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Why are we starting with
Machine Learning in Database Systems?




Why do ML in a Database System

» Proximity to Data: minimize data movement
» Avoid data duplication = inconsistency

» Optimized for Data: database systems are optimized for efficient
access and manipulation of data.

» Data layout, buffer management, indexing, ...
» Normalization can improve performance
» Schema information can help in modeling

> Predictions with Data: trained models often used with data in the
database.
» Incorporate predictions info SQL queries

» Security: control who and what models have access to what data
» leverage existing access control lists (ACLs)



Challenges of Learning in Database

» Abstractions: How does database expose data to alg.e
» Some algorithms are a natural fit for existing abstractions

> Access Patterns: How does algorithm access datae
» Sequentially, randomly, repeated scans

> Cost Models and Learning: How does database system
aid In optimizing learning algorithm executione
» Exposing a broader set of frade-offs

» Data Types: Does data fit in the relational modelse
» Images, video, models



Database Systems and ML

» Database Systems supporting “Learning”

» Data mining fechnigues heavily studied in DB community
> Apriori algorithm for frequent item set (VLDB'94), widely cited
» BIRCH large-scale clustering alg. (SIGMOD’'?6)

» Most database systems have support for analytics and ML
» Often specialized for particular techniques (e.g., SYM, decision tree,...)

> “Learning” for Database Systems (Later in Semester)
» Cardinality estimation using staftistical models
» Dynamic programming for query optimization
» Recent excitement around RL + Deep Learning in databases



Objectives For Today

» Review (some) Concepts in Database Systems
» Relational Model
» Data Independence
» User defined aggregates

» QOut of core computation and latencies
» Grace Hash Join Example

» This Weeks Reading
» Review bigideas in each paper
» Key technical details
» What to look for when reading



Big |ldeas in Database Systems



Relational Database Systems

icrosoft*

PostgreSQL

ORACLE

Server

?SQLite

» Logically organize data in relations (tables)

Sales relation: Describes relationship:

Name purchased
Prod at Price.

§99900  How is data

Sue IPod $200.00
Joey Bike $333.99
{ Tuple (row)  Alice Car
(Aftribute) (column)

physically
stored?e



Relational Data Abstraction

Database Management System
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Physical Data Independence:
Database management systems hide how data is
stored from end user applications

- System can optimize storage and computation
without changing applications.

Big Idea in Data Structures
Data Systems &
Computer Science



Physical Data Independence

» Physical data layout/ordering is determined by system
» goal of maximizing performance

» Data Clustering
» Organize group of records to improve access efficiency
» Example: grouped/ordered by key

> Implications on Learning?
» Record ordering may depend on data values
> Arbitrary ordering # Random ordering



Relational Database Systems

> g

SQ L Server PostgreSQL

ORACLE

?SQLite

» Structured Query Language (SQL) to define, manipulate
and compute on data.

» A common language used by many data systems
» Describes logical organization of data as well as computation

SAL

» Logically organize data in relations (tables)



SQL is a Declarative Language

» Declarative: “Say what you want, not how to get it.”

>

Declarative Example: | want a table with columns “x” and “y” constfructed
from tables “A” and "B” where the values in *y” are greater than 100.00.

Imperative Example: For each record in table A" find the corresponding

record in table “B” then drop the records where “y" is less than or equal to
100 then return the "x" and "y" values.

» Advantages of declaratfive programming

>

Enable the system to find the best way to achieve the result.

» More compact and easier to learn for non-programmers (Maybe?¢)

» Challenges of declaratfive programming
» System performance depends heavily on automatic optimization
» Limited language (not Turing complete) > need extensions



User Defined Aggregates

» Provide a low-level API for defining functions that
aggregate state across records in a table
» Much like fold in functional Programming

CREATE AGGREGATE agg name (..)3
# Initialize the state for aggregation.

initialize(state) > state

# Advance the state for one row. Invoked repeatedly.
transition(state, row) —=> state

# Compute final result.

texrminate(state) =2 result

# (Opftional) Merge intermediate states from parallel executions.
mexge (state, state) > state -

9¢,

1|

Mer




Closed Relational Model and Learning

» All operations on tables produce tables...

» Training a model on a table producese
> A row containing a model
> A table containing model weights

» An (infinite) table of predictions
> MauveDB: Supporting Model-based User Views in Database Systems

» Predictions as views
» Opportunity to index predictions
» Relational operations to manipulate predictions


http://db.csail.mit.edu/pubs/sigmod06-mauvedb.pdf

Out-of-core Computation

» Database systems are typically designed to operate on
databases larger than main memory (big datae)

> Algorithms must manage memory buffers and disk
» Page level memory buffers
» Sequential reads/writes to disk

» Understand relative costs of memory vs disk



Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know --Jeff Dean

L1 Cache 0.5 ns (few clock cycles)
L2 Cache 7 ns

Main Memory 100 ns

Read TMB from RAM (Seq.) 250K ns

Read TMB SSD (Seq.) 1M ns (1ms)

Read 1MB Disk (Seq.) 20M ns (20ms)




Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know

L1 Cache
L2 Cache

Main Memory

Read |
Read |

Read |

MB from RAM (Seq.)
MB SSD (Seq.)
MB Disk (Seq.)

Human Readable

1 second
14 seconds
3.3 minutes
5.8 days
23 days

1.3 years

Database
Systems

Page
Buffers

Sequential
Read/Write



Example Out-of-Core A\g..:
Grace Hash Join



Grace Hash Join

R, S =0y(Rx%5)

» Requires equality predicate 6:
» Works for Equi-Joins & Natural Joins

» Two Stages:

» Partition fuples from R and S by join key
» all tuples for a given key in same partition

» Build & Probe a separate hash table for each partition

» Assume partition of smaller rel. fits in memory
» Recurse if necessary...



Grace Hash Join: Partition
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Grace Hash Join: Partition
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Grace Hash Join: Partition
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Grace Hash Join: Partition
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Grace Hash Join: Partition

B-1 Buffers

1 Buffer

000

0000

Partition 1

Partition 2
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Post Hash Partitfioning

» Observe how memory buffers are
directly managed Parition 1

> Paged to disk when full ... o o

Qunm
QOun

» Each key is assigned to one partition

> e.qg. keys in partition] oartition 2

» Sensitive to key Skew = =
@) Qum
0] Qs

Key



Grace Hash Join: Build & Probe

Partition 1

11

Hash Table (B-2) Buffer

8=

QOun
Partition 2
@) o

101§



Grace Hash Join: Build & Probe

Partition 1



Grace Hash Join: Build & Probe

Partition 1



Grace Hash Join: Build & Probe

Partition 1

091 2
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Cost of Hash Join

tE 8=

0
k 1 Buffer Comn k
Read m :’ w r — 1 Bliffer
P B~ HE
L

ble (B-2) Buffers
[ -

| |
Partitioning Phase Build & Probe Phase

» Partitioning phase: read+write both relations
= 2([R]+[S]) I/0s

» Matching phase: read both relations, forward output
= [R]+[S]

» Total cost of 2-pass hash join = 3([R]+[S])



Cost of Hash Join
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Partitioning Phase Build & Probe Phase

Memory Requirements?

» Build hash table on R with uniform partitioning
= Partitioning Phase divides R into (B-1) runs of size [R] / (B-1)
= Build Phase requires each [R] / (B-1) < (B-2)
— R < (B-1) (B-2) = B?



This weeks reading



Two Chris Ré Papers.

Re(]diﬂg for The Week One of the leaders

in DB+ML research

» Towards a Unified Architecture for in-RDBMS Analytics
> SIGMOD'12,

» Support generic learning within existing DBMS abstraction

» Materialization Optimizations for Feature Selection Workloads
» SIGMOD'14 (Best Paper)

» Opftimize feature engineering workloads by exploiting redundancy

» Learning Generalized Linear Models Over Normalized Datg
> SIGMOD’'15

» Pushing learning through joins on normalized data

Note these are “older” papers but they cover big ideas


https://www.cs.stanford.edu/people/chrismre/papers/bismarck.pdf
https://cs.stanford.edu/people/chrismre/papers/mod539-zhang.pdf
http://pages.cs.wisc.edu/~jignesh/publ/GLMs-over-joins.pdf

Towards a Unifled
Architecture for In-RDBMS
ANnalytics

Xixuan Feng, Arun Kumar, Benjomin Recht, and Christopher Ré



owards a Unified Architecture

for in-RDBMS Analytics L

Current In-RDBMS Analytics Bismarck In-RDBMS Analytics

» Context: database system vendors building specialized in DB
Implementations of ML techniques.
» Slow and costly to add support for new models/algorithms
» Many ML techniques leverage (convex) empirical risk minimization

> Key ldea: Many ML technigues can be reduced to
mathematical programming and there is a single solver (IGD)
that fits existing database system absiractions (UDAS)

» Contribution: this paper demonstrates the advantages of
leveraging existing optimized abstractions for learning



Challenges Addressed

» Mapping IGD to User Defined Aggregates (UDA)

» Affects of data ordering on convergence
» Data often stored in a pathological ordering (e.g., by label)

» Parallelization of Incremental Algorithm
> Adopt two standard solutions (model averaging, Hogwild!)



What is the difference between
Incremental vs Stochastic Gradient Descente

Short Answer: Stochastic gradient descent is a form of incremental
gradient descent

> Incremental Gradient Descent

» Formally: taking single gradient steps for each element of a decomposable
loss

» Ordering of gradient terms is arbitrary

» Stochastic Gradient Descent
» Formally: sampling from the gradient of the empirical loss
» Sample data and compute gradient of loss on sample

» Today people often refer to incremental gradient methods as stochastic
gradient descent

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey



https://arxiv.org/pdf/1507.01030.pdf

Mapping IGD to User Defined
Aggregates (UDA)

CREATE AGGREGATE bismarck (..)3 » State contains:
initialize(args) > state: » Model weights, k, ...
transition(state, row) > state: » Invoked repeatedly

» Once per epoch
wh D p®) _ o VL (mw’ w(k)) » Bismarck stored
procedure

texminate(state) > result , ,
» Termination cond.

mexge (state, state) = state » Similar to IGD



Data Ordering Issues

» Data indexed/clustered on key feature or even the label

» Example: predicting customer churn - data is partitioned by
active customers and cancelled customers
> Why?e

» May slow down convergence:

(1) Random

Random Order

-1 i

0 10000 20000 30000 40000 50000
1

(2) Clustered ;

Sorted by label

-1 :
0 10000 20000 30000 40000 50000
(10) (20) (30) (40) (50)
Number of Gradient Steps (No. of Epochs)



Data Order Solutions

Shuffle data

» on each epoch (pass through data): Closest to stochastic gradient alg.
> Expensive data movement and duplication

» Once: good compromise but requires data movement and dup.

Sample data
> single reservoir sample per pass 10 Worker

Memory Worker

> Train on less data per scan = slower convergence Reservolr | W Loop over
Sampling d
on Buffer A
. . . LI ©
> multiplexed reservoir sampling INNENEREN

e
» Concurrently fraining on sample and raw data streams @



Parallelization

» Pure UDA Version: Primal (model) averaging
> leverage merge operation
> Appeals to result by Zinkevich* (requires iid data, convex loss, ...)
» Doesn’'t work as well in practice

» Shared Memory UDA*

» Consistent (Atomic IG): atomic compare and swap for updates
» Consistent but limited parallelism + bus fraffic and branch misses

» No locks (Hogwild!™): write to memory and allow races
» Word writes within cache lines are atomic (either old or new version wins)

*Implications on distributed databases?

*Parallelized Stochastic Gradient Descent



http://martin.zinkevich.org/publications/nips2010.pdf

Hogwild! Algorithm

Shared Memory

CT T T T1T]

Thread 1 Thread 2 Thread 3

Data Data Data
Partition Partition Partition




Hogwild! Algorithm

Shared Memory

Write
Thread 1 Thread 2 Thread 3

Data Data Data
Partition Partition Partition




Hogwild! Algorithm

Shared Memory

Write
Thread 1 Thread 2 Thread 3

Data Data Data
Partition Partition Partition




Hogwild! Algorithm

Shared Memory

L[ |

. Write
Write
Thread 1 Thread 2 Thred
Data Data Data
Partition Partition Partition




No corrupted floats: l:

Individual entries are consistent.

Hogwild! Algorithm

Shared Memory

L LI |

ad
\nconS\S‘e“‘ = \
Thread 1 Thread 2 Thred

Data

Data

Partition Partition Partition




What to think about when readinge

» Implications in contemporary deep learning setting
» TF/Pytorch training in PostgreSQL?

» Implications on distributed fraininge

» Multiplexed Reservoir Sampling
» Relationship to Replay Buffers in RL
» Could we leverage idea to mitigate data load 1o GPU<



Materialization
Optimizations for Feature
Selection Workloads

Ce Zhang, Arun Kumar, Christopher Ré



Materialization Optimizations

Parser Optimi
°
fo r F e O '|'U re S e | e C '|'I O n CoLumMmBUS Program Baslc Blocks ROPs Execution Result
A=DataSet(“A” fs1={f1,f2}
f51=Featur(eSet)(f1, 2) ? ar(ALfs1]) fs2={f3}
fs2=FeatureSet(f3) union <8 I backsolve(..) fs3={f1}
O r O O S fs3=StepDrop(A, fs1) A backsolve(...) fs4={f1, {3}

fs4=UNION(fs3, fs2) ~ |/A loss=LR,

F1={f1}, F2={f2} UNION Basic Block

Standard ROP

» Context: feature selection using R scripts dominate machine
learning workloads - substantial opportunity for reusel

> Key ldea: Rich tradeoff space of what to materialize, how to
leverage sampling, and reuse computation

» Contribution: this paper demonstrates the advantages of
exploring the tradeoff space and describes ways in which
various operations interact.



Problem Formulation

Dato » Solve multiple problems for

.. AN subsets of rows and columns of
I

original data

» Block consists of:
» Loss functions L
> Set of Sets of Rows / Columns
» Accuracies e

» Explore optimizations fargeted at
solving the related problems

» Materialization, Sampling,
Compute reuse

For each t:
R; : set of rows

F: : set of cols




Optimization: Lazy vs Eager Materialization

» Lazy Materialization: construct each feature table as it is
needed from raw data

» Eager Materialization: precomputes the superset of
columns (features) and then projects away what is not
needed for each optimization task

> Tradeoffs

» Lazy -2 Higher computational cost, less storage overhead
> Eager - Less compute, greater storage overhead



Optimization: Sampling

» No Sampling: compute on full dato
» May waste computation when identifying features

» Random Sampling: work on random subset of data (rows)
» Much faster but potentially less accurate conclusions

» Coreset Sampling: weighted sampling to improve
approximation of loss estimate
» Beftter captures outliers
» Requires multiple passes through data and rows >> columns



Optimization: Compute Reuse

» QR Factorization: reuse computation across multiple solves
of related linear systems

» Clever (established) idea
> Limited applicability squared loss + linear models + L, regularization
> Example Regularized Least Squares:

Loss minimizer is the solution to:
Reuse: 58'(‘2;? and QTQ =1

(A"A+ N Tlpz =TIpA"b == QR = (AT A+ ))
(QR)Nlpz =1pA'b = (Rlp)z = QTIIzATb

Solved O(d?) using backward substitution: —
forany ]z



Optimization: ADMM + Warmstart

» ADMM Alg.: rewrite more general convex optimization
problems (e.g., LASSO, logistic regression, SVM) info

sequence of least squares problems (leverage QR)
» Clever (established) idea

> Enables use of warm-start

Repeatedly Solve

5 Least Squares Problem
. (use QR technique)
gFH1) — arg mmg HAHFx — (z(k) - u(k)) H
T 2

N Extra hyperparameter

2
ZFHD — arg minzl(zz’, b;) + g ‘ Al pa ™) — (Z B u(k)) H
i=1

2
uFT) = o F) p AT pp(RTD — 5 (kD)
optimization problems




What consider when readinge

> Problem formulation and discussion around user interviews

» Discussion and framing of tradeoffs

» Would these techniques be applicable beyond feature
selection (e.g., hyperparameter search/model design)e



Learning Generalized
Linear Models Over
Normalized Data

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel



SSSSS

5 Richmond  Virginia  USA

Learning Generalized Linear it
Models Over Normalized Data

» Context: Training data is often heavily denormalized resulting
In substantial redundancy.

> increases storage and data load time and computation

> Key ldea: Push learning through joins to eliminate redundant
loads and inner product calculations

» Contribution: this paper demonstrates the advantages of
pushing learning through joins
» Done using UDA abstractions



Context: Unnormalized Dato
I o o e o i

Corn Food 3/30/16

Corn Food 25 8 3/31/16 Thu.
Corn Food 25 15 4/1/16 Fri.
Calayy Phones 18 20 1/30/14 Wed.

> Big table: many columns and rows
> Substantial redundancy > expensive to store  Thu.

and access
> Make mistakes while updating Fri.
» Could we organize the data more Wed.
efficiently?

Peanuts Food 2 45 3/31/16 Thu. Seoul Korea



Sales Fact Table

Multidimensional Data Model

mmm CTEETSCMETTE Dimension

11
11
12
12
12
12
13
13
11
11
11
12

w N

w N w N

w N

N N NN

15
30
20
50

10
10
35
22
10
26

Locations

Omaha Nebraska USA
2 Seoul Korea
5 Richmond Virginia USA
Products
mmm
11 Corn Food
12 Galaxy 1 Phones 18 >
13 Peanuts Food 2
Time
mm- >

3/30/16

>

2 3/31/16 Thu.
3 4/1/16 Fri.

Tables

Fact Table
>  Minimizes redundant info
» Reduces data errors

Dimensions

» Easy to manage and summarize
» Rename: Galaxyl - Phablet

Normalized Representation

How do we do analysis?
>  Joins!



The Star Schema

Products Time

pid_| pname | category | price _ fimeid | Date | Day

Sales Fact Table

mmm < This looks like a star ...
I I

‘ Locations

locid [ty [state | countty _



Sales Fact Table

Multidimensional Data Model

mmm CTEETSCMETTE Dimension

11
11
12
12
12
12
13
13
11
11
11
12

w N

w N w N

w N

N N NN

15
30
20
50

10
10
35
22
10
26

Locations

Omaha Nebraska USA
2 Seoul Korea
5 Richmond Virginia USA
Products
o Trome ooy oice
11 Corn Food
12 Galaxy 1 Phones 18
13 Peanuts Food 2
Time
fimeid | Date | Day
1 3/30/16 Wed.
2 3/31/16 Thu.
3 4/1/16 Fri.

Tables

> Dimension tables contain
feature information

Idea: Compute/store
feature transformations for
dimension tables?



Factorize Algorithm

» Compute partial inner products with
featuresin R > HR

3

24

R

Logical Schemas:

R(RID, XR)

S(SID, Y, Xg, FK)
HR(RID, PartiallP)
HS(RID, SumScaledIP)

/ VFR ....................
e Y
’ (VFS+ F) H*S R
e LralfI0)T_y
<
I-LR S



Factorize Algorithm )

R

» Compute partial inner products with S Logical Schemas:
featuresin R > HR R(RID, Xg)
. . S(SID, Y, Xg, FK)
> Join HR with § HR(RID, PartiallP)
» Finish computing inner products r HS(RID, SumScaledIP)
> Aggregate sum of loss F e +FR
» Aggregate gradient of loss for § weights 34 XSUM
R
>(VFS+F) H*S R
2 Jeme R0y
<]
\ _— ~— :
HR S
1 < é( ............................................................................
R




Factorize Algorithm )

R

» Compute partial inner products with S Logical Schemas:
featuresin R > HR R(RID, Xg)
. . S(SID, Y, Xg, FK)
> Join HR with § HR(RID, PartiallP)
» Finish computing inner products r HS(RID, SumScaledIP)
> Aggregate sum of loss F e +FR
» Aggregate gradient of loss for § weights 34 XSUM
. : ==
» Group join result on RID (foreign key) ' (VE,, F) Hs . R |
» Aggregate gradients on § 4 N, S N .
2{  Ysmw< | Vsou(RID)=~ ¥
" A W
D><]
HR S
1 < *4 ............................................................................
R




Factorize Algorithm )

R

» Compute partial inner products with S Logical Schemas:
features in R > HR R(RID, Xg)
S(SID, Y, Xs, FK)
> Join HR with S HR(RID, PartiallP)
» Finish computing inner products r HS(RID, SumScaled|P)
» Aggregate sum of loss F V*FR """"""""""
+ Aggregate gradient of loss for § weights 3 ............................................. XSUM
.. : <
» Group join result on RID (foreign key) ' (VE,, F) ST TR
» Aggregate gradients on § 4 N, N —— —
2{  Ysu* Ysu(RID)=~ ¥
» Join aggregated gradients with R ; - ! '
» Aggregate gradient of loss for R weights > HR/' \s
1+ T ———
R




Thoughts For Reading

» Emphasis on cost model
» Can you work through the cost calculationse

» What would happen if features depended on cross terms
pbetween tablese

» Would these techniques be applicable beyond feature
selection (e.g., hyperparameter search/model design)e

» Are there scenarios where this optimization would worke
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