
Joseph E. Gonzalez
Co-director of the RISE Lab

jegonzal@cs.berkeley.edu

AI-Systems
Distributed Training

What is? & Why? Distributed Training

Ø Distributed Training* ~ Training across multiple devices
Ø Different local and remote memory speeds / network

Ø Why do we need distributed training?
Ø Faster training by leveraging parallel computation
Ø Additional memory (memory bandwidth) for larger model

Ø “Need” to store weights + activations
Ø Reduce or eliminate data movement

Ø Privacy à Federated Learning
Ø Limited bandwidth to edge devices

Ø Need to process all the data?

*Very simplified definition.

On Dataset Size and Learning
Ø Data is a a resource! (e.g., like processors and memory)

Ø Is having lots of processors a problem?

Ø You don’t have to use all the data!
Ø Though using more data can often help

Ø More data often* dominates models and algorithms

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
fi elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our fi eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to fi ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from unfi ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree
on, being bedeviled by many of the diffi culties we
discuss later in relation to the Semantic Web. The
fi rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we fi nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
fi elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our fi eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to fi ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from unfi ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree
on, being bedeviled by many of the diffi culties we
discuss later in relation to the Semantic Web. The
fi rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we fi nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
fi elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our fi eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to fi ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from unfi ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree
on, being bedeviled by many of the diffi culties we
discuss later in relation to the Semantic Web. The
fi rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we fi nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

*More data also supports
more sophisticated
models and algorithms.

What are the Metrics of Success?

Ø Marketing Team: Maximize number of GPUs/CPUs used
Ø A bad metric … why?

Ø Machine Learning: Minimize passes through the training data
Ø Easy to measure, but not complete … why?

Ø Systems: minimize time to complete a pass through the
training data
Ø Easy to measure, but not complete … why?

Ideal Metric of Success

“Learning”

Record

Record

Second
x

“Learning”

Second
=

Convergence
Machine Learning

Property

Throughput
System

Property

Metrics of Success

Ø Minimize training time to “best model”
Ø Best model measured in terms of test error

Ø Other Concerns?
Ø Complexity: Does the approach introduce additional training

complexity (e.g., hyper-parameters)
Ø Stability: How consistently does the system train the model?
Ø Cost: Will obtaining a faster solution cost more money (power)?

Map-Reduce
for Distributed Training
Learning by Distributed Aggregation

The Early Days….

Learning
Algorithm

ẼD [f(X)]

Query: f

• D. Caragea et al., A Framework for Learning from Distributed Data Using
Sufficient Statistics and Its Application to Learning Decision Trees. Int. J.
Hybrid Intell. Syst. 2004

• Chu et al., Map-Reduce for Machine Learning on Multicore. NIPS’06.

LEARNING FROM STATISTICS (AGGREGATION)*

System

Data

*next set of slides are old!

Can we compute

Algorithm
Query:f✓

Response:⌃

⌃ =
M

r2Data

f✓(r)

✓̂ = (XTX)�1XTY

using the statistical query pattern
in map-reduce?

using the statistical query pattern
in map-reduce?

Can we compute

Algorithm
Query:f✓

Response:⌃

⌃ =
M

r2Data

f✓(r)

✓̂ = (XTX)�1XTY

Query 1
Query 2

Break computation
into two queries

When n >> p we want to
distribute this computation

Cost Analysis
✓̂ = (XTX)�1XTY

XTX) O(np2)

XTY) O(np)

A =

A�1) O(p3)B =

C =

BC) O(p2)

Comutation Cost

Logistic Regression
using Gradient Descent?

What about

Logistic Regression in Map-Reduce
Gradient descent:

fw(x, y) = r logL(y, hw(x))

System

Data

Learning
Algorithm

w w � ⌘tg
Update Model:

Query: fw

g =
1

n

nX

i=1

fw(xi, yi)

13

Logistic Regression in Map-Reduce
Gradient descent:

fw(x, y) = r logL(y, hw(x))

System

Data

Learning
Algorithm

w w � ⌘tg
Update Model:

Query: fw

g =
1

n

nX

i=1

fw(xi, yi)

Map-Reduce is not optimized
for iteration and multi-stage

computation

14

Iteration in Map-Reduce

Training
Data

Map Reduce Learned
Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

15

Cost of Iteration in Map-Reduce
Map Reduce Learned

Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
Data Re

ad
1

Read 2

Read 3

Repeatedly
load same data

16

Cost of Iteration in Map-Reduce
Map Reduce Learned

Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
DataRedundantly save
output between

stages

17

Iteration and
Multi-stage

computation

In-Memory
Dataflow
System

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working
sets. HotCloud’10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012

Dataflow View

Training
Data

(HDFS)

Map

Reduce

Map

Reduce

Map

Reduce

19

Memory Opt. Dataflow

Training
Data

(HDFS)

Map

Reduce

Map

Reduce

Map

Reduce

Cached
Load

10-100× faster than network and disk 20

Memory Opt. Dataflow View

Training
Data

(HDFS)

Map

Reduce

Map

Reduce

Map

Reduce

Efficiently
move data
between
stages

21

Statistical Inference in Large
Latent Variable Models
Ø Large topic models associated variables

with each word and document

Ø Not a good fit for BSP model

Word Dist. by
Topic

Local Variables Documents

t 2 {1, . . . , T}

Tokens

d 2 {1, . . . , D}
i 2 {1, . . . , Len(d)}

xi zi�t ✓d

Bulk Synchronous Parallel (BSP) Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

w

w

w

w1

w2

w3

w

w

w

23

Asynchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

Enable more frequent coordination on parameter values
24

Asynchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Compute Communicate

Iteration

Iteration

Iteration

Compute

Enable more frequent coordination on parameter values
25

Asynchronous Execution

Machine 1

Machine 2

Machine 3

Parameter Server (Logical)

w1 w2 w3 w4 w5 w6 w7 w8 w9

Iteration Iteration Iteration

Iteration Iteration IterationIteration

Iteration Iteration Iteration Iteration Iteration

26

AlexNet

ImageNet Classification
with Deep Convolutional

Neural Networks
Alex Krizhevsky, Illya Sutskever, Geoffrey E. Hinton

TL;DR; This paper describe the deep convolutional architecture, training
techniques, and system innovations that resulted in the winning entry for
the ILSVRC-2012 Benchmark. This model substantially outperformed

the next best model that year.

The AlexNet* Architecture

*Posthumously Named

Without GPU Partitioning

The Actual AlexNet* Architecture

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

from the paper

*Posthumously Named

Training on Multiple GPUs
Ø Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

Ø 60M Parameters ~ 240 MB
Ø Need to cache activation maps for backpropagation

Ø Batch size = 128
Ø 128 * (227*227*3 + 55*55*96*2 + 96*27*27*2 + 256*27*27*2 + 256*13*13*2 +

13*13*384*2 + 256*13*13 + 6*6*256 + 4096 + 4096 + 1000) *4 Bytes ~
782MB Activations

Ø That is assuming no
overhead and single
precision values

Ø Tuned splitting across GPUS
to balance communication
and computation

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

Interesting Consequence of
Partitioned Training

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

Edge Detection

Color Filters

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

Put into historical context

AlexNet

Good Embeddings …

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Query

O
u
r

m
o
d

e
l

●
M

a
x
-p

o
o

lin
g

 l
a

y
e

rs
 f
o

llo
w

 f
ir
s
t,
 s

e
c
o

n
d

,
a

n
d

fi
ft
h

 c
o

n
v
o

lu
ti
o

n
a

l
la

y
e

rs

●
T

h
e

 n
u

m
b

e
r

o
f
n

e
u

ro
n

s
 i
n

 e
a

c
h

 l
a

y
e

r
is

 g
iv

e
n

b

y
 2

5
3

4
4

0
,
1

8
6

6
2

4
,
6

4
8

9
6

,
6

4
8

9
6

,
4

3
2

6
4

,
4

0
9

6
,
4

0
9

6
,
1

0
0

0

Embedding
Layer

Images with
largest dot
product
with query

This will later be the foundation of many papers

DistBelief

Large Scale
Distributed
Deep Networks

Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,

Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,

Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng

{jeff, gcorrado}@google.com
Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training
of a more modestly- sized deep network for a commercial speech recognition ser-
vice. Although we focus on and report performance of these methods as applied
to training large neural networks, the underlying algorithms are applicable to any
gradient-based machine learning algorithm.

1 Introduction

Deep learning and unsupervised feature learning have shown great promise in many practical ap-
plications. State-of-the-art performance has been reported in several domains, ranging from speech
recognition [1, 2], visual object recognition [3, 4], to text processing [5, 6].

It has also been observed that increasing the scale of deep learning, with respect to the number
of training examples, the number of model parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes
the training of modestly sized deep networks practical. A known limitation of the GPU approach is
that the training speed-up is small when the model does not fit in GPU memory (typically less than
6 gigabytes). To use a GPU effectively, researchers often reduce the size of the data or parameters
so that CPU-to-GPU transfers are not a significant bottleneck. While data and parameter reduction
work well for small problems (e.g. acoustic modeling for speech recognition), they are less attractive
for problems with a large number of examples and dimensions (e.g., high-resolution images).

In this paper, we describe an alternative approach: using large-scale clusters of machines to distribute
training and inference in deep networks. We have developed a software framework called DistBe-
lief that enables model parallelism within a machine (via multithreading) and across machines (via

1

NIPS 2012 (Same Year as AlexNet)

Described the system for the 2012 ICML Paper

Building High-level Features

Using Large Scale Unsupervised Learning

Quoc V. Le quocle@cs.stanford.edu

Marc’Aurelio Ranzato ranzato@google.com

Rajat Monga rajatmonga@google.com

Matthieu Devin mdevin@google.com

Kai Chen kaichen@google.com

Greg S. Corrado gcorrado@google.com

Jeff Dean jeff@google.com

Andrew Y. Ng ang@cs.stanford.edu

Abstract

We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it
possible to learn a face detector using only
unlabeled images using unlabeled images?
To answer this, we train a 9-layered locally
connected sparse autoencoder with pooling
and local contrast normalization on a large
dataset of images (the model has 1 bil-
lion connections, the dataset has 10 million
200x200 pixel images downloaded from the
Internet). We train this network using model
parallelism and asynchronous SGD on a clus-
ter with 1,000 machines (16,000 cores) for
three days. Contrary to what appears to be
a widely-held intuition, our experimental re-
sults reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 20,000 object categories
from ImageNet, a leap of 70% relative im-
provement over the previous state-of-the-art.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from unlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive
answer to this question will give rise to two significant
results. Practically, this provides an inexpensive way
to develop features from unlabeled data. But perhaps
more importantly, it answers an intriguing question as
to whether the specificity of the “grandmother neuron”
could possibly be learned from unlabeled data. Infor-
mally, this would suggest that it is at least in principle
possible that a baby learns to group faces into one class

Discovers Cat Features

DistB
eliefLabel

Building High-Level Features Using
Large Scale Unsupervised Learning

ICML 2012

Building High-level Features

Using Large Scale Unsupervised Learning

Quoc V. Le quocle@cs.stanford.edu

Marc’Aurelio Ranzato ranzato@google.com

Rajat Monga rajatmonga@google.com

Matthieu Devin mdevin@google.com

Kai Chen kaichen@google.com

Greg S. Corrado gcorrado@google.com

Jeff Dean jeff@google.com

Andrew Y. Ng ang@cs.stanford.edu

Abstract

We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it
possible to learn a face detector using only
unlabeled images using unlabeled images?
To answer this, we train a 9-layered locally
connected sparse autoencoder with pooling
and local contrast normalization on a large
dataset of images (the model has 1 bil-
lion connections, the dataset has 10 million
200x200 pixel images downloaded from the
Internet). We train this network using model
parallelism and asynchronous SGD on a clus-
ter with 1,000 machines (16,000 cores) for
three days. Contrary to what appears to be
a widely-held intuition, our experimental re-
sults reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 20,000 object categories
from ImageNet, a leap of 70% relative im-
provement over the previous state-of-the-art.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from unlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive
answer to this question will give rise to two significant
results. Practically, this provides an inexpensive way
to develop features from unlabeled data. But perhaps
more importantly, it answers an intriguing question as
to whether the specificity of the “grandmother neuron”
could possibly be learned from unlabeled data. Infor-
mally, this would suggest that it is at least in principle
possible that a baby learns to group faces into one class

Building high-level features using large-scale unsupervised learning

DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three im-
portant ingredients: local receptive fields, pooling
and local contrast normalization. First, to scale the
autoencoder to large images, we use a simple idea
known as local receptive fields (LeCun et al., 1998;
Raina et al., 2009; Lee et al., 2009; Le et al., 2010).
This biologically inspired idea proposes that each fea-
ture in the autoencoder can connect only to a small
region of the lower layer. Next, to achieve invari-
ance to local deformations, we employ local L2 pool-
ing (Hyvärinen et al., 2009; Le et al., 2010) and local
contrast normalization (Jarrett et al., 2009). L2 pool-
ing, in particular, allows the learning of invariant fea-
tures (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-
logical and computational models (Pinto et al., 2008;

Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sublayer and the second sub-
layer pools over 5x5 overlapping neighborhoods of fea-
tures (i.e., pooling size). The neurons in the first sub-
layer connect to pixels in all input channels (or maps)
whereas the neurons in the second sublayer connect
to pixels of only one channel (or map).3 While the
first sublayer outputs linear filter responses, the pool-
ing layer outputs the square root of the sum of the
squares of its inputs, and therefore, it is known as L2
pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.

9x “deep” Pre-Convolutional*
Architecture

Each Neuron has
separate weights

sparse
connectivity

~1 billion
parameters!

*This pre-dates AlexNet but is two decades after LeNet.

30x bigger than
other deep nets.

Combine Model and Data Parallelism
M

ac
hi

ne
 1

M
achine 2

M
ac

hi
ne

 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Model Parallelism Data Parallelism

Downpour SGDThis appears in earlier work on graph systems …

Combine Model and Data Parallelism

M
ac

hi
ne

 1

M
achine 2

M
ac

hi
ne

 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Model Parallelism Data Parallelism

Downpour SGD Sandblaster L-BFGS

Asynchronous Synchronous

Sandblaster L-BFGS

Synchronous
Ø L-BFGS

Ø Commonly used for convex
opt. problems

Ø Requires repeated scans of
all data

Ø Robust, minimal tuning

Ø Naturally fits map-reduce pattern

Ø Innovations:
Ø accumulate gradients and store outputs in a sharded key value

store (parameter server)
Ø Tiny tasks + backup tasks to mitigate stragglers

Combine Model and Data Parallelism

M
ac

hi
ne

 1

M
achine 2

M
ac

hi
ne

 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Model Parallelism Data Parallelism

Downpour SGD Sandblaster L-BFGS

Asynchronous Synchronous

Downpour SGD

Claimed Innovations

Ø Parameter Server

Ø Combine model and data
parallelism in an async.
execution.

Ø Adagrad stabilization

Ø Warmstarting

Asynchronous

Parameter Servers
Ø Essentially a sharded key-value store

Ø support for put, get, add

Ø Idea appears in earlier papers:

126

“Scalable Inference in Latent Variable Models”,
Ahmed, Aly, Gonzalez, Narayanamruthy, and
Smola. (WSDM’12)

Algorithm 1 State Synchronization

Initialize n(t, w) = n
i(t, w) = n

i
old(t, w) for all i.

while sampling do
Lock n(t, w) globally for some w.
Lock ni(t, w) locally.
Update n(t, w) = n(t, w) +

⇥
n
i(t, w)� n

i
old(t, w)

⇤

Update n
i(t, w) = n

i
old(t, w) = n(t, w)

Update local ni(t).
Release ni(t, w) locally.
Release n(t, w) globally.

end while

is happening one word at a time the algorithm does not in-
duce deadlocks in the sampler. Moreover, the probability of
lock contention between di↵erent computers is minimal (we
have > 106 distinct words and typically 102 computers with
less than 10 synchronization threads per computer). Note
that the high number of synchronization threads (up to 10)
in practice is due to the high latency of memcached.

sampler sampler sampler sampler

memcached memcached memcached memcached

Figure 3: Each sampler keeps on processing the sub-
set of data associated with it. Simultaneously a syn-
chronization thread keeps on reconciling the local
and global state tables.

Note that this communications template could be used
in a considerably more general context: the blackboard ar-
chitecture supports any system where a common state is
shared between a large number of systems whose changes
a↵ect the global value of the state. For instance, we may
use it to synchronize parameters in a stochastic gradient de-
scent scenario by asynchronously averaging local and global
parameter values as is needed in dual decomposition meth-
ods. Likewise, the same architecture could be used to per-
form message passing [1] whenever the junction tree of a
graphical model has star topology. By keeping copies of the
old messages local (represented by n

i
old) on the nodes it is

possible to scale such methods to large numbers of clients
without exhausting memory on memcached.

4. IMPLEMENTATION

4.1 Basic Tools
We use Google’s protobuf3 with optimization set to favor

speed, since it provides disk-speed data serialization with
little overhead. Since protobuf cannot deal well with ar-
bitrary length messages (it tries loading them into memory
entirely before parsing) we treat each document separately
as a message to be parsed. To minimize write requirements
we store documents and their topic assignments separately.
3http://code.google.com/p/protobuf/

Data flow in terms of documents is entirely local. On
each machine it is handled by Intel’s Threading-Building-
Blocks4 library since it provides a convenient pipeline struc-
ture which automatically handles parallelization and schedul-
ing for multicore processors. Locking between samplers, up-
daters, and synchronizers is handled by a read-write lock
(spinlock) — the samplers impose a non-exclusive read lock
while the update thread imposes an exclusive write lock.

The asynchronous communication between a cluster of
computers is handled by memcached5 servers which run stan-
dalone on each of the computers and the libmemcached
client access library which is integrated into the LDA code-
base. The advantage of this design is that no dedicated
server code needs to be written. A downside is the high
latency of memcached, in particular, when client and server
are located on di↵erent racks in the server center. Given the
modularity of our design it would be easy to replace it by a
service with lower latency, such as RAMCloud once the latter
becomes available. In particular, a versioned write would be
highly preferable to the current pessimistic locking mecha-
nism that is implemented in Algorithm 1 — collisions are
far less likely than successful independent updates. Failed
writes due to versioned data, as they will be provided in
RAMCloud would address this problem.

4.2 Data Layout
To store the n(t, w) we use the same memory layout as

Mallet. That is, we maintain a list of (topic, count) pairs for
each word w sorting in order of decreasing counts. This al-
lows us to implement a sampler e�ciently (with high proba-
bility we do not reach the end of the list) since the most likely
topics occur first. Random access (which occurs rarely),
however, isO(k) where k is the number of topics with nonzero
count. Our code requires twice the memory footprint as that
of Mallet (64bit rather than 32bit per (topic, count) pair)
since for millions of documents the counters would overflow.

The updater thread receives a list of messages of the form
(word, old topic id, new topic id) from the sampler for every
document (see Figure 1). Whenever the changes in counts
do not result in a reordering of the list of (topic, count) pairs
and update is carried out without locking. This is possible
since on modern x86 architectures updates of 32bit integers
are atomic provided that the data is aligned with the bus
boundaries. Whenever changes necessitate a reordering we
acquire a write lock (any sampler using this word at the very
moment stalls at this point) before e↵ecting changes. Since
counts change only by 1 it is unlikely that (topic, count)
pairs move far within the list. This reduces lock time.

4.3 Initialization and Recovery for Multicore
At initialization time no useful topic assignment exists and

we want to assign topics at random to words of the docu-
ments. This can be accommodated by a random assignment
sampler as described in the diagram below:

tokens file
combiner

build word-
topic table

output to
file topics

sampler
sampler

sampler
samplersampler:

randomly
assigned

In particular, the file combiner and the output routine
are identical. Obviously this could be replaced with a more

4http://www.threadingbuildingblocks.org/
5http://www.danga.com/memcached/

707

“An Architecture for Parallel Topic
Models”, Smola and Narayanamruthy.
(VLDB’10)

DistBelief was probably the first paper to call a sharded key-value store a Parameter Server.

Downpour SGD

Claimed Innovations

Ø Parameter Server

Ø Combine model and data
parallelism in an async.
execution.

Ø Adagrad stabilization

Ø Warmstarting

Asynchronous

Key Results: Training and Test Error

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
ve

ra
g
e
 F

ra
m

e
 A

cc
u
ra

cy
 (

%
)

Accuracy on Training Set

SGD [1]
DownpourSGD [20]
DownpourSGD [200] w/Adagrad
Sandblaster L−BFGS [2000]

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
ve

ra
g
e
 F

ra
m

e
 A

cc
u
ra

cy
 (

%
)

Accuracy on Test Set

SGD [1]
GPU [1]
DownpourSGD [20]
DownpourSGD [20] w/Adagrad
DownpourSGD [200] w/Adagrad
Sandblaster L−BFGS [2000]

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization meth-
ods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour
and Sandblaster experiments initialized using the same ⇠10 hour warmstart of simple SGD.

the model on more than 8 machines actually slows training, as network overhead starts to dominate
in the fully-connected network structure and there is less work for each machine to perform with
more partitions.

In contrast, the much larger, locally-connected image models can benefit from using many more
machines per model replica. The largest model, with 1.7 billion parameters benefits the most, giving
a speedup of more than 12⇥ using 81 machines. For these large models using more machines
continues to increase speed, but with diminishing returns.

Optimization method comparisons: To evaluate the proposed distributed optimization proce-
dures, we ran the speech model described above in a variety of configurations. We consider two
baseline optimization procedures: training a DistBelief model (on 8 partitions) using conventional
(single replica) SGD, and training the identical model on a GPU using CUDA [27]. The three dis-
tributed optimization methods we compare to these baseline methods are: Downpour SGD with a
fixed learning rate, Downpour SGD with Adagrad learning rates, and Sandblaster L-BFGS.

Figure 4 shows classification performance as a function of training time for each of these methods
on both the training and test sets. Our goal is to obtain the maximum test set accuracy in the
minimum amount of training time, regardless of resource requirements. Conventional single replica
SGD (black curves) is the slowest to train. Downpour SGD with 20 model replicas (blue curves)
shows a significant improvement. Downpour SGD with 20 replicas plus Adagrad (orange curve)
is modestly faster. Sandblaster L-BFGS using 2000 model replicas (green curves) is considerably
faster yet again. The fastest, however, is Downpour SGD plus Adagrad with 200 model replicas (red
curves). Given access to sufficient CPU resourses, both Sandblaster L-BFGS and Downpour SGD
with Adagrad can train models substantially faster than a high performance GPU.

Though we did not confine the above experiments to a fixed resource budget, it is interesting to
consider how the various methods trade off resource consumption for performance. We analyze
this by arbitrarily choosing a fixed test set accuracy (16%), and measuring the time each method
took to reach that accuracy as a function of machines and utilized CPU cores, Figure 5. One of the
four points on each traces corresponds to a training configuration shown in Figure 4, the other three
points are alternative configurations.

In this plot, points closer to the origin are preferable in that they take less time while using fewer re-
sources. In this regard Downpour SGD using Adagrad appears to be the best trade-off: For any fixed
budget of machines or cores, Downpour SGD with Adagrad takes less time to reach the accuracy
target than either Downpour SGD with a fixed learning rate or Sandblaster L-BFGS. For any allotted
training time to reach the accuracy target, Downpour SGD with Adagrad used few resources than
Sandblaster L-BFGS, and in many cases Downpour SGD with a fixed learning rate could not even
reach the target within the deadline. The Sandblaster L-BFGS system does show promise in terms

7

Weird 20K
Error Metric

Wall clock
time is good.

Looks like learning
rate reset

Why are they in the NY Times

Ø Trained a 1.7 billion parameter model (30x larger than
state-of-the-art) (was it necessary?)

Ø Using 16,000 cores (efficiently?)

Ø Achieves 15.8 accuracy on ImageNet 20K (70%
improvement over state of the art).
Ø Non-standard benchmark

Ø Qualitatively interesting
results

Long-term Impact
Ø The parameter server appears in many later machine

learning systems

Ø Downpour (Asynchronous) SGD has been largely
replaced by synchronous systems for supervised training
Ø Asynchrony is still popular in RL research

Ø Why?

Ø Model parallelism is still used for large language models
Ø Predated this work

Ø The neural network architectures studied here have
been largely replaced by convolutional networks

More recent
large-scale training

Ø Generated a lot of press
Ø Surpassed by
Fast.ai: “Now anyone can train
ImageNet in 18 minutes for $40.”
blog post

Ø Popularized linear
learning rate scaling

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

1

ar
X

iv
:1

70
6.

02
67

7v
2

 [c
s.C

V
]

30
 A

pr
 2

01
8

2018 (Unpublished on Arxiv)

Contrasting to the first paper

Ø Synchronous SGD
Ø Much of the recent work has focused on synchronous setting
Ø Easier to reason about

Ø Focus exclusively on data parallelism: batch-size scaling

Ø Focuses on the generalization gap problem

How do you distribute SGD?

For t from 0 to convergence:
✓(0) initial vector (random, zeros …)

B ⇠ Random subset of indices

St
oc

ha
st

ic
 G

ra
d

ie
nt

 D
es

ce
nt

✓(t+1) ✓(t) � ⌘t

1

|B|
X

i2B
r✓L(yi, f(xi; ✓))

����
✓=✓(t)

!

<latexit sha1_base64="dqe0l/uAyU9yrk7gcXdzkXcePmM=">AAACqnicbVFbb9MwFHbCbYRbB4+8WFSIVIwqgUkgIaRpvPAA0kC0HaqL5bhOas1xIvsEqLz8OP4Cb/wb3CYSZeNIlj5/37mfrFbSQpL8DsIrV69dv7F3M7p1+87de4P9+1NbNYaLCa9UZU4zZoWSWkxAghKntRGszJSYZWdvN/rsmzBWVvozrGuxKFmhZS45A0/RwU8CKwHsq4sBP8XpqMVEiRyYMdV3/Ffz/DNM/IdC5xDjiOSGcZe27pyUDFacKXfcnvsEtimpk0RqvCN4XrNMMdol7aQsd+/beE3lAc7jH1S+7kuORhHJZFEYYnzzQF1Hv9ltqCVGFisY0cEwGSdbw5dB2oMh6u2EDn6RZcWbUmjgilk7T5MaFo4ZkFyJNiKNFTXjZ6wQcw81K4VduO2qW/zYM0ucV8Y/DXjL7kY4Vlq7LjPvuRnQXtQ25P+0eQP5q4WTum5AaN4VyhuFocKbu+GlNIKDWnvAuJG+V8xXzF8A/HUjv4T04siXwfT5OH0xTj8eDo+O+3XsoYfoEYpRil6iI/QOnaAJ4sGT4EMwDWbhQfgp/BLOO9cw6GMeoH8sXP4B4HnR4g==</latexit>

Slow? (~150ms)
Depending on size of B

Data
Parallelism

Batch Size Scaling
Ø Increase the batch size by adding machines

Ø Each server processes a fixed batch size (e.g., n=32)

Ø As more servers are added (k) the effective overall
batch size increases linearly

Ø Why do these additional servers help?

✓(t+1) ✓(t) � ⌘̂

0

@1

k

kX

j=1

1

|Bj |
X

i2Bj

r✓L(yi, f(xi; ✓))

����
✓=✓(t)

1

A

<latexit sha1_base64="eMmXZxDqLNwjAZ0Zvvfyqa8Lukk=">AAACyHicbVFdi9QwFE3r11o/dtRHX4KD0EEdWhUUZGFZEUR8WMHZXZjMljSTttlJ05LcupZsX/yJvvnkXzEzLbofXggczjmXe29OWkthIIp+ef616zdu3tq6Hdy5e+/+9ujBwwNTNZrxGatkpY9SargUis9AgORHtea0TCU/TFfv1/rhN66NqNRXaGu+KGmuRCYYBUclo98ECg702IaAn+F40mEieQZU6+oU/9Mc/wKTgoIljhlMIck0ZTbu7KojpikTe7ITd8er4C9/RkoKBaPS7nXJyZnr29gEEQpfkJyiaCpp0o/sxTSzn7uwTcRznIXfE/FuWGgyCUgq8lwT7U6DxPb0zvl1O6JFXsAkGY2jabQpfBXEAxijofaT0U+yrFhTcgVMUmPmcVTDwlINgkneBaQxvKZsRXM+d1DRkpuF3QTR4aeOWeKs0u4pwBv2fIelpTFtmTrn+kBzWVuT/9PmDWRvF1aougGuWD8oaySGCq9TxUuhOQPZOkCZFm5XzArqUgCXfeA+Ib588lVw8HIav5rGX16Pd/eG79hCj9ETFKIYvUG76CPaRzPEvA/eygOv8T/5tX/qt73V94aeR+hC+T/+ALw/32s=</latexit>

Bigger isn’t Always Better

Ø Motivation for larger batch sizes
Ø More opportunities for parallelism à but is it useful?
Ø Recall (1/n variance reduction):

Ø Is a variance reduction helpful?
Ø Only if it let’s you take bigger steps (move faster)
Ø Does it affect the final prediction accuracy?

⇡ 1

|B|
X

i2B
r✓L(yi, f(xi; ✓))

<latexit sha1_base64="Thm6Taoh2IDis7KSsPNUqU3pCo8=">AAACTnicbZFNaxsxEIa1bpO4zked9tiLqAk4EMxuWmggl5BeeughhToJeM0yK8/GIlrtIs0GG2V/YS4ht/6MXnpoCK38cUiTDghe3mcGjV6lpZKWwvBH0HjxcmV1rfmqtb6xufW6vf3m1BaVEdgXhSrMeQoWldTYJ0kKz0uDkKcKz9LLzzN+doXGykJ/p2mJwxwutMykAPJW0sYYytIUEx5nBoSLancd50BjAcod19c1j22VJ07GUvNHwPsaUgVJTGMkWKA0c1/r7jSRezzrThJ5yBd0dzdpd8JeOC/+XERL0WHLOknad/GoEFWOmoQCawdRWNLQgSEpFNatuLJYgriECxx4qSFHO3TzOGq+450RzwrjjyY+dx9POMitneap75ytbZ+ymfk/NqgoOxg6qcuKUIvFRVmlOBV8li0fSYOC1NQLEEb6XbkYg8+V/A+0fAjR0yc/F6f7vehDL/r2sXN0vIyjyd6x96zLIvaJHbEv7IT1mWA37Cf7ze6D2+BX8BD8WbQ2guXMW/ZPNZp/AaOPtas=</latexit>

1

n

X

i=1

r✓L(yi, f(xi; ✓))
<latexit sha1_base64="9tIkTA05K6qKF5YET43h6Bewhaw=">AAACLnicbZDLSsNAFIYn3q23qks3g0WoICVRQUEEUQQXLhSsCk0JJ9OJHTqZhJkTsYQ8kRtfRReCirj1MZxeFt4ODHz8/znMOX+YSmHQdV+ckdGx8YnJqenSzOzc/EJ5cenSJJlmvM4SmejrEAyXQvE6CpT8OtUc4lDyq7Bz1POvbrk2IlEX2E15M4YbJSLBAK0UlI+pH2lguVfkqqC+yeIgF/ueRQWhhMDHNkegfgzYDqP8tKh2A7FBo+pdIPbowF1fD8oVt+b2i/4FbwgVMqyzoPzktxKWxVwhk2BMw3NTbOagUTDJi5KfGZ4C68ANb1hUEHPTzPvnFnTNKi0aJdo+hbSvfp/IITamG4e2s7e2+e31xP+8RobRbjMXKs2QKzb4KMokxYT2sqMtoTlD2bUATAu7K2VtsPGhTbhkQ/B+n/wXLjdr3lbNO9+uHBwO45giK2SVVIlHdsgBOSFnpE4YuSeP5JW8OQ/Os/PufAxaR5zhzDL5Uc7nF34aqCU=</latexit>

Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a

g
e

N
e

t
to

p
-1

 v
a

lid
a

tio
n

 e
rr

o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

1

ar
X

iv
:1

70
6.

02
67

7v
2

 [c
s.C

V
]

30
 A

pr
 2

01
8

Larger batch sizes harm
generalization performance.

Rough “Intuition”

Parameter values along some direction

Lo
ss

Sharp Minima
Hypothesis

Small batch gradient descent acts as a regularizer

Key problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule
Ø Scale the learning rate linearly with the batch size

Ø Addresses generalization performance by taking larger
steps (also improves training convergence)

Ø Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
Ø Gradual warmup solution: increase learning rate scaling from

constant to linear in first few epochs
Ø Doesn’t help for very large k…

✓(t+1) ✓(t) � ⌘̂

0

@1

k

kX

j=1

1

|Bj |
X

i2Bj

r✓L(yi, f(xi; ✓))

����
✓=✓(t)

1

A

<latexit sha1_base64="eMmXZxDqLNwjAZ0Zvvfyqa8Lukk=">AAACyHicbVFdi9QwFE3r11o/dtRHX4KD0EEdWhUUZGFZEUR8WMHZXZjMljSTttlJ05LcupZsX/yJvvnkXzEzLbofXggczjmXe29OWkthIIp+ef616zdu3tq6Hdy5e+/+9ujBwwNTNZrxGatkpY9SargUis9AgORHtea0TCU/TFfv1/rhN66NqNRXaGu+KGmuRCYYBUclo98ECg702IaAn+F40mEieQZU6+oU/9Mc/wKTgoIljhlMIck0ZTbu7KojpikTe7ITd8er4C9/RkoKBaPS7nXJyZnr29gEEQpfkJyiaCpp0o/sxTSzn7uwTcRznIXfE/FuWGgyCUgq8lwT7U6DxPb0zvl1O6JFXsAkGY2jabQpfBXEAxijofaT0U+yrFhTcgVMUmPmcVTDwlINgkneBaQxvKZsRXM+d1DRkpuF3QTR4aeOWeKs0u4pwBv2fIelpTFtmTrn+kBzWVuT/9PmDWRvF1aougGuWD8oaySGCq9TxUuhOQPZOkCZFm5XzArqUgCXfeA+Ib588lVw8HIav5rGX16Pd/eG79hCj9ETFKIYvUG76CPaRzPEvA/eygOv8T/5tX/qt73V94aeR+hC+T/+ALw/32s=</latexit>

=
⌘k

<latexit sha1_base64="kQqnuCY5RPzV63+hItRh857Vte8=">AAAB8HicdVDLSsNAFL2pr1pfVZduBovgKiQ++lgIRTcuK9iHtKFMppN26EwSZiZCCf0KNy4UcevnuPNvnLYRVPTAhcM593LvPX7MmdKO82HllpZXVtfy64WNza3tneLuXktFiSS0SSIeyY6PFeUspE3NNKedWFIsfE7b/vhq5rfvqVQsCm/1JKaewMOQBYxgbaQ7dIF6VGM07hdLjl2r1srnDnJsZw5DKrWqW64gN1NKkKHRL773BhFJBA014VipruvE2kux1IxwOi30EkVjTMZ4SLuGhlhQ5aXzg6foyCgDFETSVKjRXP0+kWKh1ET4plNgPVK/vZn4l9dNdFD1UhbGiaYhWSwKEo50hGbfowGTlGg+MQQTycytiIywxESbjAomhK9P0f+kdWK7p7Z7c1aqX2Zx5OEADuEYXKhAHa6hAU0gIOABnuDZktaj9WK9LlpzVjazDz9gvX0CxiCPwA==</latexit>

Other Details
Ø Independent Batch Norm: Batch norm calculation applies

only to local batch size (n).

Ø All-Reduce: Recursive halving and doubling algorithm
Ø Used instead of popular ring reduction (fewer rounds)

Ø Gloo a library for efficient collective communications

Ø Big Basin GPU Servers: Designed for deep learning workloads
Ø Analysis of communication requirements à latency bound

Ø No discussion on straggler or fault-tolerance
Ø Why?!

Key Results

All curves closely
match using the linear
scaling rule.

Note learning rate
schedule drops.

0 20 40 60 80

epochs

20

40

60

80

100

e
rr

o
r

%

kn=256, =0.1 [train]

kn=256, =0.1 [val]

kn=8k, =3.2 [train]

kn=8k, =3.2 [val]

Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn 8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.

0 20 40 60 80

epochs

20

40

60

80

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn=256, = 0.2, 23.68% 0.09

Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9

Training vs Validation

Key Results

0 20 40 60 80

epochs

20

40

60

80

100

e
rr

o
r

%

kn=256, =0.1 [train]

kn=256, =0.1 [val]

kn=8k, =3.2 [train]

kn=8k, =3.2 [val]

Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn 8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.

0 20 40 60 80

epochs

20

40

60

80

100

tr
a

in
in

g
 e

rr
o

r
%

kn=256, = 0.1, 23.60% 0.12

kn=256, = 0.2, 23.68% 0.09

Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9

256 512 1k 2k 4k 8k 11k

mini-batch size

0.2

0.22

0.24

0.26

0.28

0.3

tim
e
 p

e
r

ite
ra

tio
n
 (

se
cs

)

0.5

1

2

4

8

16

tim
e
 p

e
r

e
p
o
ch

 (
m

in
s)

Figure 7. Distributed synchronous SGD timing. Time per itera-
tion (seconds) and time per ImageNet epoch (minutes) for training
with different minibatch sizes. The baseline (kn = 256) uses 8
GPUs in a single server , while all other training runs distribute
training over (kn/256) server. With 352 GPUs (44 servers) our
implementation completes one pass over all ⇠1.28 million Ima-
geNet training images in about 30 seconds.

ing good features that transfer, or generalize well, to re-
lated tasks. A question of key importance is if the features
learned with large minibatches generalize as well as the fea-
tures learned with small minibatches?

To test this, we adopt the object detection and in-
stance segmentation tasks on COCO [27] as these advanced
perception tasks benefit substantially from ImageNet pre-
training [10]. We use the recently developed Mask R-CNN
[14] system that is capable of learning to detect and segment
object instances. We follow all of the hyper-parameter set-
tings used in [14] and only change the ResNet-50 model
used to initialize Mask R-CNN training. We train Mask R-
CNN on the COCO trainval35k split and report results
on the 5k image minival split used in [14].

It is interesting to note that the concept of minibatch
size in Mask R-CNN is different from the classification
setting. As an extension of the image-centric Fast/Faster
R-CNN [9, 31], Mask R-CNN exhibits different minibatch
sizes for different layers: the network backbone uses two
images (per GPU), but each image contributes 512 Regions-
of-Interest for computing classification (multinomial cross-
entropy), bounding-box regression (smooth-L1/Huber), and
pixel-wise mask (28 ⇥ 28 binomial cross-entropy) losses.
This diverse set of minibatch sizes and loss functions pro-
vides a good test case to the robustness of our approach.

Transfer learning from large minibatch pre-training.
To test how large minibatch pre-training effects Mask R-
CNN, we take ResNet-50 models trained on ImageNet-1k
with 256 to 16k minibatches and use them to initialize Mask
R-CNN training. For each minibatch size we pre-train 5
models and then train Mask R-CNN using all 5 models on
COCO (35 models total). We report the mean box and mask
APs, averaged over the 5 trials, in Table 3a. The results
show that as long as ImageNet validation error is kept low,
which is true up to 8k batch size, generalization to object de-

8 16 32 64 128 256 352

GPUs

2k

4k

8k

16k

32k

im
a

g
e

s
/

se
co

n
d

ideal
actual

Figure 8. Distributed synchronous SGD throughput. The small
overhead when moving from a single server with 8 GPUs to multi-
server distributed training (Figure 7, blue curve) results in linear
throughput scaling that is marginally below ideal scaling (⇠90%
efficiency). Most of the allreduce communication time is hid-
den by pipelining allreduce operations with gradient computation.
Moreover, this is achieved with commodity Ethernet hardware.

tection matches the AP of the small minibatch baseline. We
emphasize that we observed no generalization issues when
transferring across datasets (from ImageNet to COCO) and
across tasks (from classification to detection/segmentation)
using models trained with large minibatches.

Linear scaling rule applied to Mask R-CNN. We also
show evidence of the generality of the linear scaling rule us-
ing Mask R-CNN. In fact, this rule was already used with-
out explicit discussion in [16] and was applied effectively
as the default Mask R-CNN training scheme when using 8
GPUs. Table 3b provides experimental results showing that
when training with 1, 2, 4, or 8 GPUs the linear learning rate
rule results in constant box and mask AP. For these experi-
ments, we initialize Mask R-CNN from the released MSRA
ResNet-50 model, as was done in [14].

5.5. Run Time
Figure 7 shows two visualizations of the run time char-

acteristics of our system. The blue curve is the time per
iteration as minibatch size varies from 256 to 11264 (11k).
Notably this curve is relatively flat and the time per itera-
tion increases only 12% while scaling the minibatch size by
44⇥. Visualized another way, the orange curve shows the
approximately linear decrease in time per epoch from over
16 minutes to just 30 seconds. Run time performance can
also be viewed in terms of throughput (images / second), as
shown in Figure 8. Relative to a perfectly efficient extrapo-
lation of the 8 GPU baseline, our implementation achieves
⇠90% scaling efficiency.

Acknowledgements. We would like to thank Leon Bottou for
helpful discussions on theoretical background, Jerry Pan and
Christian Puhrsch for discussions on efficient data loading, An-
drew Dye for help with debugging distributed training, and Kevin
Lee, Brian Dodds, Jia Ning, Koh Yew Thoon, Micah Harris, and
John Volk for Big Basin and hardware support.

11

“Learning”

Epoch

Epoch

Second
Machine Learning System

Key Results

Ø Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
Ø 90% scaling efficiency

Ø Fairly careful study of the linear scaling rule
Ø Observed limits to linear scaling do not depend on dataset size
Ø Cannot scale parallelism with dataset size

All-Reduce

Machine A Machine B

Machine D Machine C

All Reduce

Mechanism to sum and distribute data across machines.
Ø Used to sum and distribute the gradient

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Machine A

Machine B

Machine D Machine C

Single Master All-Reduce

d1 d2 d3 d4 c1 c2 c3 c4

b1 b2 b3 b4

a1 a2 a3 a4

Machine A

Machine B

Machine D Machine C

Single Master All-Reduce

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

Machine A

Machine B

Single Master All-Reduce

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C

Machine A

Machine B

Single Master All-Reduce

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

s1 s2 s3 s4s1s1s1 s2s2s2 s3s3s3 s4s4s4

Machine D Machine C

Machine A

Machine B

Single Master All-Reduce

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C

s1 s2 s3 s4 s1

s1

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

*2

Machine A

Machine B

Single Master All-Reduce Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

Machine D Machine C

*2

Issues?
Ø High fan-in on Machine A
Ø (P-1) * N Bandwidth for Machine A

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Parameter Server All Reduce

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Send each entry to parameter server for that entry.
Ø Key 1 à A
Ø Key 2 à B
Ø Key 3 à C
Ø Key 4 à D

Machine A Machine B

Machine D Machine C

a1 a2

a3a4

b1 b2

b3b4

d1 d2

d3d4

c1 c2

c3c4

Each machine sends N/P data to all other machines.
P * (P-1) * N/P = (P-1) * N
Ø P Machines
Ø N Parameters

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

Compute local sum on each machine

si = ai bi dici+ + +

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

Broadcast sum to each machine

s1s1s1 s2s2s2

s3s3s3s4s4s4

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3s1

s1

s1 s2

s2

s2s3

s3 s3

s4

s4s4

Broadcast sum to each machine

Parameter Server All-Reduce

Ø Same amount of data transmitted as before

Ø Same high fan-in (P-1)

Ø Reduced Inbound Bandwidth = (P-1)N/P
Ø Previously (P-1)*N

Machine A Machine B

Machine D Machine C

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Ring All Reduce
Send messages in a ring using to reduce fan-in.

Machine A Machine B

Machine D Machine C

a2 a3 a4 b1 b3 b4

d1 d2 d3

d4

c1 c2
c3

c4

Ring All Reduce

a1

b2

ß Note this depicts a
partial sum and not a
bigger message.

Machine A Machine B

Machine D Machine C

a2 a3 b3 b4

d1 d2

d3

c1
c2

c3

c4

Ring All Reduce

b2

b1
a1

a4
d4

Machine A Machine B

Machine D Machine C

a2 b3

d1

d2

c1

c2

c4

Ring All Reduce

b2

b1
a1

b4
a4
d4

a3d3
c3

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1s1

s2s2s2s2 s3s3s3s3

s4s4s4s4

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1) * P * N/P = (P-1) * N
Ø Bandwidth per round:

Ø P (N/P) = N (doesn’t depend on P)
Ø Fan-in Per Round:

Ø 1 (doesn’t depend on P)

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1s1

s2s2s2s2 s3s3s3s3

s4s4s4s4

Broadcast stage repeats process sending messages forwarding
sums (same communication costs).

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1

s1

s2s2s2s2

s3s3s3

s3

s4s4s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1

s1 s2s2

s2s2

s3s3 s3

s3s4s4

s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1

s1

s1

s1 s2s2

s2s2

s3

s3

s3

s3s4 s4

s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1

s1

s1

s1 s2s2

s2s2

s3

s3

s3

s3s4 s4

s4 s4

Ring All-Reduce
Ø Simplified communication topology with low fan-in

Ø Overall communication
Ø Same total communication: 2*(P-1)*N
Ø Bandwidth per round (N) doesn’t depend on P
Ø Fan-in is constant (doesn’t depend on P)

Ø Issue: Number of communication rounds (P-1)

Machine A Machine B

Machine D Machine C

Double Binary Tree All-Reduce
Ø Two overlaid binary reduction trees

Ø Double the fan-in à Log(p) rounds of communication
Ø Currently used on Summit super-computer and latest NCCL

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Dimensions of Parallelism
Review:

Parallelizing mini-batch gradient calculation with model
replicated to all machines.

Ø Synchronous Execution (Most Common)
Ø Strengths: deterministic, parallelism does not effect result
Ø Weaknesses: need large batch sizes, frequent blocking comm.,

learning rate scaling, doesn’t work with batch normalization

Ø Asynchronous Execution (Popular in Research)
Ø Strengths: eliminate blocking and use background comm.,

batches don’t need to span machines
Ø Weaknesses: affects convergence (stability)

Ø Issues:
Ø Model and activations must fit in each machine

Data Parallelism

Divide the model across machines and replicate the data.

Ø Supports large models and activations

Ø Requires communication within single evaluation

Ø How to best divide a model?
Ø Split individual layers

Ø which dimension?
Ø Batch or Spatial à depends on operation

Ø Split across layers
Ø Only one set of layers active a time à

poor work balance
Ø Soln: Pipelining Parallelism

Model Parallelism

M
ac

hi
ne

 1

M
achine 2

M
ac

hi
ne

 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Pipeline Parallelism
Ø Combine model and data parallelism to concurrently

process multiple layers and batches.
Ø Originally described in GPipe*

*GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism

https://arxiv.org/pdf/1811.06965.pdf

Operator Level Parallelism

im2col convolution

Ø Exploiting the parallelism within linear algebra and
convolution operations (a form of model parallelism)

Ø Multiple dimensions
Ø Batch, spatial, time, …

Ø Typically cast operators
as linear alg. routines
and leverage
optimizes BLAS libraries

This weeks readings

Reading for the Week
Ø Scaling Distributed Machine Learning with the Parameter

Server (OSDI’14)
Ø Paper describing the parameter server system

Ø PipeDream: Generalized Pipeline Parallelism for DNN Training
(SOSP’19)
Ø Latest paper exploring pipeline parallel training

Ø Adaptive Communication Strategies to Achieve the Best
Error-Runtime Trade-off in Local-Update SGD (SysML’19)
Ø Dynamic averaging approach to distributed training

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://cs.stanford.edu/~matei/papers/2019/sosp_pipedream.pdf
https://arxiv.org/pdf/1810.08313.pdf

Scaling Distributed Machine Learning
with the Parameter Server (OSDI’14)

Ø Describes the key-value store customized for machine learning
Ø Builds on earlier work in parameter servers

Ø Additional Context: focused on topic modeling and sparse regression

Ø Key Ideas: There are many ideas …
Ø Keys – Value pairs with linear algebra semantics (e.g., get by range)
Ø User defined event handlers on parameter servers and workers
Ø Several different consistency models
Ø User defined filters to determine when updates are communicated

588 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

server groupserver
managerresource

manager

task
scheduler

a worker
node

training data

a server
node

worker group

Figure 4: Architecture of a parameter server communicat-
ing with several groups of workers.

the same effect as in the previous section: we can process
much bigger models than a single worker may hold.

3 Architecture
An instance of the parameter server can run more than
one algorithm simultaneously. Parameter server nodes are
grouped into a server group and several worker groups
as shown in Figure 4. A server node in the server group
maintains a partition of the globally shared parameters.
Server nodes communicate with each other to replicate
and/or to migrate parameters for reliability and scaling. A
server manager node maintains a consistent view of the
metadata of the servers, such as node liveness and the as-
signment of parameter partitions.

Each worker group runs an application. A worker typ-
ically stores locally a portion of the training data to com-
pute local statistics such as gradients. Workers communi-
cate only with the server nodes (not among themselves),
updating and retrieving the shared parameters. There is a
scheduler node for each worker group. It assigns tasks to
workers and monitors their progress. If workers are added
or removed, it reschedules unfinished tasks.

The parameter server supports independent parameter
namespaces. This allows a worker group to isolate its set
of shared parameters from others. Several worker groups
may also share the same namespace: we may use more
than one worker group to solve the same deep learning
application [13] to increase parallelization. Another ex-
ample is that of a model being actively queried by some

nodes, such as online services consuming this model. Si-
multaneously the model is updated by a different group of
worker nodes as new training data arrives.

The parameter server is designed to simplify devel-
oping distributed machine learning applications such as
those discussed in Section 2. The shared parameters are
presented as (key,value) vectors to facilitate linear algebra
operations (Sec. 3.1). They are distributed across a group
of server nodes (Sec. 4.3). Any node can both push out its
local parameters and pull parameters from remote nodes
(Sec. 3.2). By default, workloads, or tasks, are executed
by worker nodes; however, they can also be assigned to
server nodes via user defined functions (Sec. 3.3). Tasks
are asynchronous and run in parallel (Sec. 3.4). The pa-
rameter server provides the algorithm designer with flexi-
bility in choosing a consistency model via the task depen-
dency graph (Sec. 3.5) and predicates to communicate a
subset of parameters (Sec. 3.6).

3.1 (Key,Value) Vectors

The model shared among nodes can be represented as a set
of (key, value) pairs. For example, in a loss minimization
problem, the pair is a feature ID and its weight. For LDA,
the pair is a combination of the word ID and topic ID, and
a count. Each entry of the model can be read and written
locally or remotely by its key. This (key,value) abstraction
is widely adopted by existing approaches [37, 29, 12].

Our parameter server improves upon this basic ap-
proach by acknowledging the underlying meaning of
these key value items: machine learning algorithms typ-
ically treat the model as a linear algebra object. For in-
stance, w is used as a vector for both the objective function
(1) and the optimization in Algorithm 1 by risk minimiza-
tion. By treating these objects as sparse linear algebra
objects, the parameter server can provide the same func-
tionality as the (key,value) abstraction, but admits impor-
tant optimized operations such as vector addition w + u,
multiplication Xw, finding the 2-norm ∥w∥2, and other
more sophisticated operations [16].

To support these optimizations, we assume that the
keys are ordered. This lets us treat the parameters as
(key,value) pairs while endowing them with vector and
matrix semantics, where non-existing keys are associated
with zeros. This helps with linear algebra in machine
learning. It reduces the programming effort to implement
optimization algorithms. Beyond convenience, this inter-
face design leads to efficient code by leveraging CPU-
efficient multithreaded self-tuning linear algebra libraries
such as BLAS [16], LAPACK [3], and ATLAS [49].

PipeDream: Generalized Pipeline
Parallelism for DNN Training (SOSP’19)

Ø Contemporaneously published with:
Ø GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism (arXiv’18)

Ø Key idea: Leverage pipeline parallelism during training
Ø Automatically constructs pipeline partition + schedule
Ø Leverage bounded staleness + versioned activations to eliminate

bubbles

GPipe

PipeDream

https://arxiv.org/pdf/1811.06965.pdf

Bounded Staleness
Ø Developed as part of the parameter server work at CMU

Ø More Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server (NIPS’13)

Ø Compromise between
Hogwild and BSP

Ø Unclear implications
for deep learning
Ø Non-convex loss

http://www.cs.cmu.edu/~seunghak/SSPTable_NIPS2013.pdf

Adaptive Communication Strategies to
Achieve the Best Error-Runtime Trade-
off in Local-Update SGD (SysML’19)

Ø Studies Periodic Averaging SGD (PASGD)

Ø Key Idea: Change 𝜏 as algorithm converges

Ø More theoretical than previous reading
Ø Theoretical results do not make convex assumptions!

Old Stuff

