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What ise & Whye Distributed Training

» Distributed Training™ ~ Training across multiple devices
» Different local and remote memory speeds / network

» Why do we need distributed fraininge
» Faster training by leveraging parallel computation

> Additional memory (memory bandwidth) for larger model
> “Need” to store weights + activations

» Reduce or eliminate data movement
» Privacy 2 Federated Learning
» Limited bandwidth to edge devices

» Need to process all the datae

*Very simplified definition.



On Dataset Size and Learning

» Datais a aresourcel! (e.qg., like processors and memory)
> |Is having lots of processors a problem?

» You don't have to use all the datal
» Though using more data can often help

» More data offen* dominates models and algorithms

EXPERT OPINION
ttttttt tor: Brian Brannon, bbrannon@computer.org *More data also supports

more sophisticated
The U!weasonable models and algorithms.
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google




What are the Metrics of Successe

» Marketing Team: Maximize number of GPUs/CPUs used
» A bad metric ... why?¢

» Machine Learning: Minimize passes through the fraining data
» Easy fo measure, but not complete ... why?¢

» Systems: minimize time to complete a pass through the
training data

» Easy to measure, but not complete ... why?¢
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Metrics of Success

» Minimize fraining time to “best model”
> Best model measured in terms of test error

» Other Concernse

» Complexity: Does the approach infroduce addifional fraining
complexity (e.q., hyper-parameters)

» Stability: How consistently does the system train the model¢
» Cost: Will obtaining a faster solution cost more money (power) ¢



The Early Days....

Map-Reduce
for Distributed Training

Learning by Distributed Aggregation



LEARNING FROM STATISTICS (AGGREGATION)*

System

Query: f

Learning

. Data,
Algorithm

ip | f(X)] l/-'?_E[E'?C'IC'Zf_']

« D. Caragea et al., A Framework for Learning from Distributed Data Using

Sufficient Statistics and Its Application to Learning Decision Trees. Int. J.
Hybrid Intell. Syst. 2004

 Chu et al., Map-Reduce for Machine Learning on Multicore. NIPS’06.

*next set of slides are old!



Can we compute
)= (XTX)"1xTy

using the statistical query pattern
IN Map-reducee
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Break computation
INfo two queries



Cost Analysis
)= (XTX)"'XxTy

Comutation Cost




VWhat about
Logistic Regression
using Gradient Descent!
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Logistic Regression in Map-Reduce

Gradient descent:

fw(ZE, y) =V lOgL(y, hw(w))

Learning
Algorithm

Update Model:
W <— W — 1Ng

Query: fuw

1 mn
g=- ; fuw(Ti, i)

System




Map-Reduce I1s not optimized
for rteration and multi-stage
computation




teration in Map-Reduce
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Cost of Iteration In Map
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Cost of Iteration in Map-Reduce

Redundantly save
output between
stages




Spark

teration ana n-M emory
Multi-stage

computation Dataflow
System

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker; and I. Stoica. Spark: cluster computing with working
sets. HotCloud' 10

M. Zaharia, M. Chowdhury, T. Das, A. Dave, |. Ma, M. McCauley, M.J. Franklin, S. Shenker; |. Stoica.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI 2012



Dataflow View

Data
=L,




Memory Opt. Dataflow

10-100x faster than network and disk

20



Memory Opt. Dataflow View

Data

(HDFS)

e Ffficiently

move data
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Bulk Synchronous Parallel (BSP) Execution

Compute Communlcate i Compute

\\//=w

=

Machine |

Machine 2

Machine 3

2
Barrier



Asynchronous Execution

Compute . Communicate | Compute
Machine | — lteration m\\ // teration >
Machine 2 — lteration -~ lteration N
Machine 3 - lteration m lteration >
Barrier Barrier

Enable more frequent coordination on parameter values

24



Asynchronous Execution

Compute Communicate Compute
Machine | — lteration - lteration
Machine 2 — iteration - |teration
Machine 3 - lteration - lteratior >

Enable more frequent coordination on parameter values



Asynchronous Execution
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AlexNet



ImageNet Classification
with Deep Convolutional
Neural Networks

Alex Krizhevsky, lllya Sutskever, Geoffrey E. Hinton

TL;DR; This paper describe the deep convolutional architecture, training
techniques, and system innovations that resulted in the winning entry for

the ILSVRC-2012 Benchmark. This model substantially outperformed
the next best model that year.



The AlexNet* Architecture
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The Actual AlexNet* Architecture

from the paper
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Training on Multiple GPUs

> Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

> 60M Parameters ~ 240 MB

» Need to cache activation maps for backpropagation
» Batch size = 128
> 128 * (227*227*3 + 55*55%96*2 + 96*27*27*2 + 256*27*27*2 + 256*13%13*2 +
13%13*384*2 + 256*13*13 + 6*6*256 + 4096 + 4096 + 1000) *4 Bytes ~

782MB Activations . s

» That is assuming no i 3 ng;f
overhead and single o] [ iy = %
precision values L e Ry

Overlapping
Max POOL

& 4 ‘“i/

9216 1000
Softmax

4096 4096

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/



Interesting Consequence of
Partitioned Training

227

CONV
11x11,
stride=4,
96 kernels

_—

(227-11)/4 +1
=55

Edge Detection

Color Filters

Figure 3: 96 convolutional kernels of size
11 x11x 3 learned by the first convolutional
layer on the 224 x 224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.



Put Into historical context

ILSVRC top-5 error on ImageNet

22.5
AlexNet

15

7.5

0
2010 2011 2012 2013 2014 Human  ArXiv 2015



Good Embeddings ...

This will later be the foundation of many papers

Images with
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DistBelief



Large Scale
Distributed
Deep Networks

Described the system for the 2012 ICML Paper

Building High-level Features
Using Large Scale Unsupervised Learning

Quoc V. Le

_ Discovers Cat Features
Marc’Aurelio Ranzato -

Rajat Monga

Matthieu Devin . B
Kai Chen

Greg S. Corrado
Jeff Dean

Andrew Y. Ng

Abstrad

We consider the problem
level, class-specific featu
only unlabeled data. F¢
possible to learn a face d
unlabeled images using t
To answer this, we train ¢
connected sparse autoenc
and local contrast normall
dataset of images (the 8 o L2 —=— O - . —
lion connections, the dataset has 10 million bilitv that some neurons in the temporal cortex are

NIPS 2012 (Same Year as AlexNet)

Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google .com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep netwos
ing. We have successfully used our system to train a deep netwo
previously reported in the literature, and achieves state-g
ImageNet, a visual object recognition task with L&
gories. We show that these same technia
of a more modestly- sized deep ne
vice. Although we focus.g

to training large neura
gradient-based machine

1 Introduction

recognition [1, 2], visual object recogn:

ate of deep learning, with respect to the number
of training examples, the number of mot€l parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes

N1 o~ T -




Building High-Level Features Using
Large Scale Unsupervised Learning

ICML 2012

Input to another layer above
(image with 8 channels)

Number of output
channels = 8

Building High-level Features
Using Large Scale Unsupervised Learning

9x "‘deep”

One layer

Image Size = 200

30x bigger than
other deep nets.

Pre-Convolutional*
Architecture

Each Neuron has
separate weights

sparse
connectivity

Number

channels =3

~1 billion
parameters!

*This pre-dates AlexNet but is two decades after LeNet.

Quoc V. Le
Marc’Aurelio Ranzato
Rajat Monga
Matthieu Devin

Kai Chen

Greg S. Corrado

Jeff Dean

Andrew Y. Ng

Abstract

‘We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it
possible to learn a face detector using only
unlabeled images using unlabeled images?
To answer this, we train a 9-layered locally
connected sparse autoencoder with pooling
and local contrast normalization on a large
dataset of images (the model has 1 bil-
lion connections, the dataset has 10 million
200x200 pixel images downloaded from the
Internet). We train this network using model
parallelism and asynchronous SGD on a clus-
ter with 1,000 machines (16,000 cores) for
three days. Contrary to what appears to be
a widely-held intuition, our experimental re-
sults reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 20,000 object categories

Frorrr TrraanN ot o lacs ~fF 7007 valotice v

QUOCLE@CS, STANFORD.EDU
RANZATOQGOOGLE.COM
RAJATMONGAQGOOGLE.COM
MDEVINQGOOGLE.COM
KAICHENQGOOGLE.COM
GCORRADOQGOOGLE.COM
JEFF@QGOOGLE.COM
ANG@CS.STANFORD.EDU

1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from wunlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive



Combine Model and Data Parallelism

This appears in ea

rlier work on graph systems ...
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Sandblaster L-BFGS  smimems

Parameter Server

. s D%éf\\u\ \\

Synchronous

DD 8 :]D

» Commonly used for convex Model
opft. problems Replicas
» Requires repeated scans of
all data

» Robust, minimal funing
» Naturally fits map-reduce pattern

> Innovations:

A
IMY

» accumulate gradients and store outputs in a sharded key value

store (parameter server)

> Tiny tasks + backup tasks to mitigate stragglers
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Downpour SGD

, —
Parameter Server W = W - ”AW

Claimed Innovations J[

» Parameter Server //Aw l T \\

> Combine model and data Model e
parallelism in an async.  Replicas |[(— AS)’”C’"’O"OUs
execution. L JI {JUJl |

» Adagrad stabilization Sfffdas ﬁj Eﬁ Eﬁ

» Warmstarting



, —
Parameter Server W = W - WAW

Parameter Servers (C)C)C)C)C)C)0)

/ 7 | 4 \ X
» Essentially a sharded key-value store

» support for put, get, add

» |dea appears in earlier papers:

“An Architecture for Parallel Topic “Scalable Inference in Latent Variable Models”,
Models”, Smola and Narayanamruthy. Ahmed, Aly, Gonzalez, Narayanamruthy, and
(VLDB'10) Smola. (WSDM'12)

Star Model Star Model Split Over 3 Machines

‘ sampler ‘ mpl ‘ mpl ‘ sampler

sampler sampler %@ O‘— x/?\\ _’O
S . S—— —— Iblldol|bo

Machine 1 Machine 2 Machine 3

DistBelief was probably the first paper to call a sharded key-value store a Parameter Server.



Downpour SGD

, —
Parameter Server W = W - ”AW

Claimed Innovations J[

» Parameter Server //Aw l T \\

> Combine model and data Model e
parallelism in an asyne.  gepiicas [ AS)’”C’"’O"OUs
execution. L JI {JUJl |

» Adagrad stabilization Sfffdas ﬁj Eﬁ Eﬁ

» Warmstarting



Key Results: Training and Test Error

Weird 20K
Error Metric

Accuracy on Training Set Accuracy on Test Set
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rate reset
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% 20 20 60 80 100 120 % 20 20 60 80 100 120
Time (hours) Time (hours)

Wall clock

time is good.



Why are they In the NY Times

» Trained a 1.7 billion parameter model (30x larger than
state-of-the-art) (was it necessary?)

» Using 16,000 cores (efficientlye)

» Achieves 15.8 accuracy on ImageNet 20K (70%
Improvement over state of the art).

> Non-standard benchmark

» Qualitatively interesting
results

Figure 6. Visualization of the cat face neuron (left) and
human body neuron (right).



Long-tferm Impact

» The parameter server appears in many later machine
learning systems

» Downpour (Asynchronous) SGD has been largely
replaced by synchronous systems for supervised training

» Asynchrony is still popular in RL research
> Whye

» Model parallelism is still used for large language models
» Predated this work

> The neural network architectures studied here have
been largely replaced by convolutional networks



More recent
large-scale 1

» Generated a lot of press
» Surpassed by

Fast.ai: “Now anyone can train
ImageNet in 18 minutes for $40.’
blog post

» Popularized linear
learning rate scaling

1706.02677v2 [cs.CV] 30 Apr 2018

arxXiv

2018 (Unpublished on Arxiv)

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar Ross Girshick Pieter Noordhuis
Lukasz Wesolowski ~ Aapo Kyrola ~ Andrew Tulloch  Yangqing Jia Kaiming He
Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ~90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in Al
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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ImageNet top-1 validation error

20 . . . . . . .
64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus rwo standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ~90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining




Conftrasting to the first paper

» Synchronous SGD
» Much of the recent work has focused on synchronous setting
» Easier to reason about

» Focus exclusively on data parallelism: batch-size scaling

» Focuses on the generalization gap problem



Stochastic Gradient Descent

How do you distribute SGD?e

90+ initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices

AU 9 _p, (B > VoL(yi, f(wi;0))

€8

ee(t))

Data Slow? (~150ms)
Parallelism Depending on size of B




Batch Size Scaling

» Increase the batch size by adding machines

99(15))

» Each server processes a fixed batch size (e.g., n=32)

k
1 1
pl+1) gt _ (k § Bl E VoL(y;, f(x;;0))
j=1 771,

J ’LEBJ'

» As more servers are added (k) the effective overall
batch size increases linearly

» Why do these additional servers help?



Bigger isn’'t Always Better

» Motivation for larger batch sizes
» More opportunities for parallelism - but is it useful?
» Recall (1/n variance reduction):

1
— VoL 9 19 V L (% ’576
nz oL(yi, f(x;; 0 \B\Z oL(y;, f(x;;0))
1=1 1eB
> |s a variance reduction helpful?

> Only if it let’'s you take bigger steps (move faster)
» Does it affect the final prediction accuracy?¢



Generalization Gap Problem
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Larger batch sizes harm
generalization performance.
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Rough “Intuition”

Small batch gradient descent acts as a regularizer

Loss

Sharp Mini
Hypothesis

Parameter values along some direction

Key problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size

%
N
(t+1) (1) V1= 1
0 — 0\ —n —E —E VoL(y;, f(x;;0))
k— |B;| _o(t)

» Addresses generalization performance by taking larger
steps (also improves training convergence)

» Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs

» Doesn't help for very large k...



Other Details

> Independent Batch Norm: Batch norm calculation applies
only to local batch size (n).

> All-Reduce: Recursive halving and doubling algorithm
» Used instead of popular ring reduction (fewer rounds)

» Gloo a library for efficient collective communications

> Big Basin GPU Servers: Designed for deep learning workloads
» Analysis of communication requirements 2 latency bound

> No discussion on siraggler or fault-tolerance
> Why?!



Key Results

Training vs Validation

100
’ kn=256, 1n=0.1 [train]
AR kn=256, n=0.1 [val]
: kn=8%k, n=3.2 [train]
o : n=3.2 [ All curves closely
5 60! | match using the linear
G scaling rule.
07 Note learning rate
schedule drops.
20O 20 40 60 80



error %

Key Results
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Key Results

> Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
» 90% scaling efficiency

» Fairly careful study of the linear scaling rule

» Observed limits to linear scaling do not depend on dataset size
» Cannot scale parallelism with dataset size



All-Reduce



All Reduce

Mechanism to sum and disfribute data across machines.
» Used to sum and distribute the gradient

Machine D Machine C




Machine D Machine C




Single Master All-Reduce

Sends (P-1) * N Data
> P Machines
» N Parameters

Machine D Machine C



Single Master All-Reduce

Sends (P-1) * N Data
> P Machines
» N Parameters

Machine D Machine C




Single Master All-Reduce

Machine B

4 Machine A

\

ST
A 4

Machine D

Ci

=+

Sends (P-1) * N Data
> P Machines
» N Parameters

Machine C




Machine B

Single Master All-Reduce

*7)
Machine A Sends (P-1) * N Data
» P Machines

» N Parameters




*)
Sends (P-1) * N Data
> P Machines
> N Parameters

Single Master All-Reduce

[ Machine A }

Il

-1
IR oennes

Issues?
» High fan-in on Machine A
> (P-1) * N Bandwidth for Machine A




Parameter Server All Reduce

Machine D Machine C




Send each entry to parameter server for that entry.
> Key 1 =2 A

> Key2—>B
» Key 3> C
> Key 4> D

Machine D Machine C




Each machine sends N/P data to all other machines.
P*(P-1)*N/P=(P-1)*N

» P Machines

» N Parameters

Machine D Machine C




Compute local sum on each machine

Machine D Machine C

S3




Broadcast sum to each machine

Machine D Machine C

33




Machine A Machine B

Broadcast sum to each machine

Machine D




Parameter Server All-Reduce

» Same amount of data transmitted as before

Machine A H Machine B J

i

» Same high fan-in (P-1)

» Reduced Inbound Bandwidth = (P-1)N/P
» Previously (P-1)*N




Ring All Reduce

Send messages in aring using to reduce fan-in.

Machine D Machine C




< Note this depicts a
partial sum and not @
bigger message.

Ring All Reduce

Machine D Machine C

o,



Ring All Reduce

Machine D




Ring All Reduce

Machine D




Machine A Machine B

Ring All Reduce

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1)*P*N/P=(P-1)*N
» Bandwidth per round:

> P (N/P) =N (doesn’'t depend on P)
> Fan-in Per Round:

> 1 (doesn’'t depend on P)

Machine D Machine C




Machine A Machine B

Ring All Reduce

Broadcast stage repeats process sending messages forwarding
sums (same communication costs).

Machine D Machine C




Machine A Machine B

Ring All Reduce

Machine D Machine C




Machine A Machine B

Ring All Reduce

Machine D Machine C




Machine A Machine B

Ring All Reduce

Machine D




Machine A Machine B

Ring All Reduce

Machine D




Ring All-Reduce

> Simpliflied communication topology with low fan-in

Machine A H Machine B 1

ety i

» Overall communication
» Same total communication: 2*(P-1)*N
» Bandwidth perround (N) doesn’t depend on P
» Fan-in is constant (doesn’t depend on P)

> lIssue: Number of communication rounds (P-1)



Double Binary Tree All-Reduce

» Two overlaid binary reduction trees NCCLiztency

0 31
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Allreduce, 8 bytes
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e NCCL 2.3 — RiNgS
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1600

800

400

e
200

100
96 192 384 768 1536 3072 6144 12288 24576

GPUs

» Double the fan-in = Log(p) rounds of communication
» Currently used on Summit super-computer and latest NCCL

hitps://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/



https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Review:

Dimensions of Parallelism



Data Parallelism

Parallelizing mini-batch gradient calculation with model
replicated to all machines.

» Synchronous Execution (Most Common)
> Strengths: deterministic, parallelism does not effect result

» Weaknesses: need large batch sizes, frequent blocking comm.,
learning rate scaling, doesn’t work with batch normalization

» Asynchronous Execution (Popular in Research)

» Strengths: eliminate blocking and use background comm.,
batches don’'t need to span machines

» Weaknesses: affects convergence (stabllity)

> |ssues:
> Model and activations must fit in each machine



Model Parallelism

Divide the model across machines and replicate the data.
» Supports large models and activations
» Requires communication within single evaluation

> How to best divide a model?

(]
> Split individual layers =
» which dimensione é

» Batch or Spatial 2> depends on operation
» Split across layers -
» Only one set of layers active a time »> 2
poor work balance <
» Soln: Pipelining Parallelism >

¢ duiydely

p Sulyde



Pipeline Parallelism

» Combine model and data parallelism to concurrently
process multiple layers and batches.

» Originally described in GPipe*

Device 3

Device 2

Device 1

Device 0

Fo | B

B0 Update

Loss
/ \
F. - B
¢ v
F. -~ B,
{ v
F. -~ B
f }
Fo - B.

~.

Gradients

0
Bo Update
’ TI m e > B0 Update

Update

Update

2 B1,1 B1o Update

m M M M
S = L) &
N = o

‘ F0.0 0,1 0,2 3

vy}
vy} oY) vy} vy}
S = N °
w - o
vy}

*GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism



https://arxiv.org/pdf/1811.06965.pdf

Operator Level Parallelism

» Exploiting the parallelism within linear algebra and
convolution operations (a form of model parallelism)

» Multiple dimensions
» Batch, spatial, time, ...

> Typically cast operators
as linear alg. routines
and leverage
opfimizes BLAS libraries

Image data im2col convolution
D[0,0,:,:] D[0,1,:,:] D[0,2,:,]

N =1
Filter data C =23
H=3
W =3
DI K = 2
F[0,,.,] R =2
S =2
u=y =1
pad_h = 0
F[1,,,] pad w = 0

F, 0

m m




This weeks readings



Reading for the Week

» Scaling Distributed Machine Learning with the Parameter
Server (ospi'14)
» Paper describing the parameter server system

» PipeDream: Generdlized Pipeline Parallelism for DNN Training

(SOSP'19)
» Latest paper exploring pipeline parallel fraining

> Adaptive Communication Strategies to Achieve the Best
Error-Runtime Trade-off in Local-Update SGD (SysmL'19)

» Dynamic averaging approach to distributed training



https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://cs.stanford.edu/~matei/papers/2019/sosp_pipedream.pdf
https://arxiv.org/pdf/1810.08313.pdf

Scaling Distributed Machine Learning
with the Parameter Server (ospi'i4)

» Describes the key-value store customized for machine learning
» Builds on earlier work in parameter servers

» Additional Context: focused on topic modeling and sparse regression

> Key ldeas: There are many ideas ...

YV V VYV

Keys — Value pairs with linear algebra semantics (e.g., get by range)
User defined event handlers on parameter servers and workers
Several different consistency models

User defined filters to determine when updates are communicated



Cmputt I

tttttttttttttt
Parameter sizes

PioeDream: Generalized Pipeline 1

I N1 \ o am o
Parallelism for DNN Training (sosp'19) Al
:: - (plgy I(:g:ybpt thkd nd
» Contemporaneously published with:

» GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism (arXiv'18)

> Key idea: Leverage pipeline parallelism during training
» Automatically constructs pipeline partition + schedule
> Leverage bounded staleness + versioned activations to eliminate

bubbles
All inputs use weights from last flush Pipeline flush: P | p e Dreq m
add gradients
Worker 1 [ Tt \\§§§§§§§ 111
° Worker 2 \\ 2(2
GPIpe Worker 3 \\\ 3|3
Worker 4 & 44 ; ‘i 1 ‘\ ‘\ ‘\ ‘\ \
Time - Startup State Steady' State
I Forward Pass [ | Backward Pass Idle >
Time

I Forward Pass [ | Backward Pass N\ Idle


https://arxiv.org/pdf/1811.06965.pdf

Bounded Staleness

» Developed as part of the parameter server work at CMU

» More Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server (NIPS'13)

, SSP: Bounded Staleness and Clocks
» Compromise between

Staleness Threshold 3 Here, Worker 1 must wait on
> further reads, until Worker 2

Hogwild and BSP

AN

1 I has reached clock 4

|<
> UﬂCleOr Imp“COTIOﬂS i |:> Workerpr-o.gress
e _ JFiaa

for deep learning

Worker 3 Updates visible to Worker 1,

1

I
I
I
I
> N oN-convex | OSS ' 1 due to read-my-writes
I I
Worker 4 H 1 Updates not necessarily
] Bl
| " I visible to Worker 1
1 1 ] 1
i } } } } } i } } >
0 1 2 3 4 5 6 8 9 Clock


http://www.cs.cmu.edu/~seunghak/SSPTable_NIPS2013.pdf

Adaptive Communication Strategies to
Achieve the Best Error-Runtime Trade-
off In Local-Update SGD (sysmL'19)

» Studies Periodic Averaging SGD (PASGD)

> Key ldea: Change t as algorithm converges

To v T1 1+ Ty 1oveien- T N
S I A A X‘\ at each worker
kS Switch point 8 7
1\ E
= k=
i< Large comm. period E
=
Wpeuod

Wall clock time

» More theoretical than previous reading
» Theoretical results do not make convex assumptions!
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