Al-Systems >
Prediction Serving

Joseph E. Gonzalez %5
N\
Co-director of the RISE Lab @‘

legonzal@cs.berkeley.edu

Machine Learning Lifecycle

Model Development

Data Cleaning &
—

Collection Visualization
I 2 g

—
Offline

Training
Data

Training & « Feature Eng. &
Validation Model Design

Data

Scientist A

Training
ol
@)
o_\.—)
mmu@m@m

Training Pipelines

I
M

rained
odels

-

Inference

Prediction Service
- 3:}-» Do . 2

BG’O

- t
Live I- Validation Feedback '
Data

Data

Engineer‘

Data

Engineer‘

Querx

Prediction

End User
Application

Inference

Prediction Service

e ey
Logic Ee——
- E ’<> Prediction [——

End User
Application

Feedback . e .
_J Goal: make predictions In

~10ms under bursty load

Data Complicated by Deep Neural Networks
sngineer g 2> New and Systems

why is Inference challenging?

Need to render low latency (< 10ms) predictions for complex

Queries Features
e SELECT * FROM
O | users JOIN items,
 — click_logs, pages
% """""""" — WHERE ...
% | —

under heavy load with system failures.

Basic Linear Models (Often High Dimensional)

» Common for click prediction and text filter models (spam)

» Query x encoded in sparse Bag-of-Words:
» x="The quick brown"” ={("brown", 1), ("the”, 1), ("quick”, 1)}

> Rendering a prediction: Predict(x) = o Z OwC
(w,c)Ex

» O is alarge vector of weights for each possible word
» or word combination (n-gram models) ...

» Opftimizations?

Support low-latency, high-throughput serving workloads

Models getting more complex
» 10s of GFLOPs [1]

Deployed on crifical path

» Maintain SLOs under heavy load Using Specig“zed
hardware for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.

Top-1 accuracy [%]

80 A

75 A

Benchmark Analysis of Representative

NASNet-A-Large
Deep Neural Network Architectures
SE-ResNeXt-101(32x4d) L
 Inception-ResNet-v2
. . (inception-va SENet-154
SE-ResNeXt-50(32x4d) Xception IP3hNeLS IPathNet-131
SE-ResNet- esNet-152 eXt-101(64x4d)
SE-ResNet§0)_ Inception-v3 Xt-101(32x‘esNet-152
DenseNet-201@) €BenseNet-161 resnet-101 ResNet-152
® Oresnets0 'Caffe'ReSNet'1°1 VGG-19_ BN
DualPathNet-68 DenseNet-169 VGG-16_BN

DenseNet-121
@ NASNet-A-Mobile

BN-lnce.ption .ResNet-34

® MobileNet-v2

VGG-13_BN

VGG-11_BN

VGG-19
70 - .ResNet-18 VGG-16
MobileNet-v1
VGG-13
Pgh -
ifelet VEE:11 FPS >1000 >250 >125 >62.5 >30 >15 >5
® | D
GooglLeNet
Y ms <1 <4 <8 <16 <33 <66 <200
Vo 7/
&8/ /
1M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0
I‘ AlexNet
55 1 1 1 |l
0 5 10 15 20 25

Operations [G-FLOPs]

16

32

64

Batch Size DNN
T“'q n X P AlexNet
BN-Inception

CaffeResNet-101
DenseNet-121 (k=32)
DenseNet-169 (k=32)
DenseNet-201 (k=32)
DenseNet-161 (k=48)

DPN-68

DPN-98

DPN-131
FBResNet-152
GoogLeNet
Inception-ResNet-v2
Inception-v3
Inception-v4
MobileNet-v1
MobileNet-v2
NASNet-A-Large
NASNet-A-Mobile
ResNet-101
ResNet-152
ResNet-18

ResNet-34

ResNet-50
ResNeXt-101 (32x4d)
ResNeXt-101 (64x4d)

<=5 SE-ResNet-101
SE-ResNet-152
>=200 SE-ResNet-50

SE-ResNeXt-101 (32x4d)
SE-ResNeXt-50 (32x4d)
SENet-154

ShuffleNet
SqueezeNet-v1.0
SqueezeNet-v1.1
VGG-11

VGG-11_BN

VGG-13

VGG-13_BN

VGG-16

VGG-16_BN

VGG-19

VGG-19_BN

Xception

18.49

13.27

18.11

10.45

17.73

9.41

17.77

https://arxiv.org/pdf/1810.00736.pdf

Benchmark Analysis of Representative

Deep Neural Network Architectures

TitanXP

—_ NASNet-A-Large
SENet-154 ()
} SE-ResNeXt-101 (32x4d)
80 - Inception-ResNet-v2({0) Inception-v4
= ualPathNet-98 SE- ResNeXt-50 d)
DualPathNet-131@) adINe 101(R 0 P
SE-ResNet-152 esNet-101 o
fesheXt- 10533542 6‘?'"09000@3 SE-ResNet-50
< DenseNet- 201‘ B-ResNet-152~ ResNet-101
o\o o % gResNet
— i DenseNet-169@ D pathnaalie-ResNet-101
> 75
O NASNet-A-Mobile @ DenseNet-121@) @ VGG-19_BN
e BN-Inception@ .VGG - @ ResNet-34
- vee-19Q
Q .MoblleNet
8 VGG-T6 VGG-13 \
OVGG 11_BN
— 707 v66-13Q *ResNeHS
:':. VGG-110) MobileNet-v1
o
Rt ShuffieNetQ®
@ GoogleNet \
SqueezeNet-v1. 1(?
SqueezeNet-v1.
AlexNe
55 T T ——TTTT T T —T—TT
S R 8 % 8 8rs3:88 § 8 8 8 88883
- o
et

Images per second [FPS]

(a)

Top-1 accuracy [%]

85

Mobile (Jetson TXT)

NASNet-A-Large

.

SENet-

O Inceptlon
Inception-ResNet- VZO SE-ResNeXt-101 (32x4d)

\

80 DualPathNet-131@) ResN* 1(64x4d) Xce tion .SE -ResNext-50 (32x4d)
Net- &
DualPathNet-98 101
D Net-1 sNeXt O (SEsResNet-50
FB-ResNet-1520) Niop-v3
DenseNet- 16’ enseNet-201
DualPathNet-6 .ResNet-SO
DenseNet-169. Caffe-ResNet-101
75
VGG-19_BN . . DenseNet-121
VGG-16_BNQ NASNet-A-Mobile @ BN-Inception
VGG-19 . ResNet-34
vee-160 O vee-13.BN gbileNet-vZ
(QVGG-11_BN
70 vee-13 Q ResNet-18 @
© vG6-11 MobileNet-v1
© shuffleNet
@ GoogleNet
SqueezeNet-v1.1
SqueezeNet-v1.0@)
AlexNet @
55 T T T T T T T T T T T T T T T T
- o « N Lo~ ® e & 3 g 8 8 R 8 8@
- o
—

Images per second [FPS]

(b)

FIGURE 3: Top-1 accuracy vs. number of images processed per second (with batch size 1) using the Titan Xp (a) and Jetson

TX1 (b).

https://arxiv.org/pdf/1810.00736.pdf

Sentences/Second

BERT-Large on a V100 (~$10K)

900

800 823
/00

600 ~ 36

500

400 407

300

200 239

100

] 10 100 1000
Batch Size

Results included Mixed precision optimizations!

Latency (ms)

180
160
140
120
100
80
60
40
20

155.5

12.6

10 100 1000
Batch Size

Numlbers obtained from: https://developer.nvidia.com/deep-learning-performance-fraining-inference

https://developer.nvidia.com/deep-learning-performance-training-inference

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

G O O I (E] ‘ O ‘ ’ S I O T(E Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Serving

“If each of the world’s Android phones

Caees # 08 used the new Google voice search for just

fransiate et | O three minutes a day, these engineers
realized, the company would

140 billion words a day' nsvc_eddfwice as many data centers.”
— Wire

\) 0/5000

32,000 GPUs Designed New Hardware!
running 24/7 Tensor Processing Unit (TPU)

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Using statuses/sample API
Mean QPS Per Twitter DataCenter (Window=300s)

w
(6]

—— Asia

Other Challengese

> Bursty load -

» Ooverprovision resources -
> expensive

» TPU reports 28% utilization of
vector units in prOd uction o> \’Z%,\,"‘ X:%,xb‘lz%,\ﬁ 02%,\,5 QZ%,\? 0:%,@ QZ%,@ \’1%,\,6 v
> Soluhons Pacific Time
> statistical multiplexing = difficult 2 why?

» could try to predict arrival process = difficult (impossible?)!

Sampled QPS
= N N w
Ul o U o

=
o

8,

» Versioning and testing models

> Prediction pipelines > more on this soon

Inference %‘ m

Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Pre-materialized Predictions

Training Inference
° Prediction Service
—
—e” o ;Q.. 3:}\ —
Logic —T I
.-,-.-.- Trained - ’ Fredietion End User
Training Pipelines Models Application
— t
Live Ii Validation Feedback ,
Data |

Data Data

Engineer‘ Engineerx

Pre-materialized Predictions

Training (855 "\3]

- Batch Training
Framework

i B Trained
raining Pipelines Models t

O | e
Validation .
I- c All Possible
Queries

Live
Data

Pre-materialized Predictions Dato

o Management
aining System
Batch Training
-) = Framework _ X Y
@m (Scoring)
i Trained
clines Models '

validation All Possible :
Queries

[Ml__]SQL@ J

Pre-materialized Predictions

Data
Management System

Batch Training
% - Framework _ X Y

Training

(Scoring)
- o Trained

Training Pipelines Models t

J—" —~ —
Live [Validation
Data I- All Possible ‘

Queries
MySsoll

Standard Data Eng. Tools

Serving Pre-materialized Predictions

Data
{SpQI‘IQZ} Management System
Batch Traini w
- _
(Scoring)
— " B, m
All Possible ' . .
Queries [M SQLJ AppI|Cat|On

\9_'_’

Low-Latency Serving

Serving Pre-materialized Predictions

Advantages:

» Leverage existing data serving and
model training infrastructure

» Batch processing improves hardware pert.
» Indexing support for complex queries

» Find all dresses where price < $20
» More predictable performance

Serving Pre-materialized Predictions

Problems:
» Requires full set of queries ahead of fime
» Small and bounded input domain

» Requires substantial computation and space
» Example: scoring all content for all customers!

» Costly update - rescore everything!

Inference %‘ m

Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Inference %‘ m

Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Prediction Services

Prediction Service

- ;C}ﬂ EC}\ —_——
Logic N —
Prediction [E=———

- B:D. 4 End User
Application

_ J
Feedback '

Specialized systems which render
predictions at query time.

Arc:hi’rec;’rure of a Prediction Service

Edge Cloud

Application Services / Data
Services

amazon
‘ Prediction - = S3

Service

Architecture of a Prediction Service

Simple Prediction Service Design > Sfrengfhs
Prediction > Leverages existing technologies
Service £ » Easy to setup

% g

AN jngo > Limitations

Flask > Need to address common issues

» batching, monitoring, etc...

[}
P Y T b R C H » Limited isolation between models

» Missed opportunity for common
Use existing web technologies. abstraction

Two Approaches 1o
Prediction Service Design

>, VELOX

theano DaoYC aff e, @

|<GYStOﬂ€ML CreéTensorflow mXHEt OKALD “Hf'

Addressing Feedback by
Learning at Different Speeds

<, VELOX

)

Learning Inference

Application
Feedback

Learning Inference

Slow Changing Fast Changi

ng
Model = Model w

Application

Feedback

Hybrid Offine + Online Learning

Update feature functions offline ijsing batch solvers
» Leverage high-throughput systems (Tensor Flow)
» Exploit slow change in population statistics

Wy

Update the user weights onl;ine:
» Simple to train + more robust model
» Address rapidly changing user statistics

Common modeling structure

Matrix Deep Ensemble
Factorization Learning Methods

Velox Online Learning for Recommendations
(20-News Groups)

Error

0.6
0.5
0.4
0.3
0.2
0.1

10 20
Examples

30

Partial Updates: 0.4 ms
Retraining: 7.7 seconds

>4 orders-of-magnitude
faster adaptation

] Fast Changing
Learr“ng Model per user Inference

Slow Changing
Model

Feedback

Inference

Query
Training A

Decision

Learning
—

Velox —
Application

Feedback

Slow

<, VELOX Architecture

Fraud Content
Detection Rec.

NETELIX

Keystone ML

MLLib

Spark

<, VELOX Architecture

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

sl NETFLIX

Keystone ML

MLLib Velox

@ KALDI

Spark

Create

Caffe ™msofov theano

<, VELOX as a Middle Layer Arch?

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

S — -~ -
NN Y -
. = S
-
NS
=
>
-
S

theano Dato) leawn TN
Create f dmlic g

K@YStQ i GML Caffe tensorriow mxnet ~ I_Dl

Clipper Generalizes Velox Across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

ol NETFLIX

Create f dmic -

K@YSJ[O A GML Cafte tensorriow mxnet @ KALDI

NETELIK

Middle layer for prediction serving.

Common System
Abstraction Optimizations
_ DatoyX o
AAAAAA T e, B
Spor‘lg Caffe Tensor mxnet @KALDI

Clipper

Decouples Applications and Models

PredictI

RPC/REST Interface I Feedback

RPC] RPCY

Model Container (MC)

spars || caffe || g

Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and :
ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE

Clipper Architecture

& oSS

= <= we NETFLIX

W,

—
—~—

Predict I PC/REST Interface IObserve
Clipper

Selection Policy Model Selection Layer

caching Model Abstraction Layer
— |
Adaptive Batching Y

=S ———

RPCY rRrcf RecC]
Model Container (MC)

(A fFEAn

o

Approximate Caching

Model Abstraction Layer
Adaptive Batching action Laye

RPCY rRrcf ReC] RPCY
Model Wrapper (MW)

<eystonelMIL, || Caffe +

RPC] rRrc] ReCl RPC]
Model Container (MC)

SpQr‘I‘(\Z Caffe +

Common Interface - Simplifies Deployment:
» Evaluate models using original code & systems

Container-based Model Deployment
Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)

Container-based Model Deployment

Model implementation packaged in container

Model Container (MC)

class ModelContainer:
def init (model data)
def predict batch(inputs)

sk

Container-based Model Deployment

Clipper

RPCI rRrcf ReC] RPCY
) | MC _ . MC___

Spark: Caffe O learn

RPC] rRrc] ReCl RPC]
Model Container (MC)

SpQr‘I,(\Z Caffe || <~

Common Interface - Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

RPC] rrc] Rpc] RPcl RPC] RPC
el Container (MC) ~ mc [wmc | wmc J MC

30,-"23 Cafte + + +

Common Interface - Simplifies Deployment:

» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

> Scale-out

Problem: frameworks optimized for batch processing not latency

Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load > system load

may generate
many queries

Hardware |
Acceleration |

"G RPC1 Is_lyes!’?esn? gfeTK:ad

Adaptive Bafching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Clipper Solution:

Hardware Adaptively tradeoff latency and throughput...

Acceleration

l; * » Inc. batch size unfil the latency objective is
exceeded (Additive Increase)

Q.GRPC1 Helps amortize > If latency exceeds SLO cut batch size by a
system overhead fraction (Multiplicative Decrease)

Tensor Flow Conv. Ne’r (GPU)

Bette,iSOOO

10000 |

Throughput
(Queries Per Second)

5000 |-

0

0 50 100 150 200 250 300

Batch Size

Tensor Flow Conv. Ne’r (GPU)

Better

15000

10000 |-
Throughput
. 5000 |-

(Queries Per Second)

Latency (ms) l

Better

0

30

20

10+

0

Deadline

0 50 100 150 200 250

Batch Size

300

Tensor Flow Conv. Ne’r (GPU)

Better

15000

10000 |

Throughput
(Queries Per Second)

Latency (ms) l

Better

0

30}

20

10+

0

5000 -

Deadline

0

50

100 150 | 200
Batch Size

250

300

Better
Throughput 50000
(QPS) 40000
20000

B No Batching

[1 Adaptive B No Batching

Better
© ™ (o)
Throughput 60000 bg;(b% = © b‘%& ‘;‘\‘7:\
(QPS) 40000 o > i
S
2000 || (T [[@ g | L
Jo oSt G Gt QOO O°
WO ?2:\\ ¢ 20 e 69«\\ e((\e\ e o) eg(@%?(\\\
@'\g ot \?*6\) Ve et e

Better
Throughput 60000
(QPS) 40000
20000
0
40
P99 Latency .
(ms)

0

20 ms is Better

Fast Enough

[1 Adaptive
©
b?’(b% 3
o)
i P’
> ©
R A Ua
o5 \
N N N
o ke Il
ch W
R o
02 Y e0?

B No Batching

b S
o N
2 i
Q N
ESORNC S
R
N N
1)
Q L Q
W W OO
%Q \ \%Q \ 65\
X 0 o e@‘e)
\ OO

[1 Adaptive B No Batching

o o N
&> S ol AV
Throughput 60000 X R P > b
(QPS) 30000 & a4 TS > AP 5
20000 | | L [LR S
40 D

P99 Latency
(ms)

Batch Size

Overhead of decoupled architecture

Predict I RPC/REST Interface I Feedback

Caffe 1?‘

Overhead of decoupled architecture

g NETELIN oW

o S

T Predict§ RPC Interface
Predict I RPC/REST Interface I Feedback

TensorFlow-
Serving

Clipper

rrc] rpcl rrcl

f

TensorFlow

Overhead of decoupled architecture

Model: AlexNet trained on CIFAR-10

60
6000 5519 5472 47.04 46.75

Better P99 Latency
4000 (ms)
I 2000
Throughput
(QPS) Better

Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and :
ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE

Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model SeleCt 10N Layer

S M Version 1 ' ' o
.m Version 2 PeI’IOO'IC retfalnlﬂg

:a:: Version 3
Experiment with new
g : I models and frameworks

e

TensorFlow

Caffe

Selection Policy: Estimate confidence

§ g@f o
§ Ve OoN\3

“CAT”

“CAT” g HCAT!!
“CAT” "

«car” | < | CONFIDENT

Caffe

Selection Policy: Estimate confidence

“CAT”

AN z HCAT!!

“CAT” "

«SPACE” | 2 UNSURE
—

Selection Policy: Estimate confidence

8 ImageNet
&U B confident [] unsure
o 0.4 0.3182
Better = :
LL 0.1983
0 0.2
- 0.0586 0.0469 0.0327
2 0.0 | J

ensemble 4-agree S-agree

Selection Policy: Estimate confidence

O ImageNet
&U B confident [1 unsure
5 0.4
-
LLI
"? 0.2
Better Q- 0.0586
@)
— 0.0
ensemble

width is
percentage of
query workloads

Selection Policy Model Selection Layer

Selection policies supported by Clipper

» Exploit multiple models to estimate
confldence

> Use mul

-armed bandit algorithms to

learn op

T1mMal model-selection online

» Online personalization across ML
frameworks

Online: Compute Predictions at Query Time

> Examples
» Speech recognition, image tagging
» Ad-targeting based on search terms, available ads, user features

» Advantages
» Compute only necessary queries
» Enables models to be changed rapidly and bandit exploration
» Queries do not need to be from small ground set

» Disadvantages
> Increases complexity and computation overhead of serving system
» Requires low and predictable latency from models

Prediction Pipelines

Query Image

Example

This is my daughter!

Query Image Machine Learning Prediction
| Model

“A baby lying
on a bed”

. Pane Background

|Alt Text| € Format Picture

How would you describe this object and its
context to someone who is blind?

This caption was generated automatically
in the cloud
by Microsoft PowerPoint Ababy lying on a bed

Description automatically generated

(1-2 sentences recommended)

More realistic 2 Prediction Pipeline
Machine Learning
Model

Ensemble
Query Image

H Prediction
‘if‘;»» - ‘A baby bing
o on a bed”

»

\@»@»

Background
Prediction

Prediction

Segmentation

Machine Learning

Model
Ensemble
Query Image
E ‘ ’ Prediction
B » » = "A baby lying
; on a bed”

»

»
\@»@»

Background
Prediction

Prediction

Segmentation

How do we provision resources for these pipelinese
Latency vs. Throughput vs. Cost

ow do we provision resources for these pipelines?
Latency vs. Throughput vs. Cost

N
CP

CPU

Two readings this week will

CPU

address this problem.

> Pretzel
> InferLine

CPU CPU
BACkaroung

L

I LI A L~

Prediction

Cloud -- Edge

Technology
» AC Powered Lamp
» Commodity ARM proc.
» /20HD Video
» Microphone & Speaker

> Infrared Motion Sensors

(Goals:

» Detect, identify, and record people
» Notify homeowner and open channel of comm.

How does worke

Y ¥ Fast onboard pixel-level filter
> \ identifies suspicious change

EEEEEE
ST
EBE

Uit ! Key frames are sent to EC2
Jiisy for further processing

S8 \ore sophisticated processing

Yy

889 Il to reduce false positives (costly
ey GPU time)

technology challenges

> Splitting classification across device and cloud.

» Shared learning to identfity common paftterns
> e.q., fraffic in urban environments

» More efficient prediction rendering on cloud + edge
» Running full CV pipeline on all images is very costly

Desired Capabilities

» Event characterization: “Package delivery at 1:33 PM”

» Automatic user interaction: “l would be happy fo
digitally sign for the package ...”

Reading This Week

Reading for the Week

> Pretzel. Opening the Black Box of Machine Learning
Prediction Serving Systems (osbris)

» Opftimizing prediction serving pipeline using compiler and
database system technigques

» InferLine: ML Inference Pipeline Composition
Framework (pre-print)

» Opftimizing prediction serving pipeline configurations for deep
learning on heterogenous hardware

» Focus: Querying Large Video Datasets with Low Latency
and Low Cost (ospi'1g)

» Enabling real-fime queries on video dafa with offline pre-
processing

https://www.usenix.org/system/files/osdi18-lee.pdf
https://ucbrise.github.io/cs294-ai-sys-fa19/assets/preprint/inferline_draft.pdf
https://www.usenix.org/system/files/osdi18-hsieh.pdf

Pretzel: Opening the Black Box of e

Transforms @ (2) Optimization

Machine Learning Prediction Cogerige [paams] [|

° QiﬁO&: 3. Tl.c.>at[200] Model Plan
Serving Systems U@ 2
» Addresses a range of practical issues: @é@ :

» Dealing with infrequently used models
> Need to “page-out” infrequently used models > Cold starts
» Need to pack many models in same machine

> Sharing model stages across prediction pipelines
» Eliminate redundant computation and memory requirements

» Pushing computation (reuse) through feature concatenation
» Generating efficient binary executables from high-level DSLs

» Setting: Focused on non-deep learning pipelines
» CPU Intensive
» ML.Net Infrastructure and production workloads

> Sharing model stages across prediction pipelines
» Eliminate redundant computation and memory requirements

» Pushing computation (reuse) through feature concatenation
» Generating efficient binary executables from high-level DSLs

» Setting: Focused on non-deep learning pipelines

» CPU Intensive
» ML.Net Infrastructure and production workloads

> Big ldea: Leverage visibility into pipeline achieved by
high-level pipeline DSL to optimize execution AQCross
pipelines and stages within a pipeline

» What to look for in reading
» Motivations driven by real-world workload profiling
» Combination of offline and online opfimization

» Decomposition of problem into logical and physical plans and
runtime scheduling

Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Context: This is a pre-print paper from my group
» Submitted OSDI'18 and SOSP'19 - rejected ®
> |Issues with presentation and contributions

» How can we review a professor’'s papere
» Your honest feedback is very helpfull

» Why choose this papere
» Discusses a range of challenges in black-box pipeline management
» Presents interesting configuration space
> We need feedback! (It is ok fo be negative.)

Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Big ldea: Optimally configure per-model parameters in a
prediction pipeline to achieve probabilistically bounded tall
latency at minimal cost.

Technical Ideas in the InferLine Project

Discrete Event Continuous Time Simulator

Arrival Process Characterization

—_
%)
\% 300 1 'i‘ 1
Q i !
= A 1] \ 1) \
ch 200 jn‘\;\M'lu Wi J’“'iﬁ "|I.| :n'l 9 :
- anind = 1
Z 100 e 8 ra‘i':,.ﬂ...‘. o |
= v h) 1
o 0 O 1
Q 0 1000 2000 3000 1 1
A Time (s) ! !
1 1
dt 2dt 4dt 8dt

Individual Model Profiles

Better
15000

10000 |-

Throughput

(Queries Per Second) — |

Optimal Batch Size

0

30 [T T T
ool _Deadline A5
Latency (ms) Lol

Better

0

0 50 100 150 200

Batch Size

250

300

Ni"s-0,
@@ A e
$é

—o0—o—

Proactive and Reactive Optimizer

SUOIJ DY
BuIZIWIUIW §SOD

i

Initial Config F P
ﬁ Setpoint Emor» I | K,j[e(r)dr%- Output—»
_ D« de(t

invalid

<&

Bang Bang &
Optimal Config PID Reactive Conftroller

Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Technical Ideas (summary)

» Individual model performance profiles + discrete event simulation 2
reason about end-to-end latency in the presence of complex
quevuing behavior

> Simple greedy search heuristic 1o configure for each model:
» Hardware type, number of copies, and batching parameters

» Online re-provisioning using network calculus to optimally resize

» What to look for:
» Too many ideas not enough contribution?
» Clarity of presentation

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

» Context: builds on a line of earlier work

» Live Video Analytics at Scale with Approximation and Delay-
Tolerance (NSDI'17)

» Chameleon: Scalable Adaptation of Video Analytics (SIGCOMM'18)

> Big Ideas in the Line of Work:
> Trade-off accuracy and latency in video processing tasks
» Schedule resources according o acc. and latency requirements

> Different “Serving Model”:

» Large queries on historical or video streams:
> Find all the times where a car and a bike are in a frame.

https://www.usenix.org/system/files/conference/nsdi17/nsdi17-zhang.pdf
http://people.cs.uchicago.edu/~junchenj/docs/Chameleon_SIGCOMM_CameraReady.pdf

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> Big Idea(s)

Query-time

Ingest-time
j { CNN }

specialization

g [[Frames withW
. objects of
Querying for class X

Frames Object class X

O feature Ozt _ (Matching }
vectors clusters ‘ - ‘ .. clusters for X
@% | — Centroid OB ;;8%
H O A0 (@] o
Objects Object top-K objects 7N N
@Spemallzed classes Top-K @ GT CNN
Compressed CNN index

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification

pl;sgg):al —regions— >} FC (:cl)itsmax)
o FC

................... pooling|—> Layers FOSTer R—CNN

mag —> CNN eature maps— > sy
.................... FC) b r:récrl:sr);:r

DarkNet Yolo (You Only Look Once)
....................... _ |
cccccccccc 3 3 5 ‘ ‘
mag ‘_._)mpl_)mpl_)maxpl max pool maxpl_>50 —>» 3 ‘L>~+4+ ccccc —>

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification

R-CNN

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fon-7€354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

|ldentify regions of interest and run
ellel] — feature network on each.

convolutional network

Fast R-CNN

classes
M- laye'

—
qu FC FC
pooling layer —> layer
—

\ :C . boundary box
‘ e (regressor)

region proposal

/

- convolutional network

Reuse feature outputs for all externally proposed regions.

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

|dentfify regions of inferest and run Reuse feature outputs for all
feature network on each. R-CNN externally proposed regions.

— i Fast R-CNN
1 k| ' =
; ol T

I A

convolutional network

Faster R-CNN

=
.: 5C classes
o A L

region proposal network — >l Rol > Fo Fo
pooling layer —> layer —<
—\

FC
i I I . W > boundary box
) }] layer (regressor)
===)

convolutional network

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

|[dentify regions of interest and run

Reuse feature outputs for all
feature network on each.

R-CNN externally proposed regions.

- B Fast R-CNN

-
* it
» o) classes.
region proposal 5
i FC FC
La] N
{ i

ppppppp

o
18
")
[i/]
! - o boundary by
s
i 7
convolutional network L convolutional network
|

Use region proposal e

network — W)

—

'||;.:
FC
classes
Iayer

— |)
Rol [—> FC FC
pooling layer —> layer
—
FC
W layer
" /4

DarkNet Yolo (you only look once)
.................. : oo - oo : classes
image Ly conv. conv. conv. conv. - 3 5conv. — > + :
: max pool max pool max pool max pool max pool boundary boxes

hitps://medium.com/@jonathan_hui/what= —detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification
» Do they leverage the structure of object detection models?

> Split between ingest and query fime computation
» Tradeoff between accuracy and latency - how is it evaluated?
» Presentation - many optimizations explored, do they fit fogether?

BDlelal=)

Cascaded Predictions

Prediction

I D K Cascades

Simple models for simple tasks

Query Simple Model « Accurate Model
Fast Slow
Prediction Prediction

Learn o combine fast (inaccurate) models with
slow (accurate) models to maximize accuracy
while reducing computational costs.

Query Simple Model I,%%'w « Accurate Model
Fast Slow

Prediction Prediction

SkipNet: dynamic execution within a model

0 . .
> > = =| =}Pred|CT|On

Query —

AUOD

Query Simple Model I,%%'w « Accurate Model
Fast Slow

Prediction Prediction

SkipNet: dynamic execution within a model

' l =H—Predic’rion

Skip Blocks

Query —

AUOD

SkipNet: dynamic execution within a model

I E— ' I H—Predic’rion

Skip Blocks
» Combine reinforcement learning with
supervised pre-training to learn a gating policy

Query —

n
»

AUOD
2109
AUOD

FLOPs(1e8)

o Easy Images
SkipNet Performance Skio Many Lavers

)
“ 34 71 [
- BEA7][E
| + + b
= OHED

w
|

N

—

o

ResNet- 152 ResNet-110 ResNet-74
SVHN

Hard Images
Skip Few Layers

Efficient Neural Networks

Block Iv\oﬁon Vectors

Query Simple Model {Don't Accurate Model
Know
Fast Slow
Prediction Prediction

NRVeal Nuleat Nuleat NUVeat NUleat
Prediction o
w

[/

w
R

[P

(2]

Dynamic Networks for fast and accurate inference

IDK Cascades: Using the fastest model possible [UAIr18]

Query ——Slanlell= Mlelel=)

[Don't s Accurate Model
Know
Fast Slow

Prediction Prediction

SkipNet: dynamic execution within a model [eccvi1s]

E—E—H—Predicﬂon

Skipped

Query Blocks

FLOPs(1e8)

SkipNet: dynamic execution within a model [eccvi1s]

E—E—H‘Predicﬁon

Large Reductions in FLOPS Skip more layers on clear images

Skipped

Query Blocks

4 0 Late {
20 SOOEEL I8 =§k|§~1ét+sp n | 9
3 W_SkipNet+SP+HRL Easy Images E* [z- L._
"""" Skip Many Layers | - !
2 5t P Y '0 9 . 6 n
0 - i Hard Images

ResNet-152 ResNet-110 ResNet-74 Skip Few Layers ...n .
SVHN

Sl

Task Aware Feature Embeddings
[CVPR'19]

Feature
Network Ba by

Task Aware
Meta-Learner

More accurate and
efficient than existing
dynamic pruning
networks

Sl

Task Aware Feature Embeddings
[CVPR'19]

Feature

Network Yes

Task Aware
Meta-Learner

Task Description: .
4 - 15% improvement

on attribute-object
tasks

“Smiling
Baby”

Leverage motion fo improve the speed
and accuracy of semantic segmentation

Block MO’fion Vectors | Optical Flow

a.

Query Simple Model = ResNet152

Accuracy Relative Cost

100 1.2]
o 783 783 783 783 783 |

40 0.8 0.63
0.6
40 0.4
20 0.2
0 0

IS S Y S &
QQ’ I\ e 0 X e 0 AN
S T) @ e@ e@ 57 @
v @ @ @ by v @ @ by

37% reduction in runtime
@ no loss in accuracy

: [don't
Query Simple Mode| gy
Fast Slow

Prediction Prediction

> Cascades within a Model

0 . .
> > = =| =}Pred|CT|On

Query —

AUOD

Query Simple Model I&%'w « Accurate Model
Fast Slow

Prediction Prediction

' l =H—Predic’rion

Skip Blocks

> Cascades within a Model

Query —

AUOD

Cascading reduces computational cost

120 [1 No Gate [1 ConvGate [1 RNNGate
110.0 67.08 67.72
100 Similar gains on
c 400, lArger models
§ 80 74.0 54.16 54.69
g 0 e TR
% 28%
& 60
()
>
< 40 38.0 35.82 34.31
""""""" T 10%
20
0

ResNet110 ResNet74 ResNet38

400

350

300

250

frequency
N
o
o

150

100

50

Easy Images

airplane
accuracy=0.943

Skip More

20

600

500

400

300

200

100

0

6

accuracy=0.95

truck

Skip More

8

10

12

14

16

18

20

400

350

300

250

200

150

100

50

0

6

8

accuracy=0.88

10

Ditficult Images

dog

Skip Less

12

14

16

18

20

Numlber of Layers Skipped

300

250

200

150

100

50

0

6

8

accuracy=0.851

10

cat

12

Skip Less

14

16

18

20

HAHW

Future Directions for Cascades

» Using reinforcement learning techniques to reduce
gating costs

> Query triage during load spikes - forcing fractions
of the network to go dark

> lrregular execution -
» complicates batching
> Issues for parallel execution

