
Joseph E. Gonzalez
Co-director of the RISE Lab

jegonzal@cs.berkeley.edu

AI-Systems

Learning in a DBMS
(Database Management System)

Why are we starting with
Machine Learning in Database Systems?

Why do ML in a Database System
Ø Proximity to Data: minimize data movement

Ø Avoid data duplication à inconsistency

Ø Optimized for Data: database systems are optimized for efficient
access and manipulation of data.
Ø Data layout, buffer management, indexing, …
Ø Normalization can improve performance
Ø Schema information can help in modeling

Ø Predictions with Data: trained models often used with data in the
database.
Ø Incorporate predictions into SQL queries

Ø Security: control who and what models have access to what data
Ø leverage existing access control lists (ACLs)

Challenges of Learning in Database

Ø Abstractions: How does database expose data to alg.?
Ø Some algorithms are a natural fit for existing abstractions

Ø Access Patterns: How does algorithm access data?
Ø Sequentially, randomly, repeated scans

Ø Cost Models and Learning: How does database system
aid in optimizing learning algorithm execution?
Ø Exposing a broader set of trade-offs

Ø Data Types: Does data fit in the relational models?
Ø Images, video, models

Database Systems and ML

Ø Database Systems supporting “Learning”
Ø Data mining techniques heavily studied in DB community

Ø Apriori algorithm for frequent item set (VLDB’94), widely cited
Ø BIRCH large-scale clustering alg. (SIGMOD’96)

Ø Most database systems have support for analytics and ML
Ø Often specialized for particular techniques (e.g., SVM, decision tree,…)

Ø “Learning” for Database Systems (Later in Semester)
Ø Cardinality estimation using statistical models
Ø Dynamic programming for query optimization
Ø Recent excitement around RL + Deep Learning in databases

Objectives For Today
Ø Review (some) Concepts in Database Systems

Ø Relational Model
Ø Data Independence
Ø User defined aggregates
Ø Out of core computation and latencies

Ø Grace Hash Join Example

Ø This Weeks Reading
Ø Review big ideas in each paper
Ø Key technical details
Ø What to look for when reading

Big Ideas in Database Systems

Relational Database Systems

Ø Logically organize data in relations (tables)

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Sales relation:

Tuple (row)
Attribute (column)

Describes relationship:
Name purchased

Prod at Price.
How is data
physically
stored?

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Relational Data Abstraction

sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0
bid bname color

101 Interlake blue
102 Interlake red

104 Marine red
103 Clipper green

Relations (Tables)

A
b

st
ra

ct
io

n

Database Management System
Optimized Data Structures

B+Trees

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Optimized
Storage

Page
Header

Name Prod Price

Sue iPod $200.00

Joey Bike $333.99

Alice Car $999.00

Relational Data Abstraction

sid sname rating age
28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0
bid bname color

101 Interlake blue
102 Interlake red

104 Marine red
103 Clipper green

Relations (Tables)

A
b

st
ra

ct
io

n

Database Management System
Optimized Data Structures

B+Trees

Page 1 Page 2

Page 3 Page 4

Page 5 Page 6

Optimized
Storage

Page
Header

Physical Data Independence:
Database management systems hide how data is
stored from end user applications

à System can optimize storage and computation
without changing applications.

Big Idea in Data Structures
Data Systems &
Computer Science

Physical Data Independence

Ø Physical data layout/ordering is determined by system
Ø goal of maximizing performance

Ø Data Clustering
Ø Organize group of records to improve access efficiency
Ø Example: grouped/ordered by key

Ø Implications on Learning?
Ø Record ordering may depend on data values
Ø Arbitrary ordering ≠ Random ordering

Relational Database Systems

Ø Logically organize data in relations (tables)

Ø Structured Query Language (SQL) to define, manipulate
and compute on data.
Ø A common language used by many data systems
Ø Describes logical organization of data as well as computation

SQL is a Declarative Language
Ø Declarative: “Say what you want, not how to get it.”

Ø Declarative Example: I want a table with columns “x” and “y” constructed
from tables “A” and ”B” where the values in “y” are greater than 100.00.

Ø Imperative Example: For each record in table “A” find the corresponding
record in table “B” then drop the records where “y” is less than or equal to
100 then return the ”x” and “y” values.

Ø Advantages of declarative programming
Ø Enable the system to find the best way to achieve the result.
Ø More compact and easier to learn for non-programmers (Maybe?)

Ø Challenges of declarative programming
Ø System performance depends heavily on automatic optimization
Ø Limited language (not Turing complete) à need extensions

User Defined Aggregates
Ø Provide a low-level API for defining functions that

aggregate state across records in a table
Ø Much like fold in functional Programming

CREATE AGGREGATE agg_name (…){

initialize(state) à state

transition(state, row) à state

terminate(state) à result

merge(state, state) à state

}

Initialize the state for aggregation.

Advance the state for one row. Invoked repeatedly.

Compute final result.

(Optional) Merge intermediate states from parallel executions.

M
er

ge

Closed Relational Model and Learning

Ø All operations on tables produce tables…

Ø Training a model on a table produces?
Ø A row containing a model
Ø A table containing model weights
Ø An (infinite) table of predictions

Ø MauveDB: Supporting Model-based User Views in Database Systems

Ø Predictions as views
Ø Opportunity to index predictions
Ø Relational operations to manipulate predictions

http://db.csail.mit.edu/pubs/sigmod06-mauvedb.pdf

Out-of-core Computation

Ø Database systems are typically designed to operate on
databases larger than main memory (big data?)

Ø Algorithms must manage memory buffers and disk
Ø Page level memory buffers
Ø Sequential reads/writes to disk

Ø Understand relative costs of memory vs disk

Reasoning about Memory Hierarchy

L1 Cache

L2 Cache

Main Memory

Read 1MB from RAM (Seq.)

Read 1MB SSD (Seq.)

Read 1MB Disk (Seq.)

Latency Numbers Every Programmer Should Know --Jeff Dean

0.5 ns (few clock cycles)

7 ns

100 ns

250K ns

1M ns (1ms)

20M ns (20ms)

Database
Systems

Page
Buffers

Sequential
Read/Write

Reasoning about Memory Hierarchy

L1 Cache 1 second

L2 Cache 14 seconds

Main Memory 3.3 minutes

Read 1MB from RAM (Seq.) 5.8 days

Read 1MB SSD (Seq.) 23 days

Read 1MB Disk (Seq.) 1.3 years

Latency Numbers Every Programmer Should Know Human Readable

Example Out-of-Core Alg.:
Grace Hash Join

Grace Hash Join

Ø Requires equality predicate 𝜃:
Ø Works for Equi-Joins & Natural Joins

Ø Two Stages:
Ø Partition tuples from R and S by join key

Ø all tuples for a given key in same partition
Ø Build & Probe a separate hash table for each partition

Ø Assume partition of smaller rel. fits in memory
Ø Recurse if necessary…

R ⋈𝜃 S = 𝜎𝜃(R × S)

Div
ide

Con
que

r

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

B-1 Buffers

1 Buffer

Grace Hash Join: Partition

R S Partition 1

Partition 2

Post Hash Partitioning

Ø Observe how memory buffers are
directly managed
Ø Paged to disk when full …

Ø Each key is assigned to one partition
Ø e.g., green keys in partition1

Ø Sensitive to key Skew
Ø Fuchsia Key

Partition 1

Partition 2

Grace Hash Join: Build & Probe

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

Partition 1

Partition 2

Grace Hash Join: Build & Probe

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

Partition 1

Partition 2

Grace Hash Join: Build & Probe

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

Partition 1

Partition 2

Grace Hash Join: Build & Probe

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

Partition 1

Partition 2

Cost of Hash Join

Ø Partitioning phase: read+write both relations
Þ 2([R]+[S]) I/Os

Ø Matching phase: read both relations, forward output
Þ [R]+[S]

Ø Total cost of 2-pass hash join = 3([R]+[S])

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

R S B-1 Buffers

1 Buffer

Hash
Read Write Read ?

Partitioning Phase Build & Probe Phase

Cost of Hash Join

Memory Requirements?

Ø Build hash table on R with uniform partitioning
Þ Partitioning Phase divides R into (B-1) runs of size [R] / (B-1)
Þ Build Phase requires each [R] / (B-1) < (B-2)
Þ R < (B-1) (B-2) ≈ B2

Hash Table (B-2) Buffers

1 Buffer 1 Buffer

N
ew

 H
as

h
Fn

.

R S B-1 Buffers

1 Buffer

Hash
Read Write Read ?

Partitioning Phase Build & Probe Phase

This weeks reading

Reading for the Week

Ø Towards a Unified Architecture for in-RDBMS Analytics
Ø SIGMOD’12,
Ø Support generic learning within existing DBMS abstraction

Ø Materialization Optimizations for Feature Selection Workloads
Ø SIGMOD’14 (Best Paper)
Ø Optimize feature engineering workloads by exploiting redundancy

Ø Learning Generalized Linear Models Over Normalized Data
Ø SIGMOD’15
Ø Pushing learning through joins on normalized data

Note these are “older” papers but they cover big ideas

Two Chris Ré Papers.
One of the leaders
in DB+ML research

https://www.cs.stanford.edu/people/chrismre/papers/bismarck.pdf
https://cs.stanford.edu/people/chrismre/papers/mod539-zhang.pdf
http://pages.cs.wisc.edu/~jignesh/publ/GLMs-over-joins.pdf

Towards a Unified
Architecture for in-RDBMS
Analytics
Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré

Towards a Unified Architecture
for in-RDBMS Analytics

Ø Context: database system vendors building specialized in DB
implementations of ML techniques.
Ø Slow and costly to add support for new models/algorithms
Ø Many ML techniques leverage (convex) empirical risk minimization

Ø Key Idea: Many ML techniques can be reduced to
mathematical programming and there is a single solver (IGD)
that fits existing database system abstractions (UDAs)

Ø Contribution: this paper demonstrates the advantages of
leveraging existing optimized abstractions for learning

Challenges Addressed

Ø Mapping IGD to User Defined Aggregates (UDA)

Ø Affects of data ordering on convergence
Ø Data often stored in a pathological ordering (e.g., by label)

Ø Parallelization of Incremental Algorithm
Ø Adopt two standard solutions (model averaging, Hogwild!)

What is the difference between
Incremental vs Stochastic Gradient Descent?

Short Answer: Stochastic gradient descent is a form of incremental
gradient descent

Ø Incremental Gradient Descent
Ø Formally: taking single gradient steps for each element of a decomposable

loss
Ø Ordering of gradient terms is arbitrary

Ø Stochastic Gradient Descent
Ø Formally: sampling from the gradient of the empirical loss
Ø Sample data and compute gradient of loss on sample
Ø Today people often refer to incremental gradient methods as stochastic

gradient descent

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey

https://arxiv.org/pdf/1507.01030.pdf

Mapping IGD to User Defined
Aggregates (UDA)

Ø State contains:
Ø Model weights, k, …

Ø Invoked repeatedly
Ø Once per epoch
Ø Bismarck stored

procedure

Ø Termination cond.
Ø Similar to IGD

CREATE AGGREGATE bismarck (…){
initialize(args) à state:

randomly initialize model weights
transition(state, row) à state:

single gradient update

terminate(state) à result
return current model for epoch

merge(state, state) à state
used for parallel model averaging

}

w(k+1) w(k) � ↵krL
⇣
row, w(k)

⌘

<latexit sha1_base64="NIA22CcN4yLWAr8BVSyf3aq/WJg=">AAACPHicbVA9TxtBFNwjgRiHDxPKNKtYSEaAdedECiUiDUUKR4kByWesd+t39sp7e6fdd4B18g+jyY+go6KhIIrSps76sKIAGWml0cw8vX0TZUpa8v0bb+HFy8WlV5Xl6uuV1bX12sabY5vmRmBHpCo1pxFYVFJjhyQpPM0MQhIpPInGn2b+yTkaK1P9jSYZ9hIYahlLAeSkfu3rxVnRGO8E21MeKowJjEkveCk6aY+HoLIR9Mc81BAp4J/LVCMkvKTCRae74e7feGjkcETb/Vrdb/ol+HMSzEmdzdHu167DQSryBDUJBdZ2Az+jXgGGpFA4rYa5xQzEGIbYdVRDgrZXlMdP+ZZTBjxOjXuaeKn+O1FAYu0kiVwyARrZp95M/J/XzSne7xVSZzmhFg+L4lxxSvmsST6QBgWpiSMgjHR/5WIEBgS5vquuhODpyc/JcasZvG+2vnyoHxzO66iwt+wda7CAfWQH7Ii1WYcJdsVu2T374X337ryf3q+H6II3n9lkj+D9/gNjea0M</latexit>

Data Ordering Issues
Ø Data indexed/clustered on key feature or even the label

Ø Example: predicting customer churn à data is partitioned by
active customers and cancelled customers
Ø Why?

Ø May slow down convergence:

Sorted by label

Random Order

Data Order Solutions

Shuffle data
Ø on each epoch (pass through data): Closest to stochastic gradient alg.

Ø Expensive data movement and duplication

Ø Once: good compromise but requires data movement and dup.

Sample data
Ø single reservoir sample per pass

Ø Train on less data per scan à slower convergence

Ø multiplexed reservoir sampling
Ø Concurrently training on sample and raw data streams

Figure 6: Multiplexed Reservoir Sampling (MRS): The I/O
Worker reads example tuple e from the database, and uses
bu↵er A to do reservoir sampling. The dropped example d is
used for the gradient step, with updates to a shared model.
The Memory Worker iterates over bu↵er B, and performs
gradient steps on each example b in B concurrently.

Both of these functions are performed within the previously
discussed UDA framework. The Memory Worker takes a
bu↵er as input, and it loops over that bu↵er updating the
model using the gradient rule. After the I/O Worker finishes
one pass over the data, the bu↵ers are swapped. That is,
the I/O Worker begins filling the bu↵er that the Memory
Worker is using, while the Memory Worker works on the
bu↵er that has just been filled by the I/O Worker. The
Memory Worker is signaled by polling a common integer
indicating which bu↵er it should run over and whether it
should continue running. In Section 4, we show that even
with a bu↵er size that is an order of magnitude smaller than
the dataset, MRS can achieve better convergence rates than
both no-shu✏ing and subsampling.

4. EXPERIMENTS
We first show that our architecture, Bismarck, incurs lit-

tle overhead, in terms of both development e↵ort to add new
analytics tasks, and runtime overhead inside an RDBMS.We
then validate that Bismarck, implemented over two com-
mercial RDBMSes and PostgreSQL, provides competitive or
better performance than the native analytics tools o↵ered
by these RDBMSes on popular in-database analytics tasks.
Finally, we evaluate how the generic optimizations that we
described in Section 3 impact Bismarck’s performance.

Dataset Dimension # Examples Size

Forest 54 581k 77M
DBLife 41k 16k 2.7M

MovieLens 6k x 4k 1M 24M
CoNLL 7.4M 9K 20M

Classify300M 50 300M 135G
Matrix5B 706k x 706k 5B 190G
DBLP 600M 2.3M 7.2G

Table 1: Dataset Statistics. DBLife, CoNLL and DBLP are
in sparse-vector format. MovieLens and Matrix5B are in
sparse-matrix format.

Tasks and Datasets. We study 4 popular analytics tasks:
Logistic Regression (LR), Support Vector Machine classifi-
cation (SVM), Low-rank Matrix Factorization (LMF) and
Conditional Random Fields labeling (CRF). We use 4 pub-

licly available real-world datasets. For LR and SVM, we
use two datasets – one dense (Forest, a standard benchmark
dataset from the UCI repository) and one sparse (DBLife,
which classifies papers by research areas). We binarized
these datasets for the standard binary LR and SVM tasks.
For LMF, we use MovieLens, which is a movie recommen-
dation dataset, and for CRF, we use the CoNLL dataset,
which is for text chunking. We also perform a scalability
study with much larger datasets – two synthetic datasets
Classify300M (for LR and SVM) and Matrix5B (for LMF),
as well as DBLP (another real-world dataset) for CRF. The
relevant statistics for all datasets are presented in Table 1.

Experimental Setup. All experiments are run on an iden-
tical configuration: a dual Xeon X5650 CPUs (6 cores each
x 2 hyper-threading) machine with 128GB of RAM and a
1TB dedicated disk. The kernel is Linux 2.6.32-131. Each
reported runtime is the average of three warm-cache runs.
Completion time for gradient schemes here means achiev-
ing 0.1% tolerance in the objective function value, unless
specified otherwise.

4.1 Overhead of Our Architecture
We first validate that Bismarck incurs little development

overhead to add new analytics tasks. We then empirically
verify that the runtime overhead of the tasks in Bismarck
is low compared to a strawman aggregate.

Development Overhead. We implemented the 4 analytics
tasks in Bismarck over three RDBMSes (PostgreSQL, com-
mercial DBMS A and DBMS B). Bismarck enables rapid
addition of a new analytics task since a large fraction of
the code is shared across all the techniques implemented
(on a given RDBMS). For example, starting with an end-to-
end implementation of LR in Bismarck (in C, over Post-
greSQL), we need to modify fewer than two dozen lines of
code in order to add the SVM module.4 Similarly, we can
easily add in a more sophisticated task like LMF with only
five dozen new lines of code. We believe that this is possi-
ble because our unified architecture based on IGD abstracts
out the logic of the various tasks into a small number of
generic functions. This is in contrast to existing systems,
where there is usually a dedicated code stack for each task.

Runtime Overhead. We next verify that the tasks imple-
mented in Bismarck have low runtime overhead. To do
this, we compared our implementation to a strawman ag-
gregate that sees the same data, but computes no values.
We call this a NULL aggregate. We run three tasks – LR,
SVM and LMF in Bismarck over all the 3 RDBMSes, using
both the pure UDA infrastructure (shared-nothing) and the
shared-memory variant described in Section 3. We compare
the single-iteration runtime of each task against the NULL
aggregate for both implementations of Bismarck over the
same datasets. The results are presented in Tables 2 and 3.
We see that the overhead compared to the NULL aggregate

can be as low as 4.6%, and is rarely more than 2X runtime
for simple tasks like LR and SVM. The overhead is higher
for the more computation-intensive task LMF, but is still
less than 2.5X runtime of the NULL aggregate. We also see

4
Both our code and the data used in our experiments are available

at: http://research.cs.wisc.edu/hazy/victor/bismarck-download/

Parallelization

Ø Pure UDA Version: Primal (model) averaging
Ø leverage merge operation
Ø Appeals to result by Zinkevich* (requires iid data, convex loss, …)
Ø Doesn’t work as well in practice

Ø Shared Memory UDA*
Ø Consistent (Atomic IG): atomic compare and swap for updates

Ø Consistent but limited parallelism + bus traffic and branch misses
Ø No locks (Hogwild!™): write to memory and allow races

Ø Word writes within cache lines are atomic (either old or new version wins)

*Implications on distributed databases?

*Parallelized Stochastic Gradient Descent

http://martin.zinkevich.org/publications/nips2010.pdf

Hogwild! Algorithm
Shared Memory

Thread 1

Data
Partition

Thread 2

Data
Partition

Thread 3

Data
Partition

Hogwild! Algorithm
Shared Memory

Thread 1

Data
Partition

Thread 2

Data
Partition

Thread 3

Data
Partition

Write

Hogwild! Algorithm
Shared Memory

Thread 1

Data
Partition

Thread 2

Data
Partition

Thread 3

Data
Partition

Write

Hogwild! Algorithm
Shared Memory

Thread 1

Data
Partition

Thread 2

Data
Partition

Thread 3

Data
Partition

Write
Write

Hogwild! Algorithm
Shared Memory

Thread 1

Data
Partition

Thread 2

Data
Partition

Thread 3

Data
Partition

Inconsistent read

Individual entries are consistent.

No corrupted floats:

What to think about when reading?

Ø Implications in contemporary deep learning setting
Ø TF/Pytorch training in PostgreSQL?

Ø Implications on distributed training?

Ø Multiplexed Reservoir Sampling
Ø Relationship to Replay Buffers in RL
Ø Could we leverage idea to mitigate data load to GPU?

Materialization
Optimizations for Feature
Selection Workloads
Ce Zhang, Arun Kumar, Christopher Ré

Materialization Optimizations
for Feature Selection
Workloads
Ø Context: feature selection using R scripts dominate machine

learning workloads à substantial opportunity for reuse!

Ø Key Idea: Rich tradeoff space of what to materialize, how to
leverage sampling, and reuse computation

Ø Contribution: this paper demonstrates the advantages of
exploring the tradeoff space and describes ways in which
various operations interact.

Problem Formulation
Ø Solve multiple problems for

subsets of rows and columns of
original data

Ø Block consists of:
Ø Loss functions L
Ø Set of Sets of Rows / Columns
Ø Accuracies ϵ

Ø Explore optimizations targeted at
solving the related problems
Ø Materialization, Sampling,

Compute reuse

f1 f2 f3 f4 f5
r1
r2
r3
r4

Data

A = b =
b

x⇤
t = arg min

x2Rd

X

i2Rt

L ((A⇧Ftx)i, bi))
<latexit sha1_base64="7lEPYSxA10FVXcGzGhZQkae3dBE=">AAACT3icbVHPaxQxGM2sVdv1R1c9egkuQiuyzLQFvQhVQTz0sBa3LWy2IZPN7H40yQzJN7LLMP+hF735b3jxYCnNbOdQWx8kebz3fSTfS1po8BjHv6LOnbW79+6vb3QfPHz0eLP35OmRz0sn1UjmOncnqfBKg1UjBNTqpHBKmFSr4/TsY+Mff1POQ26/4rJQEyNmFjKQAoPEe9mC4+kr+o4y4WbMgOXVgjKwlBmB8zStDuvTaU2ZLw2voDEOOdb0gGmV4dbV/p6yIfDqU2Mstjm8pikH5mA2x+324L1+PIhXoLdJ0pI+aTHkvZ9smsvSKItSC+/HSVzgpBIOQWpVd1npVSHkmZipcaBWGOUn1SqPmr4MypRmuQvLIl2p1zsqYbxfmjRUNlP6m14j/s8bl5i9nVRgixKVlVcXZaWmmNMmXDoFpyTqZSBCOghvpXIunJAYvqAbQkhujnybHO0Mkt3Bzpe9/v6HNo518py8IFskIW/IPvlMhmREJPlOfpO/5Dz6Ef2JLjptaSdqyTPyDzoblwkns0k=</latexit>

Solve (within ϵ of optimum)

For each t:
Rt : set of rows

Ft : set of cols
<latexit sha1_base64="ebRwqznia74QaqwZLuLEX8+HFxQ=">AAACKXicbVDLSgMxFM34rPVVdekmWBRXZaYKiquiIC6r2FbolJJJ72hoZjImd9Qy9Hfc+CtuFBR164+YPha+DgQO55zLzT1BIoVB1313Jianpmdmc3P5+YXFpeXCymrdqFRzqHEllb4ImAEpYqihQAkXiQYWBRIaQfdo4DduQBuh4nPsJdCK2GUsQsEZWqldqJy1kR5sUf86ZR0f4Q4zA0hVSLW6NX3fzx9/C9AfCbvd9NuFoltyh6B/iTcmRTJGtV149juKpxHEyCUzpum5CbYyplFwCf28nxpIGO+yS2haGrMITCsbXtqnm1bp0FBp+2KkQ/X7RMYiY3pRYJMRwyvz2xuI/3nNFMP9VibiJEWI+WhRmEqKig5qox2hgaPsWcK4FvavlF8xzTjacvO2BO/3yX9JvVzydkrl091i5XBcR46skw2yTTyyRyrkhFRJjXByTx7JC3l1Hpwn5835GEUnnPHMGvkB5/MLPpqmDQ==</latexit>

Projection Matrix
1

1
0

1
00
0

Generalized
Linear Model

Optimization: Lazy vs Eager Materialization
Ø Lazy Materialization: construct each feature table as it is

needed from raw data

Ø Eager Materialization: precomputes the superset of
columns (features) and then projects away what is not
needed for each optimization task

Ø Tradeoffs
Ø Lazy à Higher computational cost, less storage overhead
Ø Eager à Less compute, greater storage overhead

Optimization: Sampling
Ø No Sampling: compute on full data

Ø May waste computation when identifying features

Ø Random Sampling: work on random subset of data (rows)
Ø Much faster but potentially less accurate conclusions

Ø Coreset Sampling: weighted sampling to improve
approximation of loss estimate
Ø Better captures outliers
Ø Requires multiple passes through data and rows >> columns

Optimization: Compute Reuse
Ø QR Factorization: reuse computation across multiple solves

of related linear systems
Ø Clever (established) idea
Ø Limited applicability squared loss + linear models + L2 regularization
Ø Example Regularized Least Squares:

Loss minimizer is the solution to:

(QR)⇧Fx = ⇧FA
T b

<latexit sha1_base64="bCaQb9btEjJKkKrgwu908Fk2SXI=">AAACD3icbZC7SgNBFIZn4y3G26qlzWBQYhN2o6CNEBXEMpHcIBvD7GQ2GTJ7YeasGELewMZXsbFQxNbWzrdxkmyhiT8MfPznHM6c340EV2BZ30ZqYXFpeSW9mllb39jcMrd3aiqMJWVVGopQNlyimOABqwIHwRqRZMR3Bau7/atxvX7PpOJhUIFBxFo+6Qbc45SAttrmoSOYB7kyvnUk7/bgCDsl3r7GD/g8oYu7CnbbZtbKWxPhebATyKJEpbb55XRCGvssACqIUk3biqA1JBI4FWyUcWLFIkL7pMuaGgPiM9UaTu4Z4QPtdLAXSv0CwBP398SQ+EoNfFd3+gR6arY2Nv+rNWPwzlpDHkQxsIBOF3mxwBDicTi4wyWjIAYaCJVc/xXTHpGEgo4wo0OwZ0+eh1ohbx/nC+WTbPEyiSON9tA+yiEbnaIiukElVEUUPaJn9IrejCfjxXg3PqatKSOZ2UV/ZHz+ANo2mf4=</latexit>

QTQ = I
<latexit sha1_base64="QejixJy2JQdzDn7s2z60FSOIm2M=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0ItQ9KK3Fvol7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut7Oyura+sZnbym/v7O7tFw4OmzpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo9up33qiSrNI1s04pr7AA8lCRrCx0kPtsY5q6Brd9wpFt+TOgJaJl5EiZKj2Cl/dfkQSQaUhHGvd8dzY+ClWhhFOJ/luommMyQgPaMdSiQXVfjo7eIJOrdJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xicx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZ5W0I3uLLy6RZLnnnpXLtoli5yeLIwTGcwBl4cAkVuIMqNICAgGd4hTdHOS/Ou/Mxb11xspkj+APn8wfDE48S</latexit>

and

(R⇧F)x = QT⇧FA
T b

<latexit sha1_base64="t3x7gGAXj5CqpCD/wuU/BX2D7zM=">AAACEXicbVDLSgNBEJyNrxhfUY9eBoMQL2E3CnoRooJ4TCQvyG7C7GQ2GTL7YKZXDCG/4MVf8eJBEa/evPk3TjY5aGJBQ1HVTXeXGwmuwDS/jdTS8srqWno9s7G5tb2T3d2rqzCWlNVoKELZdIliggesBhwEa0aSEd8VrOEOrid+455JxcOgCsOIOT7pBdzjlICWOtk8tgXzIH+H7TLv3NiS9/pwjB/wBa60q4mGL9tV7HayObNgJsCLxJqRHJqh3Ml+2d2Qxj4LgAqiVMsyI3BGRAKngo0zdqxYROiA9FhL04D4TDmj5KMxPtJKF3uh1BUATtTfEyPiKzX0Xd3pE+ireW8i/ue1YvDOnREPohhYQKeLvFhgCPEkHtzlklEQQ00IlVzfimmfSEJBh5jRIVjzLy+SerFgnRSKldNc6WoWRxodoEOURxY6QyV0i8qohih6RM/oFb0ZT8aL8W58TFtTxmxmH/2B8fkDRymaxA==</latexit>

=Solved O(d2) using backward substitution:

Solved
O(d3)

for any ⇧F
<latexit sha1_base64="nF/UwlNMPBbZb2raLKZTPk6ChD0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiIB4rmLbQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RTW1jc2t4rbpZ3dvf2D8uFRUyeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqzkdxu8d9crV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6DiZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/ZumOag==</latexit>

Reuse:�
ATA+ �

�
⇧Fx = ⇧FA

T b
<latexit sha1_base64="QxCiK1FBvIail8z8TVGkIsGDVmw=">AAACHHicbVDLSgMxFM3UV62vUZdugkWoCGWmFXQjtAriskJf0Kklk2ba0MyD5I5YSj/Ejb/ixoUiblwI/o1pOwttPRA4nHMuN/e4keAKLOvbSC0tr6yupdczG5tb2zvm7l5dhbGkrEZDEcqmSxQTPGA14CBYM5KM+K5gDXdwNfEb90wqHgZVGEas7ZNewD1OCWipYxYdwTzIle+quIxPsCP0aJdgR/JeH46xU+Gda/yALxI2ybkdM2vlrSnwIrETkkUJKh3z0+mGNPZZAFQQpVq2FUF7RCRwKtg448SKRYQOSI+1NA2Iz1R7ND1ujI+00sVeKPULAE/V3xMj4is19F2d9An01bw3Ef/zWjF45+0RD6IYWEBni7xYYAjxpCnc5ZJREENNCJVc/xXTPpGEgu4zo0uw509eJPVC3i7mC7en2dJlUkcaHaBDlEM2OkMldIMqqIYoekTP6BW9GU/Gi/FufMyiKSOZ2Ud/YHz9AECVnlk=</latexit>

QR =
�
ATA+ �

�
<latexit sha1_base64="7JBFrcI6k7RajMP7NcpJJwH5fNw=">AAACDHicbVDLSgMxFM34rPVVdekmWISKUGaqoBuh1Y3LVvqCdiyZTKYNzTxI7ghl6Ae48VfcuFDErR/gzr8xbWehrQcCJ+fcQ3KPEwmuwDS/jaXlldW19cxGdnNre2c3t7ffVGEsKWvQUISy7RDFBA9YAzgI1o4kI74jWMsZ3kz81gOTiodBHUYRs33SD7jHKQEt9XL52h2+wl3BPChU7uu4gk/1TeddgruS9wdwgvWUWTSnwIvESkkepaj2cl9dN6SxzwKggijVscwI7IRI4FSwcbYbKxYROiR91tE0ID5TdjJdZoyPteJiL5T6BICn6u9EQnylRr6jJ30CAzXvTcT/vE4M3qWd8CCKgQV09pAXCwwhnjSDXS4ZBTHShFDJ9V8xHRBJKOj+sroEa37lRdIsFa2zYql2ni9fp3Vk0CE6QgVkoQtURreoihqIokf0jF7Rm/FkvBjvxsdsdMlIMwfoD4zPH3Z5mLs=</latexit>

Optimization: ADMM + Warmstart
Ø ADMM Alg.: rewrite more general convex optimization

problems (e.g., LASSO, logistic regression, SVM) into
sequence of least squares problems (leverage QR)
Ø Clever (established) idea
Ø Enables use of warm-start

x(k+1) = argmin
x

⇢

2

���
���A⇧Fx�

⇣
z(k) � u(k)

⌘���
���
2

2

z(k+1) = argmin
z

NX

i=1

l(zi, bi) +
⇢

2

���
���A⇧Fx

(k+1) �
⇣
z � u(k)

⌘���
���
2

2

u(k+1) = u(k) +A⇧Fx
(k+1) � z(k+1)

<latexit sha1_base64="BzJ9i6D1ZEeGj79XbAxFS1/4+ao=">AAADJ3icjVJLbxMxEPYurxIeTeHYy4gIlKg02l2Q6IFIrZAQJxQk0laKk5XX8SZWvA/Z3irJdv8NF/4KFyRACI78E5zsKqJpDoxk+9M3npnPMw5SwZV2nN+WfePmrdt3du7W7t1/8HC3vvfoVCWZpKxHE5HI84AoJnjMepprwc5TyUgUCHYWTN8s/WcXTCqexB/1PGWDiIxjHnJKtKH8PaszG+bN6YHbKuAZdAATOcYRj/0Z4FASmmM5SYrcK7Bgob4sdzgB3OX+W5jBIayo5mKZxeQ4hKxEWPLxRLegPC+rw/eGHmBcW2wvugCsssjPeccthu9BNBc+fw6Bz1twsKEHtgta510L+19J2RVJVYgpuy31Wr5fbzhtZ2VwHbgVaKDKun79Gx4lNItYrKkgSvVdJ9WDnEjNqWBFDWeKpYROyZj1DYxJxNQgX825gKeGGUGYSLNiDSv234icRErNo8DcjIieqE3fktzm62c6PBrkPE4zzWJaFgozATqB5aeBEZeMajE3gFDJjVagE2LGoc3XqpkmuJtPvg5Ovbb7ou19eNk4fl21YwftoyeoiVz0Ch2jd6iLeohan6wv1nfrh/3Z/mr/tH+VV22rinmMrpj95y/Gpvew</latexit>

Repeatedly Solve
Least Squares Problem

(use QR technique)

O(n) one-dimensional
optimization problems

Extra hyperparameter

What consider when reading?

Ø Problem formulation and discussion around user interviews

Ø Discussion and framing of tradeoffs

Ø Would these techniques be applicable beyond feature
selection (e.g., hyperparameter search/model design)?

Learning Generalized
Linear Models Over
Normalized Data
Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel

Learning Generalized Linear
Models Over Normalized Data

Ø Context: Training data is often heavily denormalized resulting
in substantial redundancy.
Ø increases storage and data load time and computation

Ø Key Idea: Push learning through joins to eliminate redundant
loads and inner product calculations

Ø Contribution: this paper demonstrates the advantages of
pushing learning through joins
Ø Done using UDA abstractions

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

12 3 2 20

13 1 2 20

13 2 2 40

13 3 2 5

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

pname category price qty date day city state country

Corn Food 25 25 3/30/16 Wed. Omaha NE USA

Corn Food 25 8 3/31/16 Thu. Omaha NE USA

Corn Food 25 15 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 30 1/30/16 Wed. Omaha NE USA

Galaxy Phones 18 20 3/31/16 Thu. Omaha NE USA

Galaxy Phones 18 50 4/1/16 Fri. Omaha NE USA

Galaxy Phones 18 8 1/30/16 Wed. Omaha NE USA

Peanuts Food 2 45 3/31/16 Thu. Seoul Korea

Galaxy Phones 18 100 4/1/16 Fri. Seoul Korea

Context: Unnormalized Data

Ø Big table: many columns and rows
Ø Substantial redundancy à expensive to store

and access
Ø Make mistakes while updating

Ø Could we organize the data more
efficiently?

Multidimensional Data Model

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

Dimension
Tables

Ø Fact Table
Ø Minimizes redundant info
Ø Reduces data errors

Ø Dimensions
Ø Easy to manage and summarize
Ø Rename: Galaxy1 à Phablet

Ø Normalized Representation

Ø How do we do analysis?
Ø Joins!

The Star Schema

pid timeid locid sales
Sales Fact Table

locid city state country

pid pname category price timeid Date Day

Locations

Products Time

ß This looks like a star …

Multidimensional Data Model

pid timeid locid sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

12 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

Sales Fact Table
locid city state country

1 Omaha Nebraska USA

2 Seoul Korea

5 Richmond Virginia USA

pid pname category price

11 Corn Food 25

12 Galaxy 1 Phones 18

13 Peanuts Food 2

timeid Date Day

1 3/30/16 Wed.

2 3/31/16 Thu.

3 4/1/16 Fri.

Locations

Products

Time

Dimension
Tables

Ø Dimension tables contain
feature information

Idea: Compute/store
feature transformations for
dimension tables?

Factorize Algorithm
Ø Compute partial inner products with

features in R à HR

Ø Join HR with S
Ø Finish computing inner products
Ø Aggregate sum of loss F
Ø Aggregate gradient of loss for S weights

Ø Group join result on RID (foreign key)
Ø Aggregate gradients on S

Ø Join aggregated gradients with R
Ø Aggregate gradient of loss for R weights

SID Y XS RID RID XR

S R

Factorize Algorithm
Ø Compute partial inner products with

features in R à HR

Ø Join HR with S
Ø Finish computing inner products
Ø Aggregate sum of loss F
Ø Aggregate gradient of loss for S weights

Ø Group join result on RID (foreign key)
Ø Aggregate gradients on S

Ø Join aggregated gradients with R
Ø Aggregate gradient of loss for R weights

SID Y XS RID RID XR

S R

Factorize Algorithm
Ø Compute partial inner products with

features in R à HR

Ø Join HR with S
Ø Finish computing inner products
Ø Aggregate sum of loss F
Ø Aggregate gradient of loss for S weights

Ø Group join result on RID (foreign key)
Ø Aggregate gradients on S

Ø Join aggregated gradients with R
Ø Aggregate gradient of loss for R weights

SID Y XS RID RID XR

S R

Factorize Algorithm
Ø Compute partial inner products with

features in R à HR

Ø Join HR with S
Ø Finish computing inner products
Ø Aggregate sum of loss F
Ø Aggregate gradient of loss for S weights

Ø Group join result on RID (foreign key)
Ø Aggregate gradients on S

Ø Join aggregated gradients with R
Ø Aggregate gradient of loss for R weights

SID Y XS RID RID XR

S R

Thoughts For Reading

Ø Emphasis on cost model
Ø Can you work through the cost calculations?

Ø What would happen if features depended on cross terms
between tables?

Ø Would these techniques be applicable beyond feature
selection (e.g., hyperparameter search/model design)?
Ø Are there scenarios where this optimization would work?

Done!

