sources
- Training & « Feature Eng. & . L.
Off Validation Model Design Addressing missing

1815 .

Training values and outliers

Happy ’ro
Data |
w L\/OIN Plotting trends to

DOTO Dom identify anomalies

Scenhs’r‘ Engmeer‘

Model Development | suiding informative
features functions
Data Cleaning &
— Collection Visualization
I _. ‘ Designing new model
- architectures
Training & « Feature Eng. &
Validation Model Design
Offline
Training Tuning hyperparameters
Data
J\I was born}
or this! .
Data Q f Validating prediction
SCieﬂﬂSTA OCCUI’GCY

Features and Feature Engineering

» Features: properties or characteristic of the input

» Click Prediction Example: ATIETE BIEPEIES Jor X

Information about
User and Content

Probability user will
click on the content

Features function extract

Simple Logistic Model:

d
("Perceptron)” fo(z) =0 (Z Or dx fE)) o)==
k=1

Useful features?

e.g., Recurrent NN

» User Features:
tput..
» age, gender, and click history oUbY

» Product Features: o e.g., Language Model
» Price, popularity, and description... Embedding

» Combined (Cross) features:
> 1(20 < age < 30, male, “xbox"” in desc)... Uerad] cocled faerures

* Technically the original perceptron used a 0/1 non-linearity but this is a common abuse of terminology.

Additional Notes on Features

> Feature Joins: combine multiple data source in a feature

» Feature Reuse: good features can aid in many tasks
» Example: product embeddings, user tags, ...

> Predictions as Features: predictions for one task (e.g., products in an
iImage) can be useful features for another (e.g., ad targeting)

> Feature Tables/Caches: features are often pre-computed and cached
» Requires tracking data and compute and feature versions

» Dynamic Features: features can offen be modified faster than models

» Useful for addressing fast changing dynamics (e.g., user preferences can be
encoded in click history features).

> Issue: resulting potential covariate shift can be problematic

Hyperparameters

» the parameters and more generally configuration details
that are not directly determined through training

» set by hand or funed using cross validation
» why not learn directly?

» Find the Hyperparameters:

Training Algorithm

Objective:
1 mn
arg min — ZL@ (fo(xi), vi) +®R(9) ul? %@u(t Y "‘@ L@ fo(wi), yi)) o
MArrHoctore: =l Architecture is
) sometimes treated as
separate from
hyperparameters Stochastic Gradient ———

Descent

Can be learned...

Model Development Technologies

Data Cleaning &

Collection Visualization ‘ ’ | f R
t ‘ TensorFlow

ini Feature Eng. ¢
oron oo PYTHRCH Dl Keras
dmlic

- upyter @Xnet XGBoost
matpl=tlib O Caffe?

Pandas LS g Bvamry § QI' K DASK%
IVE

What is the output of
Model Development

Data Cleaning &
Collection Visualization

2

Training & « Feature Eng. &
Validation Model Design

—
>
-
Offline

Training
Data

Reports & Dashboards

I ||
||II il =

‘roduet, siste

(insights ...)

Trained Model

=C
0

Why is It @

to directly produce

trained models from model developmenti?

With just a trai

1. reftrain moc

2. track data and coo

ned model we are unable to

els with

new dato

e for debugging

3. capture dependencies for deployment
4. audit training for compliance (e.g., GDPR)

What is the output of
Model Development

Data Cleaning &
Collection Visualization

2

Training & « Feature Eng. &
Validation Model Design

—
>
-
Offline

Training
Data

Reports & Dashboards

I ||
||II il =

‘roduet, siste

(insights ...)

Trained Models

=C
0

What is the output of
Model Development

Data Cleaning &
A Collection Visualization

i
= $
- Training & - Feature Eng. &
Validation Model Design
Offline
Training
Data

Reports & Dashboards

't ill £
amac0e -
I THM™ I “a

(insights ...)

Training Pipelines
@
) ’
N

Training Pipelines Capfture the
Code and Data Dependencies

» Description of how to frain the model from data sources

Training Pipelines
—_—
__

Trained
Models

o >
Training
Data - m@u@mu@m
SOMtware | Trqining Pipelines > Code

Engineerin . .
gAnObg?, Trained Models = Binaries

What is the output of
Model Development

Data Cleaning &
A Collection Visualization

i
= $
- Training & - Feature Eng. &
Validation Model Design
Offline
Training
Data

Reports & Dashboards

't ill £
amac0e -
I THM™ I “a

(insights ...)

Training Pipelines
@
) ’
N

Model Development Training

Data Cleaning & @
<> Collection Visualization — ’
- - N,
T ‘ s @) mms)
0) () ()
- Training & « Feafure Eng. & . . . Trained
Validation Model Design Training Pipelines Models
Offline
Training — t
Data D'z']\;g I- Validation

Data Data

Scien’ris’rA Engineer‘

Training

T—»

mQm@m@m .
g L Trained
Training Pipelines Models

-t

Live <>
- I

Validation

Data

Engineer‘

Training models at scale
on live data

Retraining on new data

Automatically validate
prediction accuracy

Manage model versioning

Requires minimal expertise
IN machine learning

Training Technologies
A

Workflow Management:
o_’\ Apache

m@u@m@Pm .
. . Trained
Training Pipelines Models

a—
I- Validation
- Scalable Training:

Data

Engineer‘

Live
Data

APACHE dm/C

" SparK” XGBoost

Warm Start Training

Stochastic
Gradient

Descen’r
\

Warm Starts Train

]) New training data arrives and
changes the loss surface.

2) Instead of starting over from
random weights start at
previous solution.

Stochastic
Gradient
Descen’r

INQ

Works well it data is changing slowly.
More challenging for model changes.

Wo_porome’rer model.

AN

Additional Thoughts on Warm Starfing

» A form of transfer learning across fime.

» Useful for situations where new data is arriving
» Data distribution is not changing rapidly (but changing...)

> lssues:

» Need a mechanism to set learning rates appropriately
> Typically start much smaller

» Could geft stuck in suboptimal solution for non-convex settings
» Though this is frue in general

» Catasirophic forgetting: if you only frain on new data may
degrade model on old data

» Can address by continuing to train on old data

Fine Tuning

» Using small learning rates 1o train pre-trained or partially
pre-frained model for a new dataset or prediction task.

» enables both faster training and improved accuracy

f@ X y Add new top layer(s) 2 e ———
old I I I < Features”
X <
¥

warm Warm $

Starting

Starfing $ > |
X Z X < X <
JOne ﬁ H1- H JFH
Training just Training all
Change in the the top layers

Small Change +
Additional Data

prediction task oner

Open
Problems

Model Development

Data Cleaning &
— Collection Visualization

s = 1t 3

Offline
Training
Data

Training & « Feature Eng. &
Validation Model Design

Data ‘
Scienﬂs’r‘

Training

ol
@
m@u@mu@m

Trained
Models

— t
I- Validation

Data ‘
Engineer A

Training Pipelines

Live
Data

Confext & Composition

Context

How, What, & Whove

» How was the model or data createds

> What is the latest or best version?

» Who is responsib

"—
Partial T \‘
Solution M Em—

Training Pipelines

e¢ (blame...)

Track relationships between
1. Code versions €y git
2. Model & Data versions
3. People (versionse)

Composition

Models are being composed to solve new problems

Cuteness
Detector

=) K)‘ Cutel

Composition

Models are being composed to solve new problems

Puppy
Detector

Ezi)—+‘Yes
Cuteness
/ \ Detector
2 K)‘ Cutel
Ball

\ Detector

‘Yes

Composition

Models are being composed to solve new problems
Detector helpful...

Yes

— Cuteness

. / N Quenes W
3

gg ~ K}‘ Cutel

%k,\ Ball

\ Detector /

Yes

Puppy Wrong but

Composition

Models are being composed to solve new problems
Scien’ris’r‘

Yes

— Cuteness

. / N Quenes w
i~ - cue

\ Detector /

Yes

Puppy Wrong but
Detector

Data

helpful...

Composition

Models are being composed to solve new problems

Reasonable
Pu
Data De’rre)?/or Improvement
Saen’ns’r‘

/ No \ Cuteness
Detector

' 3
Ag) K)‘ Not Cute!
P 2 ¥e

% . Ball :

i L’ Degradation

Yes

Need to frack composition and
validate end-to-end accuracy.

Need unit and integration testing
for models.

Model Development Training

Data Cleaning & @
<> Collection Visualization — ’
- - N,
T ‘ s @) mms)
0) () ()
- Training & « Feafure Eng. & . . . Trained
Validation Model Design Training Pipelines Models
Offline
Training — t
Data D'z']\;g I- Validation

Data Data

Scien’ris’rA Engineer‘

Training

SO

0_\.—)
m@u@m@n

Training Pipelines

—)

Trained
Models

Inference

Prediction Service
- B:} - B:} N

— ;{’;"}Q

Live I- Validation ' Feedback '
Data

Data

Engineer‘

Data

Engineer‘

Query

I
Prediction

1
/1

End User
Application

Inference

Prediction Service

e ey
Logic Ee——
- E ’<> Prediction [———

End User
Application

Feedback . e .
_J Goal: make predictions In

~10ms under bursty load

Data Complicated by Deep Neural Networks
sngineer g 2> New and Systems

Inference Technologies

T
.

S Eeee—— |
Prediction —

I >—> ’ End User

Feedback
4 . ‘
Engineer

<

PredictionlO

Incorporating Feedback

» Model updates: retrained as new data arrives

> Periodically: leverage batch processing and validation
» Model could be out-of-date for extended periods of time

» Continuously (online learning): most fresh model
» Needs validation, learning ratese ... complicated

> Feature updates: new data may change features

» Example: update click history for a users = new predictions
» Can be more robust than online learning

Feedback

Feedback Cycles

@
» Models can bias the data they collect SIZANEN, g S
> Example: content recommendation
» Future models may reflect earlier model bias N m ‘
> Exploration — Exploitation Trade-off !é e
» Exploration: observe diverse outcomes S

> Exploitation: leverage model to take =
predicted best action

> Solutions
» Randomization (e-greedy): occasionally ignore the model

> Bandit Algorithms/Thompson Sampling: optimally balance
exploration and exploitation =2 active area of research

s F 5mart or

Machine Learning Lifecycle

Model Development Training

Inference

Py Prediction Service

Data Cleaning & —

- Collection Visualization o—‘< - B:)_- B:),\ Querx .-
I —— - r— VS - [

 Z —-m@m@n

Validation Model Design

Offline — t

Logic)
S _ p Prediction =——
g L Trained End User

Training & - Feature Eng. & Training Pipelines Models

Application

Training Live I Validation Feedback
Dcfo DOTO

Data ‘ Data

Data

Scien’ris’r‘ Engineer‘ Engineer‘

We will cover each phase in more detail throughout the semester but this week we focus

on managing the entire process.

Objectives For Today

» Infroduce the machine learning lifecycle
» Challenges and Opportunities
» Science vs Engineering

» Review Key Concepts in Readings
» Hyperparameters
» Model Pipelines, Features, and Feature Engineering
» Warm Starting and Fine Tuning
» Feedback Loops, Retraining and Continuous Training

» Important Context for Papers and what to expect.

Reading for the Week

» Hidden Technical Debt in Machine Learning Systems
> NeurlPS’15, widely cited
» Provides an overview of the challenges from Google

» TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform

» KDD'17, now part of https://www.tensorflow.org/tfx (sort of)
» Googles solution to the challenges in the first paper

» Towards Unified Data and Lifecycle Management for Deep
Learning
» |ICDE'17, Video Demo
» An alternative database community solution

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://ai.google/research/pubs/pub46484.pdf
https://www.tensorflow.org/tfx
https://arxiv.org/pdf/1611.06224.pdf
https://youtu.be/4JVehm5Ohg4

Related Systems Efforts

>

YV V. V Y V

Doing Machine Learning the Uber Way: Five Lessons From the

First Three Years of Michelangelo

Introducing FBLearner Flow: Facebook’s Al backbone

KubeFlow: Kubernetes Pipeline Orchestration Framework

DeepBird: Twitters ML Deployment Framework

Mlflow: A System 1o Accelerate the Machine Learning Lifecycle

Data Engineering Bullefin on the Machine Learning Lifecycle

> Full disclosure: | was the editor

https://towardsdatascience.com/doing-machine-learning-the-uber-way-five-lessons-from-the-first-three-years-of-michelangelo-da584a857cc2
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://www.kubeflow.org/
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://www.sysml.cc/doc/2019/demo_33.pdf
http://sites.computer.org/debull/A18dec/issue1.htm

Hidden Technical Delbt T e

Configuration Data Collection

IN Machine Learning B oo |

Feature P

m E .~ | | Process
ys e S Aectel Management Tools

» Technical Debt: long term development and maintenance
costs incurred by expedient design decisions

> Key ldea: machine learning deployments often incur
substantial technical debt (compared to traditional software)

» Contribution: this paper characterizes the forms of technical
debt and alludes to possible compensating actions

: Integrated Frontend for Job Management, Maonitoring, Debugging, Data/Model/Evaluation Visualization
T F X L A Te n S O r F | OW_ B O S e d (Shared Configuration Framework and Job Orchestration
. , .
Tuner |
P I _|_ ° S | M | ® Facus of this paper \)
rO U C I O I I_ C O e O C I I I e . Data | Data 1| Data | Data ; _ Madel Evaluation Cons
| Ingestion ||| Analysis | | Transformation | Validation | | Trene | | and Validation >erving Logging
[] - ol \ g\ / ’ \) L J
Le O r' . I | I g P | O -l-fo r' I ' Shared UtiRties for Garbage Collection, Data Access Controls
Pipelne Storage

» Describes solutions to many of the problem outlined in the
technical debt paper.

> Key ldea: Adapt best practices for software development to
address machine learning lifecycle

» empathetic to the reality of “machine learning developers”

» Contributions: actual system, inferesting ideas around dato
and model validation, schema enforcement, and meaningful
errors.

Towards Unified Data and :23;?,2,7;}":];,"“,31“:’“'] ‘_'i"”'"
Lifecycle Management e] ||
for Deep LeOrning LomlDLVIRopom_og_ P‘u”

» Describes a system (ModelHub) for managing, querying, and
manipulating models and their related metadata.

> Key ldea(?): Model lifecycle management combines code and data
(parameters) - a natural APl would then combine version control
commands with SQL-like querying.

» Solution: Combines a git-like client APl with a SQL-like querying interface
to enable basic actions and more complex queries.

» Leverages optimizations to store model weights more efficiently.
» (necessary?)

What to think about when reading

» How does the work differentiate between engineering
and research challenges?

» What innovations in machine learning are needed?

» What are the key research challenges proposed and
addressed?

» Are the proposed solutions too opinionated
» Would they require top down mandates for adoption?
» Would you use these systems?
> Are they sufficiently flexible to support innovation

BDlelal=)

