AI-Systems

Learning in a DBMS
(Database Management System)

Joseph E. Gonzalez
Co-director of the RISE Lab
jegonzal@cs.berkeley.edu
Why are we starting with Machine Learning in Database Systems?
Why do ML in a Database System

- **Proximity to Data**: minimize data movement
 - Avoid data duplication → inconsistency

- **Optimized for Data**: database systems are optimized for efficient access and manipulation of data.
 - Data layout, buffer management, indexing, ...
 - Normalization can improve performance
 - Schema information can help in modeling

- **Predictions with Data**: trained models often used with data in the database.
 - Incorporate predictions into SQL queries

- **Security**: control who and what models have access to what data
 - Leverage existing access control lists (ACLs)
Challenges of Learning in Database

- **Abstractions:** How does database expose data to alg.?
 - Some algorithms are a natural fit for existing abstractions

- **Access Patterns:** How does algorithm access data?
 - Sequentially, randomly, repeated scans

- **Cost Models and Learning:** How does database system aid in optimizing learning algorithm execution?
 - Exposing a broader set of trade-offs

- **Data Types:** Does data fit in the relational models?
 - Images, video, models
Database Systems and ML

- Database Systems supporting “Learning”
 - Data mining techniques heavily studied in DB community
 - Apriori algorithm for frequent item set (VLDB’94), widely cited
 - BIRCH large-scale clustering alg. (SIGMOD’96)
 - Most database systems have support for analytics and ML
 - Often specialized for particular techniques (e.g., SVM, decision tree,…)

- “Learning” for Database Systems (Later in Semester)
 - Cardinality estimation using statistical models
 - Dynamic programming for query optimization
 - Recent excitement around RL + Deep Learning in databases
Objectives For Today

- Review (some) Concepts in Database Systems
 - Relational Model
 - Data Independence
 - User defined aggregates
 - Out of core computation and latencies
 - Grace Hash Join Example

- This Weeks Reading
 - Review big ideas in each paper
 - Key technical details
 - What to look for when reading
Big Ideas in Database Systems
Relational Database Systems

- Logically organize data in relations (tables)

Sales relation:

<table>
<thead>
<tr>
<th>Name</th>
<th>Prod</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>iPod</td>
<td>$200.00</td>
</tr>
<tr>
<td>Joey</td>
<td>Bike</td>
<td>$333.99</td>
</tr>
<tr>
<td>Alice</td>
<td>Car</td>
<td>$999.00</td>
</tr>
</tbody>
</table>

Describes relationship: **Name purchased Prod at Price.**

How is data physically stored?
Relational Data Abstraction

Relations (Tables)

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Prod</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>iPod</td>
<td></td>
<td>$200.00</td>
</tr>
<tr>
<td>Joey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alice</td>
<td>sid</td>
<td>sname</td>
<td>rating</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>bname</th>
<th>color</th>
<th>bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Interlake</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Interlake</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Marine</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Clipper</td>
<td>green</td>
<td></td>
</tr>
</tbody>
</table>

Database Management System

Optimized Data Structures

B+Trees

Optimized Storage

Page Header
Physical Data Independence:
Database management systems **hide how data is stored** from end user applications.

→ System can **optimize storage** and **computation** without changing applications.

Big Idea in Data Structures
Data Systems & Computer Science
Physical **Data Independence**

- Physical data layout/ordering is **determined by system**
 - goal of maximizing performance

- **Data Clustering**
 - Organize group of records to improve access efficiency
 - Example: grouped/ordered by key

- **Implications on Learning?**
 - Record ordering may depend on data values
 - Arbitrary ordering ≠ Random ordering
Relational Database Systems

- Logically organize data in relations (tables)

- Structured Query Language (SQL) to define, manipulate and compute on data.
 - A common language used by many data systems
 - Describes logical organization of data as well as computation
SQL is a **Declarative** Language

- **Declarative**: “Say what you want, not how to get it.”
 - **Declarative Example**: I want a table with columns “x” and “y” constructed from tables “A” and “B” where the values in “y” are greater than 100.00.
 - **Imperative Example**: For each record in table “A” find the corresponding record in table “B” then drop the records where “y” is less than or equal to 100 then return the “x” and “y” values.

- **Advantages** of declarative programming
 - Enable the system to find the best way to achieve the result.
 - More compact and easier to learn for non-programmers (Maybe?)

- **Challenges** of declarative programming
 - System performance depends heavily on automatic optimization
 - Limited language (not Turing complete) → need extensions
User Defined Aggregates

- Provide a **low-level API** for defining functions that aggregate state across records in a table
 - Much like **fold** in functional Programming

```sql
CREATE AGGREGATE agg_name (...){
    # Initialize the state for aggregation.
    initialize(state) → state
    # Advance the state for one row. Invoked repeatedly.
    transition(state, row) → state
    # Compute final result.
    terminate(state) → result
    # (Optional) Merge intermediate states from parallel executions.
    merge(state, state) → state
}
```
Closed Relational Model and Learning

- All operations on tables produce tables...

- Training a model on a table produces?
 - A row containing a model
 - A table containing model weights
 - An (infinite) table of predictions
 - MauveDB: Supporting Model-based User Views in Database Systems

- Predictions as views
 - Opportunity to **index** predictions
 - Relational operations to manipulate predictions
Out-of-core Computation

- Database systems are typically designed to operate on databases larger than main memory (big data?)
- Algorithms must manage memory buffers and disk
 - Page level memory buffers
 - Sequential reads/writes to disk
- Understand relative costs of memory vs disk
Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know -- Jeff Dean

L1 Cache: 0.5 ns (few clock cycles)
L2 Cache: 7 ns
Main Memory: 100 ns
Read 1MB from RAM (Seq.): 250K ns
Read 1MB SSD (Seq.): 1M ns (1ms)
Read 1MB Disk (Seq.): 20M ns (20ms)
Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know

<table>
<thead>
<tr>
<th>Memory Level</th>
<th>Human Readable</th>
<th>Database Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Cache</td>
<td>1 second</td>
<td>Page Buffers</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>14 seconds</td>
<td></td>
</tr>
<tr>
<td>Main Memory</td>
<td>3.3 minutes</td>
<td></td>
</tr>
<tr>
<td>Read 1MB from RAM (Seq.)</td>
<td>5.8 days</td>
<td>Sequential Read/Write</td>
</tr>
<tr>
<td>Read 1MB SSD (Seq.)</td>
<td>23 days</td>
<td></td>
</tr>
<tr>
<td>Read 1MB Disk (Seq.)</td>
<td>1.3 years</td>
<td></td>
</tr>
</tbody>
</table>
Example Out-of-Core Alg.: Grace Hash Join
Grace Hash Join

\[R \bowtie_{\theta} S = \sigma_{\theta}(R \times S) \]

- Requires equality predicate \(\theta \):
 - Works for **Equi-Joins** & **Natural Joins**

- Two Stages:
 - **Partition** tuples from \(R \) and \(S \) by join key
 - all tuples for a given key in same partition
 - **Build & Probe** a separate hash table for each partition
 - Assume **partition** of smaller rel. fits in memory
 - Recurse if necessary...
Grace Hash Join: **Partition**
Grace Hash Join: **Partition**
Grace Hash Join: **Partition**

R

S

1 Buffer

B-1 Buffers

Partition 1

Partition 2
Grace Hash Join: **Partition**

![Diagram](image-url)
Grace Hash Join: \textit{Partition}

- \textbf{R}
- \textbf{S}

- 1 Buffer
- B-1 Buffers
- Partition 1
- Partition 2
Grace Hash Join: **Partition**
Grace Hash Join: \textit{Partition}

R \quad S

\begin{align*}
\text{Partition 1} & \quad \text{Partition 2} \\
1 \text{ Buffer} & \quad \text{B-1 Buffers}
\end{align*}
Grace Hash Join: **Partition**

R S

1 Buffer

B-1 Buffers

Partition 1

Partition 2
Grace Hash Join: **Partition**
Grace Hash Join: \textit{Partition}

\begin{itemize}
\item \textbf{R}
\item \textbf{S}
\end{itemize}

\begin{itemize}
\item 1 Buffer
\item B-1 Buffers
\item Partition 1
\item Partition 2
\end{itemize}
Grace Hash Join: \textbf{Partition}
Grace Hash Join: \textit{Partition}

\textbf{R} \quad \textbf{S}

1 Buffer

B-1 Buffers

Partition 1

Partition 2
Grace Hash Join: **Partition**

- **R**
- **S**

1 Buffer

B-1 Buffers

Partition 1

Partition 2
Post Hash Partitioning

- Observe how memory buffers are directly managed
 - Paged to disk when full ...

- Each key is assigned to one partition
 - e.g., green keys in partition 1

- Sensitive to key Skew
 - Fuchsia Key
Grace Hash Join: **Build & Probe**
Grace Hash Join: *Build & Probe*
Grace Hash Join: **Build & Probe**
Grace Hash Join: **Build & Probe**

Partition 1

Partition 2

Hash Table (B-2) Buffers

New Hash Fn.
Cost of Hash Join

- **Partitioning phase**: read+write both relations
 \[2(\[R\]+\[S\]) \] I/Os

- **Matching phase**: read both relations, forward output
 \[\[R\]+\[S\] \]

- **Total cost of 2-pass hash join**: \[3(\[R\]+\[S\]) \]
Cost of Hash Join

Memory Requirements?

- Build hash table on \(R \) with uniform partitioning
 - \(\Rightarrow \) **Partitioning Phase** divides \(R \) into \((B-1)\) runs of size \([R]/(B-1)\)
 - \(\Rightarrow \) **Build Phase** requires each \([R]/(B-1) < (B-2)\)
 - \(\Rightarrow \) \(R < (B-1) (B-2) \approx B^2 \)
This weeks reading
Reading for the Week

- **Towards a Unified Architecture for in-RDBMS Analytics**
 - SIGMOD’12,
 - Support *generic learning* within existing DBMS abstraction

- **Materialization Optimizations for Feature Selection Workloads**
 - SIGMOD’14 (Best Paper)
 - Optimize *feature engineering* workloads by exploiting *redundancy*

- **Learning Generalized Linear Models Over Normalized Data**
 - SIGMOD’15
 - Pushing learning through *joins* on *normalized data*

Note these are “older” papers but they cover big ideas.

Two Chris Ré Papers. One of the leaders in DB+ML research.
Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré
Towards a Unified Architecture for in-RDBMS Analytics

- **Context:** database system vendors building specialized in DB implementations of ML techniques.
 - Slow and costly to add support for new models/algorithms
 - Many ML techniques leverage (convex) empirical risk minimization

- **Key Idea:** Many ML techniques can be reduced to mathematical programming and there is a single solver (IGD) that fits existing database system abstractions (UDAs)

- **Contribution:** this paper demonstrates the advantages of leveraging existing optimized abstractions for learning
Challenges Addressed

- Mapping IGD to User Defined Aggregates (UDA)
- Affects of data ordering on convergence
 - Data often stored in a pathological ordering (e.g., by label)
- Parallelization of Incremental Algorithm
 - Adopt two standard solutions (model averaging, Hogwild!)
What is the difference between **Incremental** vs **Stochastic** Gradient Descent?

Short Answer: Stochastic gradient descent is a form of incremental gradient descent

- **Incremental Gradient Descent**
 - **Formally:** taking single gradient steps for each element of a decomposable loss
 - Ordering of gradient terms is arbitrary

- **Stochastic Gradient Descent**
 - **Formally:** sampling from the gradient of the empirical loss
 - Sample data and compute gradient of loss on sample
 - Today people often refer to incremental gradient methods as **stochastic gradient descent**
Mapping IGD to User Defined Aggregates (UDA)

CREATE AGGREGATE bismarck (...)

initialize(args) → state:
 randomly initialize model weights

transition(state, row) → state:
 single gradient update
 \[w^{(k+1)} \leftarrow w^{(k)} - \alpha_k \nabla L \left(\text{row}, w^{(k)} \right) \]

terminate(state) → result
 return current model for epoch

merge(state, state) → state
 used for parallel model averaging

- State contains:
 - Model weights, k, ...
- Invoked repeatedly
 - Once per epoch
 - Bismarck stored procedure
- Termination cond.
 - Similar to IGD
Data Ordering Issues

- Data indexed/clustersed on key feature or even the label
 - **Example:** predicting customer churn \(\rightarrow\) data is partitioned by active customers and cancelled customers
 - **Why?**

- May slow down convergence:

![Diagram showing the difference between random and clustered orderings.](image)
Data Order Solutions

Shuffle data

- **on each epoch** (pass through data): Closest to stochastic gradient alg.
 - Expensive data movement and duplication
- **Once**: good compromise but requires data movement and dup.

Sample data

- **single reservoir sample per pass**
 - Train on less data per scan → slower convergence
- **multiplexed reservoir sampling**
 - Concurrently training on sample and raw data streams
Parallelization

- **Pure UDA Version:** Primal (model) averaging
 - leverage merge operation
 - Appeals to result by Zinkevich* (requires iid data, convex loss, ...)
 - Doesn’t work as well in practice

- **Shared Memory UDA***
 - **Consistent (Atomic IG):** atomic compare and swap for updates
 - Consistent but limited parallelism + bus traffic and branch misses
 - **No locks (Hogwild!™):** write to memory and allow races
 - Word writes within cache lines are atomic (either old or new version wins)

*Implications on distributed databases?

*Parallelized Stochastic Gradient Descent
Hogwild! Algorithm
Hogwild! Algorithm

Shared Memory

Write

Thread 1
Data Partition

Thread 2
Data Partition

Thread 3
Data Partition
Hogwild! Algorithm
Hogwild! Algorithm

Shared Memory

Thread 1
Data Partition

Thread 2
Data Partition

Write

Thread 3
Data Partition

Write
Hogwild! Algorithm

Individual entries are consistent.

No corrupted floats:

Inconsistent read
What to think about when reading?

- Implications in contemporary deep learning setting
 - TF/Pytorch training in PostgreSQL?
- Implications on distributed training?
- Multiplexed Reservoir Sampling
 - Relationship to **Replay Buffers** in RL
 - Could we leverage idea to mitigate data load to GPU?
Materialization
Optimizations for Feature Selection Workloads

Ce Zhang, Arun Kumar, Christopher Ré
Materialization Optimizations for Feature Selection Workloads

- **Context:** Feature selection using R scripts dominate machine learning workloads → substantial opportunity for reuse!

- **Key Idea:** Rich **tradeoff space** of what to **materialize**, how to leverage **sampling**, and **reuse computation**

- **Contribution:** This paper demonstrates the advantages of exploring the tradeoff space and describes ways in which various operations interact.
Problem Formulation

Solve multiple problems for subsets of rows and columns of original data

Block consists of:
- Loss functions L
- **Set of Sets** of Rows / Columns
- Accuracies ϵ

Explore optimizations targeted at solving the related problems
- Materialization, Sampling, Compute reuse

Data

$$A = \begin{bmatrix} f_1 & f_2 & f_3 & f_4 & f_5 \\ r_1 & & & & \\ r_2 & & & & \\ r_3 & & & & \\ r_4 & & & & \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Solve (within ϵ of optimum)

$$x^*_t = \arg \min_{x \in \mathbb{R}^d} \sum_{i \in R_t} L((A\Pi_{F_t}x)_i, b_i)$$

For each t:
- R_t: set of rows
- F_t: set of cols

Projection Matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Generalized Linear Model
Optimization: Lazy vs Eager Materialization

- **Lazy Materialization**: construct each feature table as it is needed from raw data

- **Eager Materialization**: precomputes the superset of columns (features) and then projects away what is not needed for each optimization task

- **Tradeoffs**
 - **Lazy** → Higher computational cost, less storage overhead
 - **Eager** → Less compute, greater storage overhead
Optimization: Sampling

- **No Sampling**: compute on full data
 - May waste computation when identifying features

- **Random Sampling**: work on random subset of data (rows)
 - Much faster but potentially less accurate conclusions

- **Coreset Sampling**: weighted sampling to improve approximation of loss estimate
 - Better captures outliers
 - Requires **multiple passes** through data and **rows >> columns**
Optimization: Compute Reuse

- **QR Factorization**: reuse computation across multiple solves of related linear systems
- Clever (established) idea
- Limited applicability squared loss + linear models + L_2 regularization
- **Example Regularized Least Squares**:

Loss minimizer is the solution to:

$$\begin{align*}
(A^T A + \lambda) \Pi_F x &= \Pi_F A^T b \\
(Q R) \Pi_F x &= \Pi_F A^T b
\end{align*}$$

Solved $O(d^3)$ using backward substitution:

$$\text{for any } \Pi_F$$
Optimization: ADMM + Warmstart

- **ADMM Alg.** rewrite more general convex optimization problems (e.g., LASSO, logistic regression, SVM) into sequence of least squares problems (leverage QR)
- Clever (established) idea
- Enables use of warm-start

\[
x^{(k+1)} = \arg \min_x \frac{\rho}{2} \left\| A\Pi_F x - \left(z^{(k)} - u^{(k)} \right) \right\|^2_2
\]

\[
z^{(k+1)} = \arg \min_z \sum_{i=1}^N l(z_i, b_i) + \frac{\rho}{2} \left\| A\Pi_F x^{(k+1)} - \left(z - u^{(k)} \right) \right\|^2_2
\]

\[
u^{(k+1)} = u^{(k)} + A\Pi_F x^{(k+1)} - z^{(k+1)}
\]

Repeatedly Solve Least Squares Problem (use QR technique)

Extra hyperparameter

O(n) one-dimensional optimization problems
What consider when reading?

- Problem formulation and discussion around user interviews
- Discussion and framing of tradeoffs
- Would these techniques be applicable beyond feature selection (e.g., hyperparameter search/model design)?
Learning Generalized Linear Models Over Normalized Data

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel
Learning Generalized Linear Models Over Normalized Data

- **Context:** Training data is often **heavily denormalized** resulting in substantial redundancy.
 - increases **storage** and **data load time** and **computation**

- **Key Idea:** Push **learning through joins** to eliminate redundant loads and inner product calculations

- **Contribution:** this paper demonstrates the advantages of pushing learning through joins
 - Done using UDA abstractions
Context: Unnormalized Data

<table>
<thead>
<tr>
<th>pname</th>
<th>category</th>
<th>price</th>
<th>qty</th>
<th>date</th>
<th>day</th>
<th>city</th>
<th>state</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>Food</td>
<td>25</td>
<td>25</td>
<td>3/30/16</td>
<td>Wed.</td>
<td>Omaha</td>
<td>NE</td>
<td>USA</td>
</tr>
<tr>
<td>Corn</td>
<td>Food</td>
<td>25</td>
<td>8</td>
<td>3/31/16</td>
<td>Thu.</td>
<td>Omaha</td>
<td>NE</td>
<td>USA</td>
</tr>
<tr>
<td>Corn</td>
<td>Food</td>
<td>25</td>
<td>15</td>
<td>4/1/16</td>
<td>Fri.</td>
<td>Omaha</td>
<td>NE</td>
<td>USA</td>
</tr>
<tr>
<td>Galaxy</td>
<td>Phones</td>
<td>18</td>
<td>30</td>
<td>1/30/16</td>
<td>Wed.</td>
<td>Omaha</td>
<td>NE</td>
<td>USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Big** table: many **columns** and **rows**
- Substantial redundancy → expensive to store and access
- Make mistakes while updating
- Could we organize the data more efficiently?
Multidimensional Data Model

Sales Fact Table

<table>
<thead>
<tr>
<th>pid</th>
<th>timeid</th>
<th>locid</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>26</td>
</tr>
</tbody>
</table>

Locations

<table>
<thead>
<tr>
<th>locid</th>
<th>city</th>
<th>state</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Omaha</td>
<td>Nebraska</td>
<td>USA</td>
</tr>
<tr>
<td>2</td>
<td>Seoul</td>
<td></td>
<td>Korea</td>
</tr>
<tr>
<td>5</td>
<td>Richmond</td>
<td>Virginia</td>
<td>USA</td>
</tr>
</tbody>
</table>

Products

<table>
<thead>
<tr>
<th>pid</th>
<th>pname</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Corn</td>
<td>Food</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Galaxy 1</td>
<td>Phones</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Peanuts</td>
<td>Food</td>
<td>2</td>
</tr>
</tbody>
</table>

Time

<table>
<thead>
<tr>
<th>timeid</th>
<th>Date</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/30/16</td>
<td>Wed.</td>
</tr>
<tr>
<td>2</td>
<td>3/31/16</td>
<td>Thu.</td>
</tr>
<tr>
<td>3</td>
<td>4/1/16</td>
<td>Fri.</td>
</tr>
</tbody>
</table>

Dimension Tables

- **Fact Table**
 - Minimizes redundant info
 - Reduces data errors
- **Dimensions**
 - Easy to manage and summarize
 - Rename: Galaxy1 → Phablet
- **Normalized Representation**
- **How do we do analysis?**
 - Joins!
The Star Schema

- **Products**:
 - pid
 - pname
 - category
 - price

- **Time**:
 - timeid
 - Date
 - Day

- **Locations**:
 - locid
 - city
 - state
 - country

- **Sales Fact Table**:
 - pid
 - timeid
 - locid
 - sales

- Executive summary: This looks like a star...
Multidimensional Data Model

<table>
<thead>
<tr>
<th>Sales Fact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>pid</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>locid</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>pid</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeid</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Dimension Tables

- Dimension tables contain feature information

Idea: Compute/store feature transformations for dimension tables?
Factorize Algorithm

- Compute **partial inner products** with features in $R \rightarrow HR$
- Join HR with S
 - Finish computing inner products
 - Aggregate sum of loss F
 - Aggregate gradient of loss for S weights
- Group join result on RID (foreign key)
 - Aggregate gradients on S
- Join aggregated gradients with R
 - Aggregate gradient of loss for R weights

Logical Schemas:
- $R(RID, X_R)$
- $S(SID, Y, X_S, FK)$
- $HR(RID, PartialIP)$
- $HS(RID, SumScaledIP)$
Factorize Algorithm

- Compute **partial inner products** with features in \(R \rightarrow HR \)
- Join \(HR \) with \(S \)
 - Finish computing inner products
 - Aggregate sum of loss \(F \)
 - Aggregate gradient of loss for \(S \) weights
- Group join result on \(RID \) (foreign key)
 - Aggregate gradients on \(S \)
- Join aggregated gradients with \(R \)
 - Aggregate gradient of loss for \(R \) weights
Factorize Algorithm

- Compute **partial inner products** with features in \(R \rightarrow HR \)
- Join \(HR \) with \(S \)
 - Finish computing inner products
 - Aggregate sum of loss \(F \)
 - Aggregate gradient of loss for \(S \) weights
- Group join result on \(RID \) (foreign key)
 - Aggregate gradients on \(S \)
- Join aggregated gradients with \(R \)
 - Aggregate gradient of loss for \(R \) weights

Logical Schemas:
- \(R(RID, X_R) \)
- \(S(SID, Y, X_S, FK) \)
- \(HR(RID, PartialIP) \)
- \(HS(RID, SumScaledIP) \)
Factorize Algorithm

- Compute **partial inner products** with features in $R \rightarrow HR$

- Join HR with S
 - Finish computing inner products
 - Aggregate sum of loss F
 - Aggregate gradient of loss for S weights

- Group join result on RID (foreign key)
 - Aggregate gradients on S

- Join aggregated gradients with R
 - Aggregate gradient of loss for R weights
Thoughts For Reading

- Emphasis on cost model
 - Can you work through the cost calculations?

- What would happen if features depended on cross terms between tables?

- Would these techniques be applicable beyond feature selection (e.g., hyperparameter search/model design)?
 - Are there scenarios where this optimization would work?
Done!