Al-Systems Learning in a DBMS (Database Management System)

Joseph E. Gonzalez

Co-director of the RISE Lab jegonzal@cs.berkeley.edu

Why are we starting with Machine Learning in Database Systems?

Why do ML in a Database System

- Proximity to Data: minimize data movement
 - > Avoid data duplication \rightarrow inconsistency
- Optimized for Data: database systems are optimized for efficient access and manipulation of data.
 - Data layout, buffer management, indexing, ...
 - Normalization can improve performance
 - Schema information can help in modeling
- Predictions with Data: trained models often used with data in the database.
 - Incorporate predictions into SQL queries
- Security: control who and what models have access to what data
 - Ieverage existing access control lists (ACLs)

Challenges of Learning in Database

- Abstractions: How does database expose data to alg.?
 Some algorithms are a natural fit for existing abstractions
- Access Patterns: How does algorithm access data?
 Sequentially, randomly, repeated scans
- Cost Models and Learning: How does database system aid in optimizing learning algorithm execution?
 Exposing a broader set of trade-offs
- > Data Types: Does data fit in the relational models?
 - Images, video, models

Database Systems and ML

- Database Systems supporting "Learning"
 - Data mining techniques heavily studied in DB community
 - > Apriori algorithm for frequent item set (VLDB'94), widely cited
 - BIRCH large-scale clustering alg. (SIGMOD'96)
 - Most database systems have support for analytics and ML
 - > Often specialized for particular techniques (e.g., SVM, decision tree,...)
- > "Learning" for Database Systems (Later in Semester)
 - Cardinality estimation using statistical models
 - > Dynamic programming for query optimization
 - Recent excitement around RL + Deep Learning in databases

Objectives For Today

- Review (some) Concepts in Database Systems
 - Relational Model
 - Data Independence
 - User defined aggregates
 - Out of core computation and latencies
 - Grace Hash Join Example
- > This Weeks Reading
 - Review big ideas in each paper
 - > Key technical details
 - > What to look for when reading

Big Ideas in Database Systems

Relational Database Systems

> Logically organize data in relations (tables)

Sales relation:	Name	Prod	Price
	Sue	iPod	\$200.00
	Joey	Bike	\$333.99
Tuple (row)	Alice	Car	\$999.00
		Attribute	(column)

Describes <u>relationship:</u> **Name** purchased **Prod** at **Price.**

How is data **physically** stored?

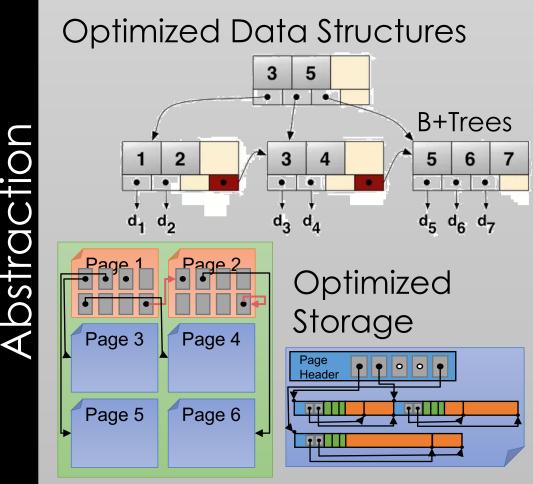
Relational Data Abstraction

Relations (Tables)

For ross in grant to control cont-

Name		P	rod		Price			
Sue		iF	iPod		\$200.00			
Joey	<u>sic</u>		sname		rating	C	age	
Alice	28		уирру		9	3	35.0	
	31	31 lubbe			8	5	55.5	
44			quinny		5	2	35.0	
	58		<u>bid</u>	bname			colo	r
_		-	101	Interlake		blue		
enhanni an the etil Physical International (1996) International (1996) International (1996)			102	Interlake		red		
		h	104	Marine		red		
e python			103	Clipper		gree	n	

Database Management System



Physical Data Independence:

Database management systems hide how data is stored from end user applications

→ System can optimize storage and computation without changing applications.

		55.5	$ \underbrace{\bigcirc}_{d_1 d_2} \qquad \underbrace{d_3 d_4}_{d_5 d_6 d_7} $
	5	bia Idea	in Data Structures
		- olor	
			Data Systems &
			Page a constant of the second s
			Computer Science

Physical Data Independence

Physical data layout/ordering is determined by system
 goal of maximizing performance

> Data Clustering

- Organize group of records to improve access efficiency
- Example: grouped/ordered by key

Implications on Learning?

- Record ordering may depend on data values
- > Arbitrary ordering \neq Random ordering

Relational Database Systems

- > Logically organize data in relations (tables)
- Structured Query Language (SQL) to define, manipulate and compute on data.
 - > A common language used by many data systems
 - > Describes logical organization of data as well as computation

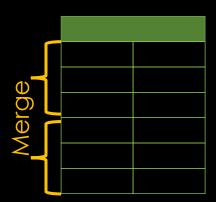
SQL is a **Declarative** Language

- > Declarative: "Say what you want, not how to get it."
 - Declarative Example: I want a table with columns "x" and "y" constructed from tables "A" and "B" where the values in "y" are greater than 100.00.
 - Imperative Example: For each record in table "A" find the corresponding record in table "B" then drop the records where "y" is less than or equal to 100 then return the "x" and "y" values.
- > Advantages of declarative programming
 - Enable the system to find the best way to achieve the result.
 - More compact and easier to learn for non-programmers (Maybe?)
- > Challenges of declarative programming
 - System performance depends heavily on automatic optimization
 - Limited language (not Turing complete) \rightarrow need extensions

User Defined Aggregates

- Provide a low-level API for defining functions that aggregate state across records in a table
 Much like fold in functional Programming
 - Much like fold in functional Programming

CREATE AGGREGATE agg_name (...) { # Initialize the state for aggregation. **initialize**(state) \rightarrow state # Advance the state for one row. Invoked repeatedly. **transition**(state, row) \rightarrow state # Compute final result. **terminate**(state) \rightarrow result # (Optional) Merge intermediate states from parallel executions. $merge(state, state) \rightarrow state$



Closed Relational Model and Learning

> All operations on tables produce tables...

- Training a model on a table produces?
 - > A row containing a model
 - > A table containing model weights
 - > An (infinite) table of predictions
 - MauveDB: Supporting Model-based User Views in Database Systems
- \succ Predictions as views
 - > Opportunity to **index** predictions
 - Relational operations to manipulate predictions

Out-of-core Computation

- Database systems are typically designed to operate on databases larger than main memory (big data?)
- > Algorithms must manage **memory buffers** and **disk**
 - Page level memory buffers
 - Sequential reads/writes to disk
- > Understand **relative costs** of memory vs disk

Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know -- Jeff Dean

L1 Cache	0.5	ns (few clock cycles)
L2 Cache	7	ns
Main Memory	100	ns
Read 1MB from RAM (Seq.)	250K	ns
Read 1MB SSD (Seq.)	1M	ns (1ms)
Read 1MB Disk (Seq.)	20M	ns (20ms)

Reasoning about Memory Hierarchy

Latency Numbers Every Programmer Should Know	<u>Human Readable</u>	
L1 Cache	1 second	
L2 Cache	14 seconds	Database Systems
Main Memory	3.3 minutes	Page
Read 1MB from RAM (Seq.)	5.8 days	Buffers
Read 1MB SSD (Seq.)	23 days	Sequential
Read 1MB Disk (Seq.)	1.3 years	Read/Write

Example Out-of-Core Alg.: Grace Hash Join

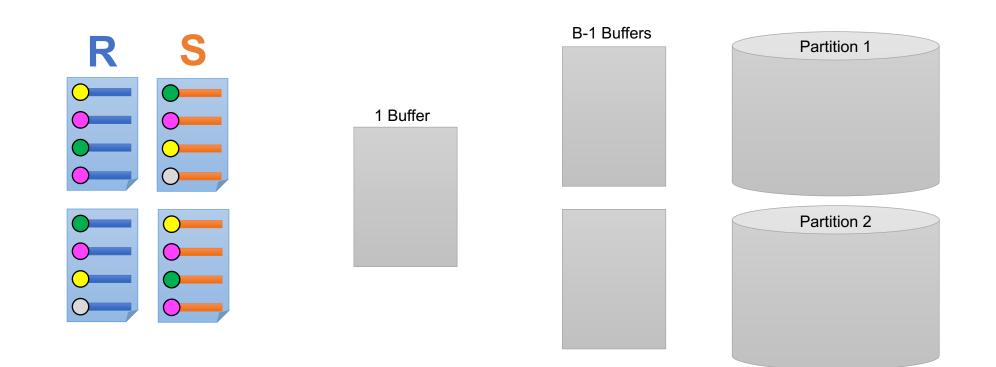
Grace Hash Join

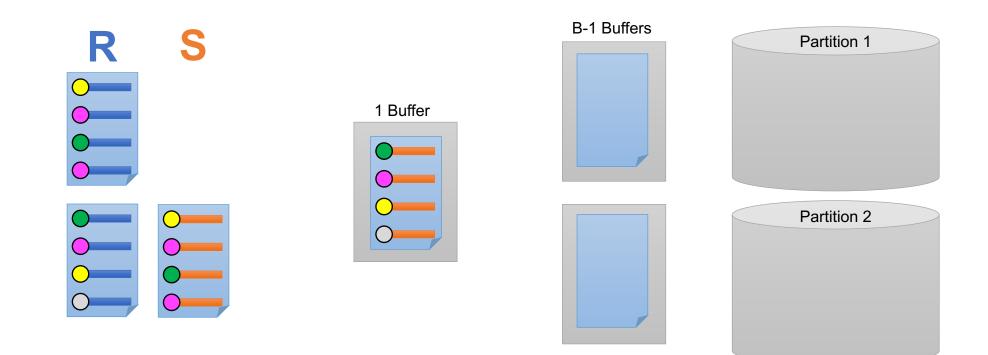
 $\mathbf{R} \bowtie_{\theta} \mathbf{S} = \sigma_{\theta}(\mathbf{R} \times \mathbf{S})$

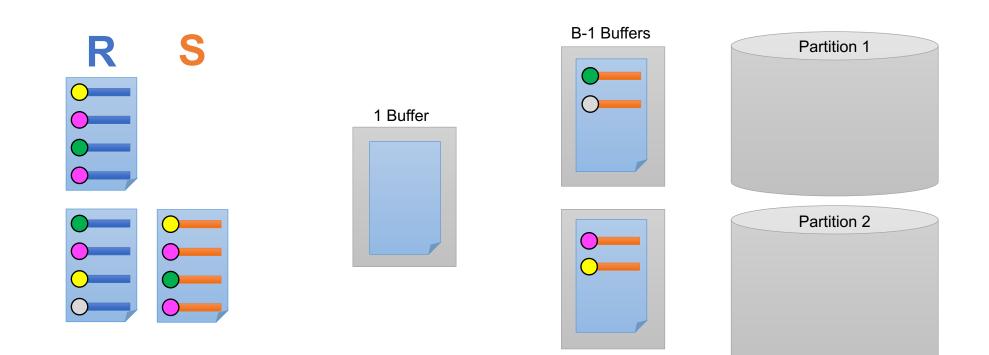
- > Requires equality predicate θ :
 - Works for Equi-Joins & Natural Joins
- > Two Stages:

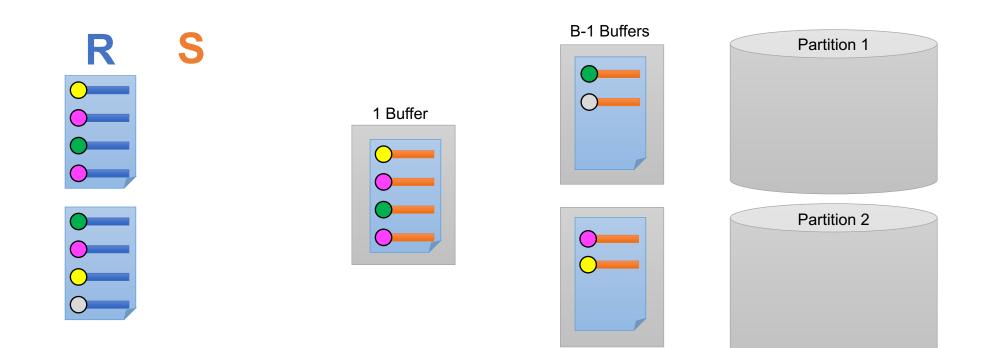
- Partition tuples from R and S by join key
 - \succ all tuples for a given key in same partition
- Build & Probe a separate hash table for each partition
 - > Assume **partition** of smaller rel. fits in memory

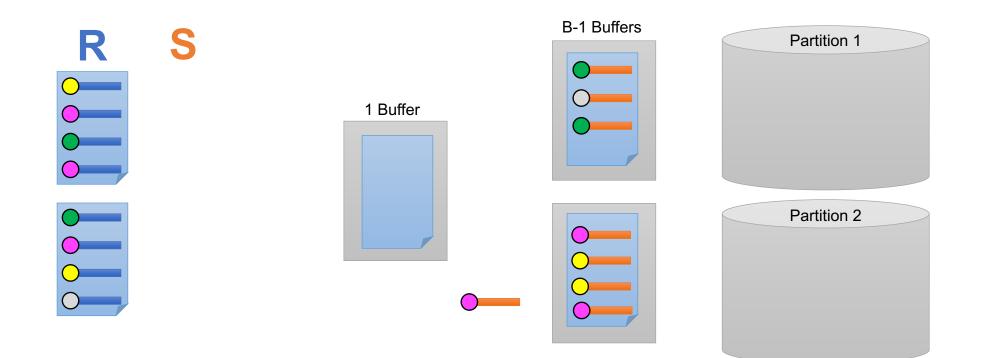
► Recurse if necessary...

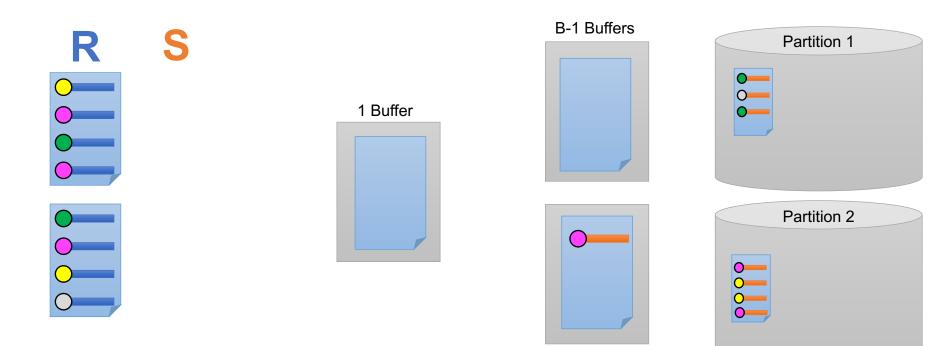


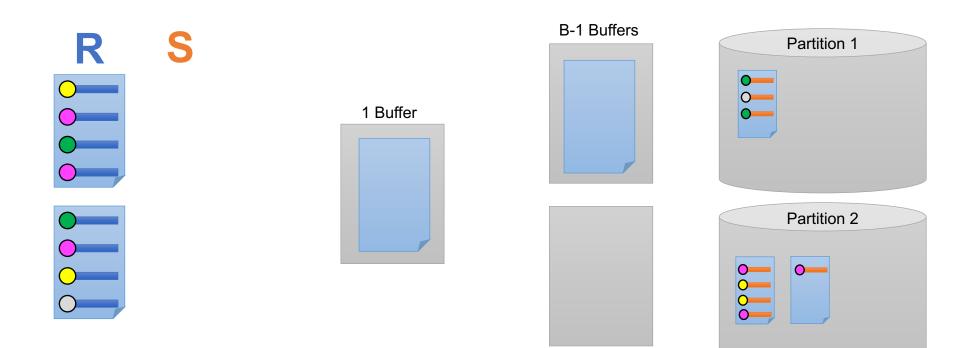


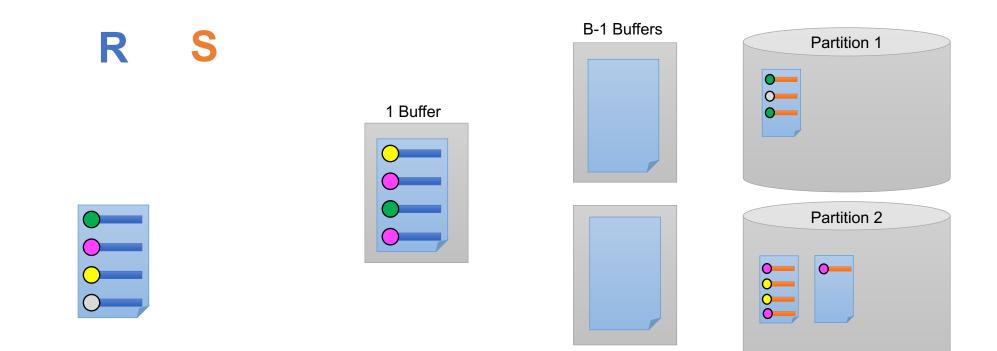


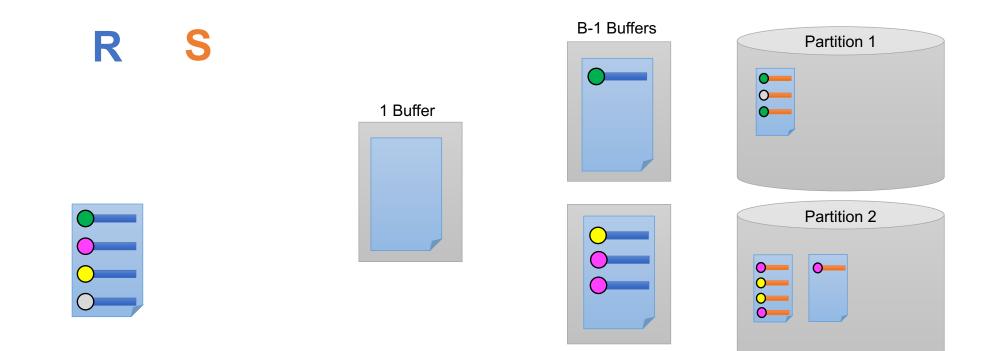


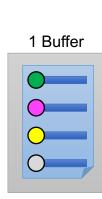


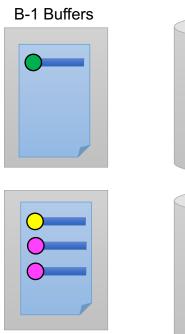


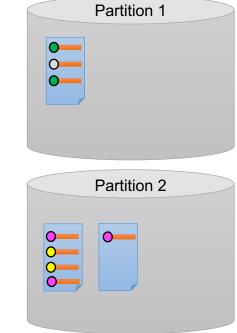


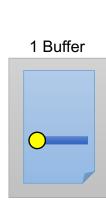


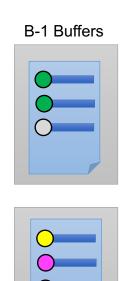


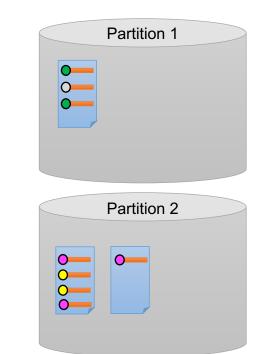


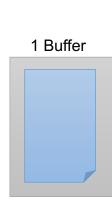


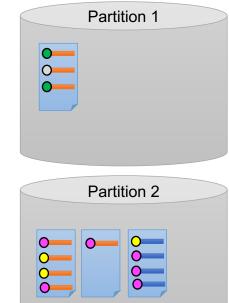


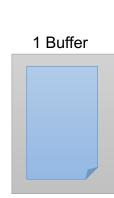


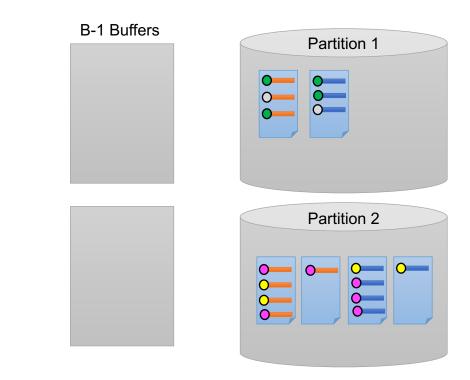






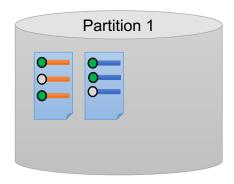


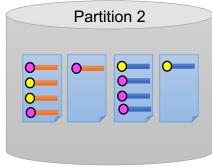




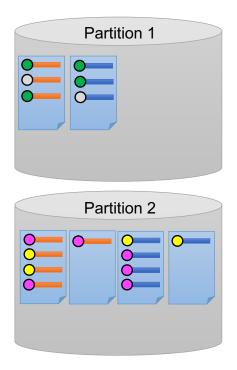
Post Hash Partitioning

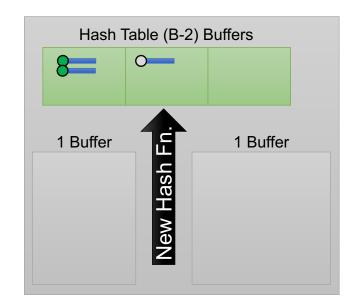
- Observe how memory buffers are directly managed
 - Paged to disk when full ...
- Each key is assigned to one partition
 e.g., green keys in partition1
- Sensitive to key Skew
 - Fuchsia Key



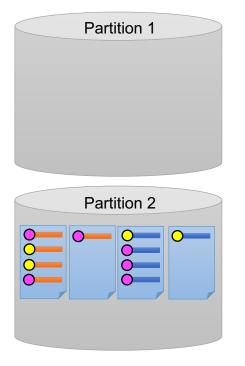


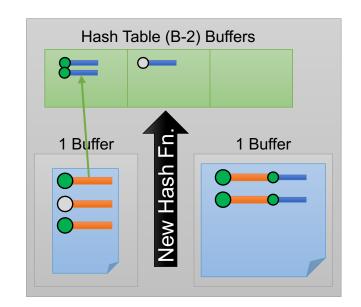
Grace Hash Join: **Build & Probe**



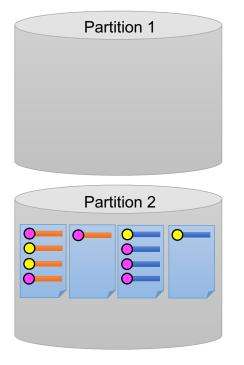


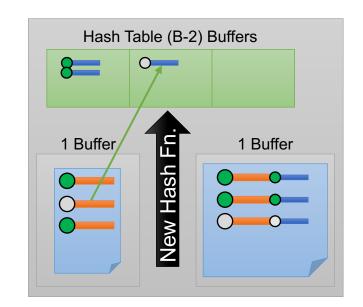
Grace Hash Join: Build & Probe



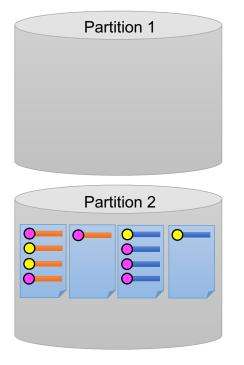


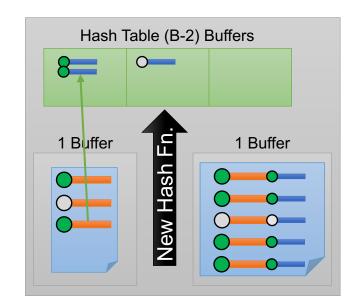
Grace Hash Join: Build & Probe



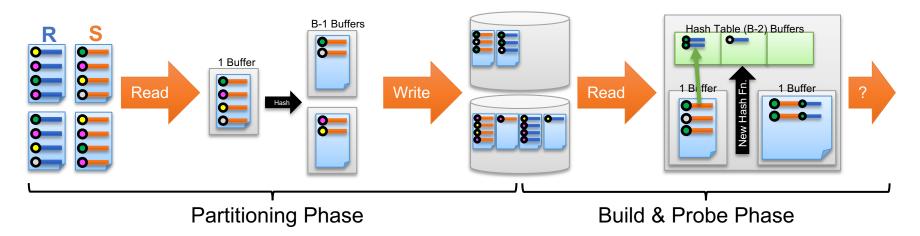


Grace Hash Join: Build & Probe



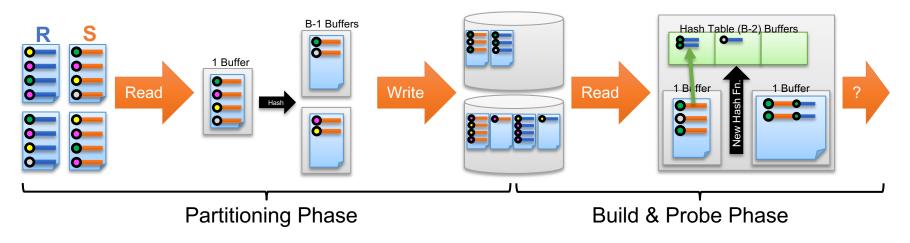


Cost of Hash Join



- > <u>Partitioning phase</u>: read+write both relations $\Rightarrow 2([R]+[S]) I/Os$
- Matching phase: read both relations, forward output $\Rightarrow [R]+[S]$
- > Total cost of 2-pass hash join = 3([R]+[S])

Cost of Hash Join



Memory Requirements?

- Build hash table on R with uniform partitioning
 - \Rightarrow **Partitioning Phase** divides **R** into (**B**-1) runs of size [**R**] / (**B**-1)
 - \Rightarrow **Build Phase** requires each [**R**] / (**B**-1) < (**B**-2)
 - ⇒ **R** < (**B**-1) (**B**-2) ≈ B²

This weeks reading

Reading for the Week

Two Chris Ré Papers. One of the leaders in DB+ML research

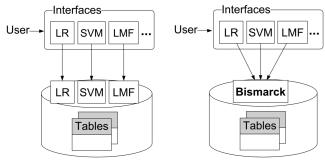
- Towards a Unified Architecture for in-RDBMS Analytics
 SIGMOD'12,
 - Support generic learning within existing DBMS abstraction
- Materialization Optimizations for Feature Selection Workloads
 - SIGMOD'14 (Best Paper)
 - Optimize feature engineering workloads by exploiting redundancy
- Learning Generalized Linear Models Over Normalized Data
 - ➢ SIGMOD'15
 - Pushing learning through joins on normalized data

Note these are "older" papers but they cover big ideas

Towards a Unified Architecture for in-RDBMS Analytics

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré

Towards a Unified Architecture for in-RDBMS Analytics



Current In-RDBMS Analytics Bismarck In-RDBMS Analytics

- Context: database system vendors building specialized in DB implementations of ML techniques.
 - Slow and costly to add support for new models/algorithms
 - > Many ML techniques leverage (convex) empirical risk minimization
- Key Idea: Many ML techniques can be reduced to mathematical programming and there is a single solver (IGD) that fits existing database system abstractions (UDAs)
- Contribution: this paper demonstrates the advantages of leveraging existing optimized abstractions for learning

Challenges Addressed

- Mapping IGD to User Defined Aggregates (UDA)
- Affects of data ordering on convergence
 Data often stored in a pathological ordering (e.g., by label)
- Parallelization of Incremental Algorithm
 - Adopt two standard solutions (model averaging, Hogwild!)

What is the difference between Incremental vs Stochastic Gradient Descent?

Short Answer: Stochastic gradient descent is a form of incremental gradient descent

- Incremental Gradient Descent
 - Formally: taking single gradient steps for each element of a decomposable loss
 - Ordering of gradient terms is arbitrary
- Stochastic Gradient Descent
 - Formally: sampling from the gradient of the empirical loss
 - Sample data and compute gradient of loss on sample
 - Today people often refer to incremental gradient methods as stochastic gradient descent

Mapping IGD to User Defined Aggregates (UDA)

CREATE AGGREGATE bismarck (...) { **initialize**(args) \rightarrow state: randomly initialize model weights **transition**(state, row) \rightarrow state: single gradient update $w^{(k+1)} \leftarrow w^{(k)} - \alpha_k \nabla L\left(\text{row}, w^{(k)}\right)$ $terminate(state) \rightarrow result$ return current model for epoch $merge(state, state) \rightarrow state$ used for parallel model averaging

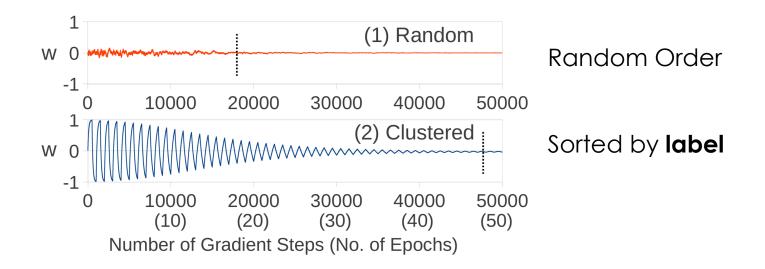
}

- \succ State contains:
 - > Model weights, k, ...
- Invoked repeatedly
 - > Once per epoch
 - Bismarck stored procedure
- > Termination cond.
 - Similar to IGD

Data Ordering Issues

> Data indexed/clustered on key feature or even the label

- ➤ Example: predicting customer churn → data is partitioned by active customers and cancelled customers
 > Why?
- > May slow down convergence:



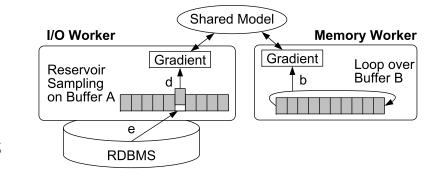
Data Order Solutions

Shuffle data

- > on each epoch (pass through data): Closest to stochastic gradient alg.
 - Expensive data movement and duplication
- > Once: good compromise but requires data movement and dup.

Sample data

- > single reservoir sample per pass
 - > Train on less data per scan \rightarrow slower convergence
- > multiplexed reservoir sampling
 - Concurrently training on sample and raw data streams



Parallelization

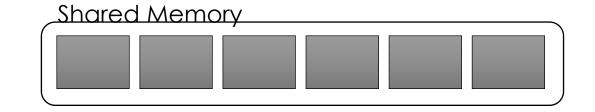
> Pure UDA Version: Primal (model) averaging

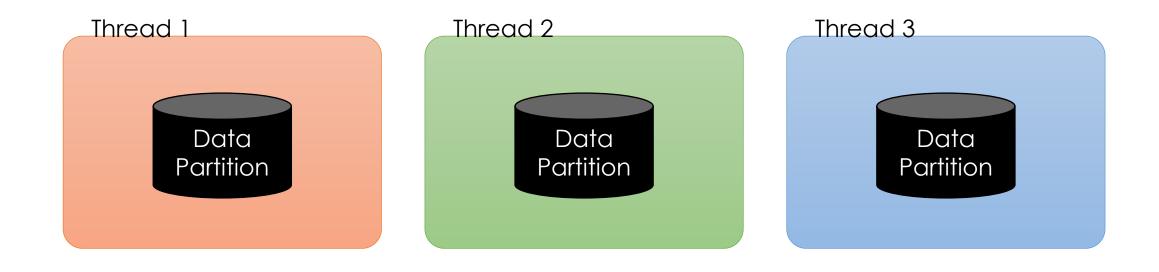
- Ieverage merge operation
- > Appeals to result by Zinkevich* (requires iid data, convex loss, ...)
- Doesn't work as well in practice

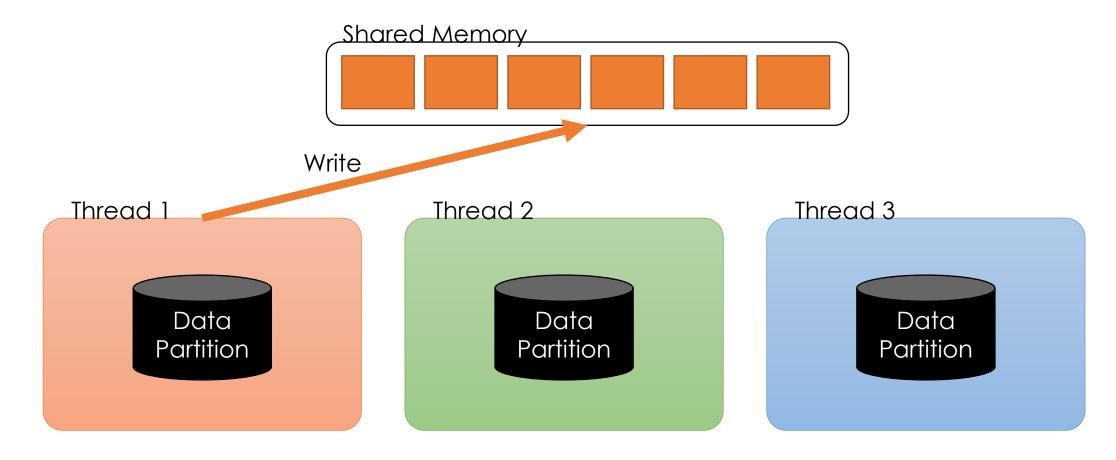
Shared Memory UDA*

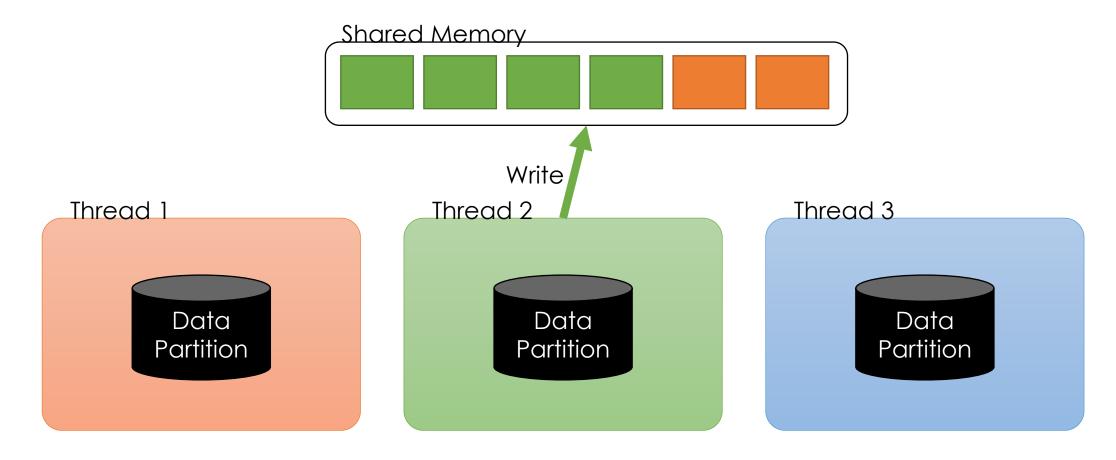
- Consistent (Atomic IG): atomic compare and swap for updates
 - Consistent but limited parallelism + bus traffic and branch misses
- > No locks (Hogwild!™): write to memory and allow races
 - > Word writes within cache lines are atomic (either old or new version wins)

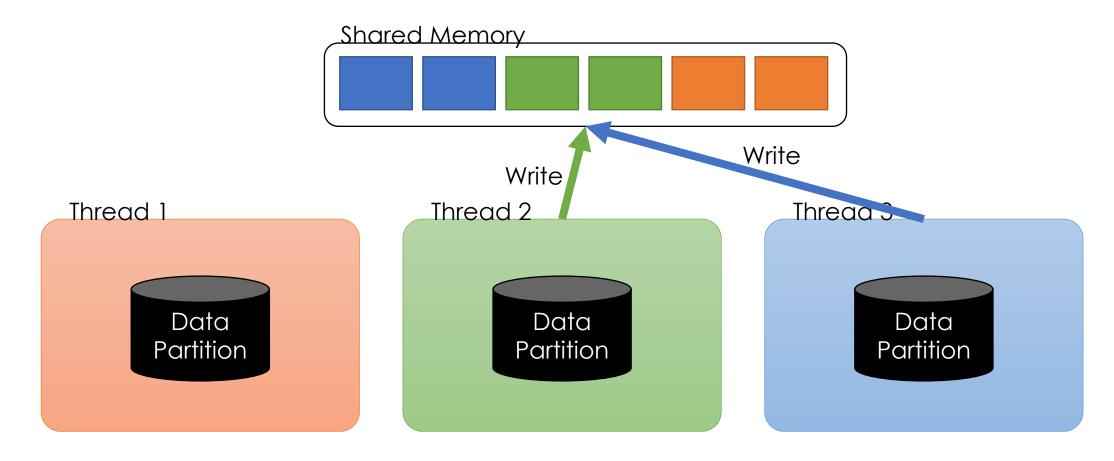
*Implications on distributed databases?





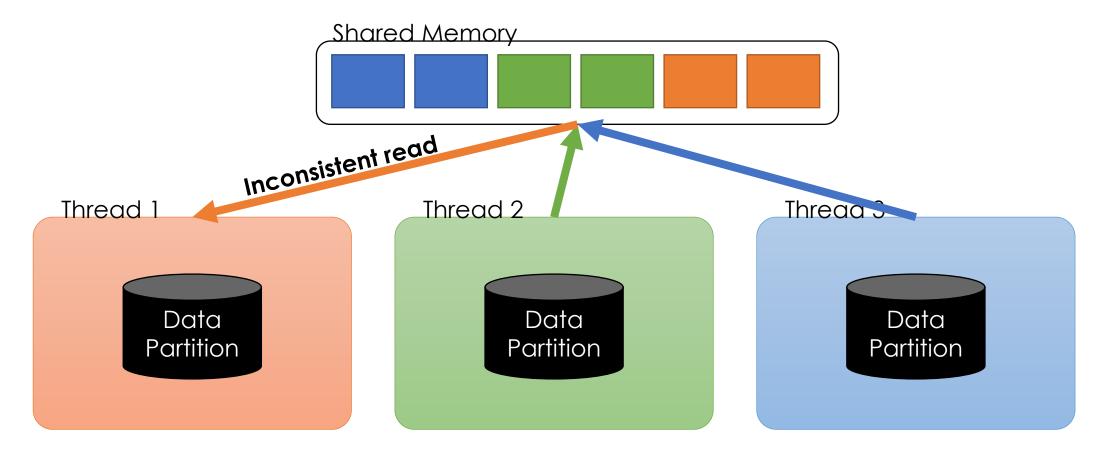






No corrupted floats:

Individual entries are consistent.



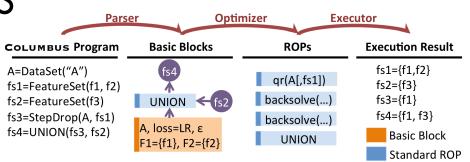
What to think about when reading?

- Implications in contemporary deep learning setting
 TF/Pytorch training in PostgreSQL?
- Implications on distributed training?
- Multiplexed Reservoir Sampling
 - Relationship to **Replay Buffers** in RL
 - Could we leverage idea to mitigate data load to GPU?

Materialization Optimizations for Feature Selection Workloads

Ce Zhang, Arun Kumar, Christopher Ré

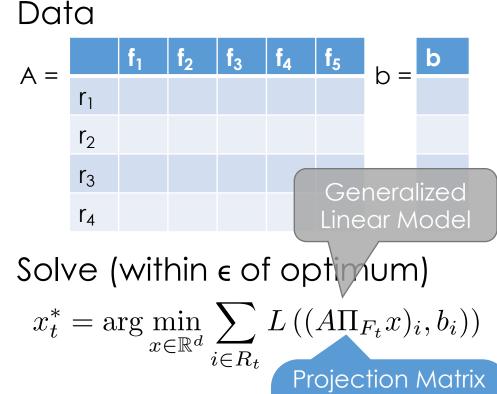
Materialization Optimizations for Feature Selection Workloads



- Key Idea: Rich tradeoff space of what to materialize, how to leverage sampling, and reuse computation
- Contribution: this paper demonstrates the advantages of exploring the tradeoff space and describes ways in which various operations interact.

Problem Formulation

0



For each t:

 R_t : set of rows

 F_t : set of cols

- Solve multiple problems for subsets of rows and columns of original data
- \succ Block consists of:
 - Loss functions L
 - Set of Sets of Rows / Columns
 - \succ Accuracies ϵ
- Explore optimizations targeted at solving the related problems
 - Materialization, Sampling, Compute reuse

Optimization: Lazy vs Eager Materialization

- Lazy Materialization: construct each feature table as it is needed from raw data
- Eager Materialization: precomputes the superset of columns (features) and then projects away what is not needed for each optimization task

Tradeoffs

- ➤ Lazy → Higher computational cost, less storage overhead
- \succ Eager \rightarrow Less compute, greater storage overhead

Optimization: Sampling

- > No Sampling: compute on full data
 - May waste computation when identifying features
- Random Sampling: work on random subset of data (rows)
 Much faster but potentially less accurate conclusions
- Coreset Sampling: weighted sampling to improve approximation of loss estimate
 - Better captures outliers
 - Requires multiple passes through data and rows >> columns

Optimization: Compute Reuse

- QR Factorization: reuse computation across multiple solves of related linear systems
 - Clever (established) idea
 - \succ Limited applicability squared loss + linear models + L₂ regularization

Reuse Solved and $O^T O - I$

=

Example Regularized Least Squares:

Loss minimizer is the solution to:

$$(A^T A + \lambda) \Pi_F x = \Pi_F A^T b \xrightarrow{O(d^3)} QR = (A^T A + \lambda)$$

$$(QR) \Pi_F x = \Pi_F A^T b \implies (R\Pi_F) x = Q^T \Pi_F A^T b$$

Solved O(d²) using backward substitution:

for any \prod_F

Optimization: ADMM + Warmstart

- ADMM Alg.: rewrite more general convex optimization problems (e.g., LASSO, logistic regression, SVM) into sequence of least squares problems (leverage QR)
 - Clever (established) idea
 - Enables use of warm-start

$$\begin{aligned} x^{(k+1)} &= \arg\min_{x} \frac{\rho}{2} \left\| A\Pi_{F}x - \left(z^{(k)} - u^{(k)} \right) \right\|_{2}^{2} \end{aligned} \qquad \begin{array}{l} \text{Least Squares Problem}\\ \text{(use QR technique)} \end{aligned}$$

$$z^{(k+1)} &= \arg\min_{z} \sum_{i=1}^{N} l(z_{i}, b_{i}) + \frac{\rho}{2} \left\| A\Pi_{F}x^{(k+1)} - \left(z - u^{(k)} \right) \right\|_{2}^{2} \end{aligned}$$

$$u^{(k+1)} &= u^{(k)} + A\Pi_{F}x^{(k+1)} - z^{(k+1)} \qquad \begin{array}{l} \text{O(n) one-dimensional}\\ \text{optimization problems} \end{array}$$

Repeatedly Solve

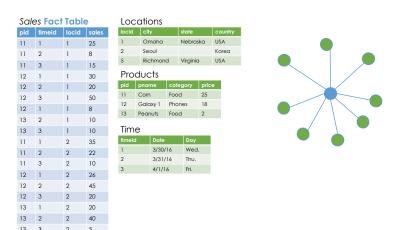
What consider when reading?

- Problem formulation and discussion around user interviews
- > Discussion and framing of tradeoffs
- Would these techniques be applicable beyond feature selection (e.g., hyperparameter search/model design)?

Learning Generalized Linear Models Over Normalized Data

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel

Learning Generalized Linear Models Over Normalized Data



- Context: Training data is often heavily denormalized resulting in substantial redundancy.
 - increases storage and data load time and computation
- Key Idea: Push learning through joins to eliminate redundant loads and inner product calculations
- Contribution: this paper demonstrates the advantages of pushing learning through joins
 - Done using UDA abstractions

Context: Unnormalized Data

 \triangleright

 \succ

	pname	category	price	qty	date	day	city	state	country
	Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
	Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
	Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
	Galaxy	Phones	18	30	1/30/16	Wed.	Omaha	NE	USA
Big	table: m	any colu	mns c	and rc	WS –				
	Substantial and acces		$cy \rightarrow e$	expens	ive to store	Thu.	Omaha	NE	USA
	Make misto	akes while	updati	ng		Fri.	Omaha	NE	USA
	uld we or ciently?	rganize th	ne do	ita ma	ore ^{®0/16}	Wed.	Omaha	NE	USA
	Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

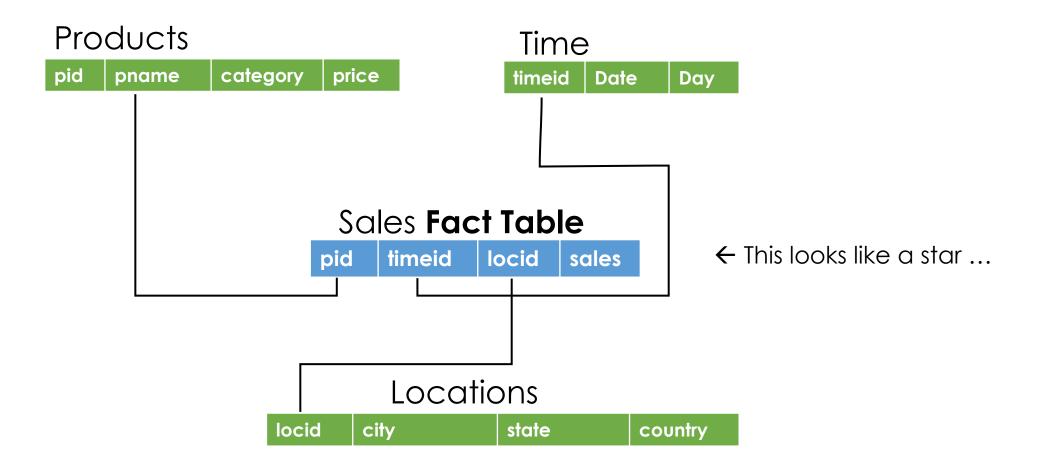
Dimension Tables

- Fact Table
 - Minimizes redundant info
 - Reduces data errors

Dimensions

- Easy to manage and summarize
- ➢ Rename: Galaxy1 → Phablet
- Normalized Representation
- How do we do analysis?
 - Joins!

The Star Schema



Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Time

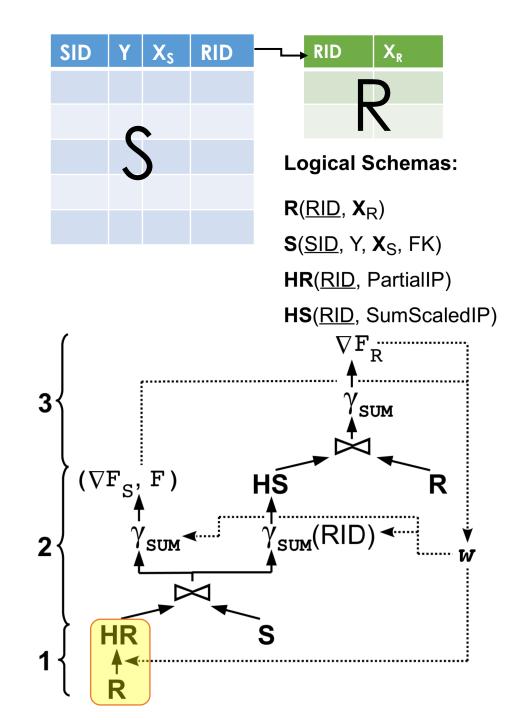
timeid	Date	Day			
1	3/30/16	Wed.			
2	3/31/16	Thu.			
3	4/1/16	Fri.			

Dimension Tables

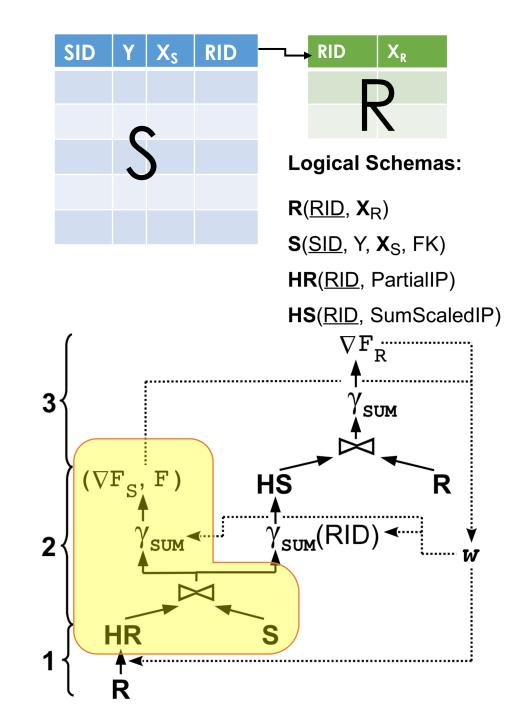
Dimension tables contain
 feature information

Idea: Compute/store feature transformations for dimension tables?

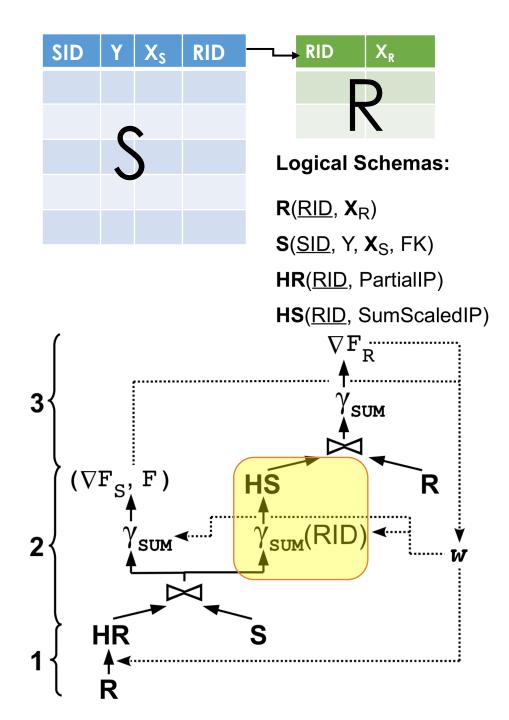
- ➤ Compute partial inner products with features in R → HR
- \succ Join **HR** with **S**
 - Finish computing inner products
 - > Aggregate sum of loss F
 - > Aggregate gradient of loss for **S weights**
- Group join result on RID (foreign key)
 Aggregate gradients on S
- Join aggregated gradients with R
 Aggregate gradient of loss for R weights



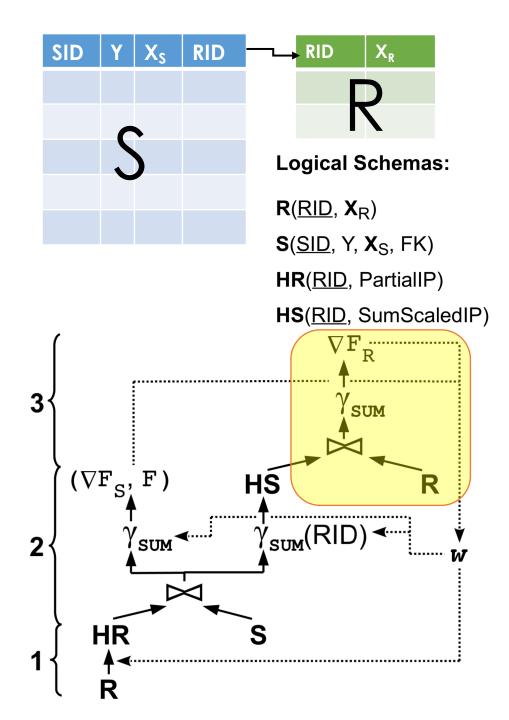
- ➤ Compute partial inner products with features in R → HR
- \succ Join **HR** with **S**
 - Finish computing inner products
 - Aggregate sum of loss F
 - Aggregate gradient of loss for S weights
- Group join result on RID (foreign key)
 Aggregate gradients on S
- Join aggregated gradients with R
 Aggregate gradient of loss for R weights



- ➤ Compute partial inner products with features in R → HR
- \succ Join **HR** with **S**
 - Finish computing inner products
 - > Aggregate sum of loss F
 - > Aggregate gradient of loss for **S weights**
- Group join result on RID (foreign key)
 Aggregate gradients on S
- Join aggregated gradients with R
 Aggregate gradient of loss for R weights



- ➤ Compute partial inner products with features in R → HR
- \succ Join **HR** with **S**
 - Finish computing inner products
 - Aggregate sum of loss F
 - > Aggregate gradient of loss for **S weights**
- Group join result on RID (foreign key)
 Aggregate gradients on S
- Join aggregated gradients with R
 - Aggregate gradient of loss for R weights



Thoughts For Reading

- Emphasis on cost model
 - Can you work through the cost calculations?
- What would happen if features depended on cross terms between tables?
- Would these techniques be applicable beyond feature selection (e.g., hyperparameter search/model design)?
 - > Are there scenarios where this optimization would work?

Done!