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why is Inference challenging?

Need to render low latency (< 10ms) predictions for complex

Queries Features
e SELECT * FROM
O | users JOIN items,
 — click_logs, pages
% """""""" — WHERE ...
% | —

under heavy load with system failures.



Basic Linear Models (Often High Dimensional)

» Common for click prediction and text filter models (spam)

» Query x encoded in sparse Bag-of-Words:
» x="The quick brown"” ={("brown", 1), ("the”, 1), ("quick”, 1)}

> Rendering a prediction: Predict(x) = o Z OwC
(w,c)Ex

» O is alarge vector of weights for each possible word
» or word combination (n-gram models) ...

» Opftimizations?



Support low-latency, high-throughput serving workloads

Models getting more complex
» 10s of GFLOPs [1]

Deployed on crifical path

» Maintain SLOs under heavy load Using Specig“zed
hardware for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.
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https://arxiv.org/pdf/1810.00736.pdf
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FIGURE 3: Top-1 accuracy vs. number of images processed per second (with batch size 1) using the Titan Xp (a) and Jetson

TX1 (b).


https://arxiv.org/pdf/1810.00736.pdf
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BERT-Large on a V100 (~$10K)
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Numlbers obtained from: https://developer.nvidia.com/deep-learning-performance-fraining-inference



https://developer.nvidia.com/deep-learning-performance-training-inference

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

G O O I ( E ] ‘ O ‘ ’ S I O T( E Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Serving

“If each of the world’s Android phones

Caees # 08 used the new Google voice search for just

fransiate et | O three minutes a day, these engineers
realized, the company would

140 billion words a day' nsvc_eddfwice as many data centers.”
— Wire

\ ) 0/5000

32,000 GPUs Designed New Hardware!
running 24/7 Tensor Processing Unit (TPU)

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html



Using statuses/sample API
Mean QPS Per Twitter DataCenter (Window=300s)

w
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—— Asia

Other Challengese

> Bursty load -

» Ooverprovision resources -
> expensive

» TPU reports 28% utilization of
vector units in prOd uction o> \’Z%,\,"‘ X:%,xb‘lz%,\ﬁ 02%,\,5 QZ%,\? 0:%,@ QZ%,@ \’1%,\,6 v
> Soluhons Pacific Time
> statistical multiplexing = difficult 2 why?

» could try to predict arrival process = difficult (impossible?)!

Sampled QPS
= N N w
Ul o U o

=
o

8,

» Versioning and testing models

> Prediction pipelines > more on this soon
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Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly
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Pre-materialized Predictions Dato
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Pre-materialized Predictions
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Serving Pre-materialized Predictions
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Low-Latency Serving



Serving Pre-materialized Predictions

Advantages:

» Leverage existing data serving and
model training infrastructure

» Batch processing improves hardware pert.
» Indexing support for complex queries

» Find all dresses where price < $20
» More predictable performance



Serving Pre-materialized Predictions

Problems:
» Requires full set of queries ahead of fime
» Small and bounded input domain

» Requires substantial computation and space
» Example: scoring all content for all customers!

» Costly update - rescore everything!
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Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly



Inference %‘ m

Big Model Yy

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly



Prediction Services

Prediction Service
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Specialized systems which render
predictions at query time.




Arc:hi’rec;’rure of a Prediction Service

Edge Cloud

Application Services / Data
Services

amazon
‘ Prediction - = S3

Service




Architecture of a Prediction Service

Simple Prediction Service Design > Sfrengfhs
Prediction > Leverages existing technologies
Service £ » Easy to setup

% g

AN jngo > Limitations

Flask > Need to address common issues

» batching, monitoring, etc...

[}
P Y T b R C H » Limited isolation between models

» Missed opportunity for common
Use existing web technologies. abstraction



Two Approaches 1o
Prediction Service Design

>, VELOX
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Addressing Feedback by
Learning at Different Speeds

<, VELOX

)
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Learning Inference

Slow Changing Fast Changi

ng
Model = Model w

Application

Feedback




Hybrid Offine + Online Learning

Update feature functions offline ijsing batch solvers
» Leverage high-throughput systems (Tensor Flow)
» Exploit slow change in population statistics

Wy

Update the user weights onl;ine:
» Simple to train + more robust model
» Address rapidly changing user statistics



Common modeling structure

Matrix Deep Ensemble
Factorization Learning Methods




Velox Online Learning for Recommendations
(20-News Groups)

Error

0.6
0.5
0.4
0.3
0.2
0.1

10 20
Examples

30

Partial Updates: 0.4 ms
Retraining: 7.7 seconds

>4 orders-of-magnitude
faster adaptation



] Fast Changing
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<, VELOX Architecture

Fraud Content
Detection Rec.

NETELIX

Keystone ML

MLLib

Spark




<, VELOX Architecture

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

sl NETFLIX

Keystone ML

MLLib Velox
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<, VELOX as a Middle Layer Arch?

Fraud Content Personal Robotic Machine
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Clipper Generalizes Velox Across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

ol NETFLIX

Create f dmic -

K@YSJ[O A GML Cafte tensorriow  mxnet @ KALDI




NETELIK

Middle layer for prediction serving.

Common System
Abstraction Optimizations
_ DatoyX o
AAAAAA T e, B
Spor‘lg Caffe  Tensor mxnet @KALDI



Clipper

Decouples Applications and Models

PredictI

RPC/REST Interface I Feedback

RPC] RPCY

Model Container (MC)

spars || caffe || g




Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and :
ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE




Clipper Architecture
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Approximate Caching

Model Abstraction Layer
Adaptive Batching action Laye

RPCY rRrcf  ReC] RPCY
Model Wrapper (MW)

<eystonelMIL, || Caffe +




RPC] rRrc]  ReCl RPC]
Model Container (MC)

SpQr‘I‘(\Z Caffe +

Common Interface - Simplifies Deployment:
» Evaluate models using original code & systems



Container-based Model Deployment
Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)



Container-based Model Deployment

Model implementation packaged in container

Model Container (MC)

class ModelContainer:
def init (model data)
def predict batch(inputs)

sk




Container-based Model Deployment

Clipper

RPCI rRrcf  ReC] RPCY
) | MC _ . MC___

Spark: Caffe O learn




RPC] rRrc]  ReCl RPC]
Model Container (MC)

SpQr‘I,(\Z Caffe || <~

Common Interface - Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation



RPC] rrc]  Rpc]  RPcl  RPC] RPC
el Container (MC) ~ mc [ wmc | wmc J MC

30,-"23 Cafte + + +

Common Interface - Simplifies Deployment:

» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

> Scale-out

Problem: frameworks optimized for batch processing not latency



Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load > system load

may generate
many queries

Hardware |
Acceleration |

"G RPC1 Is_lyes!’?esn? gfeTK:ad




Adaptive Bafching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Clipper Solution:

Hardware Adaptively tradeoff latency and throughput...

Acceleration

l; * » Inc. batch size unfil the latency objective is
exceeded (Additive Increase)

Q.GRPC1 Helps amortize > If latency exceeds SLO cut batch size by a
system overhead fraction (Multiplicative Decrease)




Tensor Flow Conv. Ne’r (GPU)
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Tensor Flow Conv. Ne’r (GPU)
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Tensor Flow Conv. Ne’r (GPU)
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Overhead of decoupled architecture

Predict I RPC/REST Interface I Feedback

Caffe 1?‘




Overhead of decoupled architecture
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Overhead of decoupled architecture

Model: AlexNet trained on CIFAR-10
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Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and :
ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE




Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model SeleCt 10N Layer

S M Version 1 ' ' o
.m Version 2 PeI’IOO'IC retfalnlﬂg

:a:: Version 3
Experiment with new
g : I models and frameworks

e

TensorFlow

Caffe




Selection Policy: Estimate confidence
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Selection Policy: Estimate confidence
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Selection Policy: Estimate confidence

8 ImageNet
&U B confident [ ] unsure
o 0.4 0.3182
Better = :
LL 0.1983
0 0.2
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2 0.0 | J
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Selection Policy: Estimate confidence

O ImageNet
&U B confident [ 1 unsure
5 0.4
-
LLI
"? 0.2
Better Q- 0.0586
@)
— 0.0
ensemble

width is
percentage of
query workloads



Selection Policy Model Selection Layer

Selection policies supported by Clipper

» Exploit multiple models to estimate
confldence

> Use mul

-armed bandit algorithms to

learn op

T1mMal model-selection online

» Online personalization across ML
frameworks



Online: Compute Predictions at Query Time

> Examples
» Speech recognition, image tagging
» Ad-targeting based on search terms, available ads, user features

» Advantages
» Compute only necessary queries
» Enables models to be changed rapidly and bandit exploration
» Queries do not need to be from small ground set

» Disadvantages
> Increases complexity and computation overhead of serving system
» Requires low and predictable latency from models



Prediction Pipelines



Query Image

Example

This is my daughter!



Query Image Machine Learning Prediction
| Model

“A baby lying
on a bed”

. Pane Background

|Alt Text| € Format Picture

How would you describe this object and its
context to someone who is blind?

This caption was generated automatically
in the cloud
by Microsoft PowerPoint Ababy lying on a bed

Description automatically generated

(1-2 sentences recommended)




More realistic 2 Prediction Pipeline
Machine Learning
Model

Ensemble
Query Image

H Prediction
‘if‘;»» - ‘A baby bing
o on a bed”

»

\@»@»

Background
Prediction

Prediction

Segmentation



Machine Learning

Model
Ensemble
Query Image
E ‘ ’ Prediction
B » » = "A baby lying
; on a bed”

»

»
\@»@»

Background
Prediction

Prediction

Segmentation

How do we provision resources for these pipelinese
Latency vs. Throughput vs. Cost



ow do we provision resources for these pipelines?
Latency vs. Throughput vs. Cost

N
CP

CPU

Two readings this week will

CPU

address this problem.

> Pretzel
> InferLine

CPU CPU
BACkaroung

L

I LI A L~

Prediction



Cloud -- Edge






Technology
» AC Powered Lamp
» Commodity ARM proc.
» /20HD Video
» Microphone & Speaker

> Infrared Motion Sensors

(Goals:

» Detect, identify, and record people
» Notify homeowner and open channel of comm.



How does worke

Y ¥ Fast onboard pixel-level filter
> \ identifies suspicious change

EEEEEE
ST
EBE

Uit ! Key frames are sent to EC2
Jiisy for further processing

S8 \ore sophisticated processing

Yy

889 Il to reduce false positives (costly
ey GPU time)



technology challenges

> Splitting classification across device and cloud.

» Shared learning to identfity common paftterns
> e.q., fraffic in urban environments

» More efficient prediction rendering on cloud + edge
» Running full CV pipeline on all images is very costly

Desired Capabilities

» Event characterization: “Package delivery at 1:33 PM”

» Automatic user interaction: “l would be happy fo
digitally sign for the package ...”




Reading This Week



Reading for the Week

> Pretzel. Opening the Black Box of Machine Learning
Prediction Serving Systems (osbris)

» Opftimizing prediction serving pipeline using compiler and
database system technigques

» InferLine: ML Inference Pipeline Composition
Framework (pre-print)

» Opftimizing prediction serving pipeline configurations for deep
learning on heterogenous hardware

» Focus: Querying Large Video Datasets with Low Latency
and Low Cost (ospi'1g)

» Enabling real-fime queries on video dafa with offline pre-
processing



https://www.usenix.org/system/files/osdi18-lee.pdf
https://ucbrise.github.io/cs294-ai-sys-fa19/assets/preprint/inferline_draft.pdf
https://www.usenix.org/system/files/osdi18-hsieh.pdf

Pretzel: Opening the Black Box of e

Transforms @ (2) Optimization

Machine Learning Prediction Cogerige [paams] [ |

° QiﬁO&: 3. Tl.c.>at[200] Model Plan
Serving Systems U@ 2
» Addresses a range of practical issues: @é@ :

» Dealing with infrequently used models
> Need to “page-out” infrequently used models > Cold starts
» Need to pack many models in same machine

> Sharing model stages across prediction pipelines
» Eliminate redundant computation and memory requirements

» Pushing computation (reuse) through feature concatenation
» Generating efficient binary executables from high-level DSLs

» Setting: Focused on non-deep learning pipelines
» CPU Intensive
» ML.Net Infrastructure and production workloads



> Sharing model stages across prediction pipelines
» Eliminate redundant computation and memory requirements

» Pushing computation (reuse) through feature concatenation
» Generating efficient binary executables from high-level DSLs

» Setting: Focused on non-deep learning pipelines

» CPU Intensive
» ML.Net Infrastructure and production workloads

> Big ldea: Leverage visibility into pipeline achieved by
high-level pipeline DSL to optimize execution AQCross
pipelines and stages within a pipeline

» What to look for in reading
» Motivations driven by real-world workload profiling
» Combination of offline and online opfimization

» Decomposition of problem into logical and physical plans and
runtime scheduling



Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Context: This is a pre-print paper from my group
» Submitted OSDI'18 and SOSP'19 - rejected ®
> |Issues with presentation and contributions

» How can we review a professor’'s papere
» Your honest feedback is very helpfull

» Why choose this papere
» Discusses a range of challenges in black-box pipeline management
» Presents interesting configuration space
> We need feedback! (It is ok fo be negative.)



Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Big ldea: Optimally configure per-model parameters in a
prediction pipeline to achieve probabilistically bounded tall
latency at minimal cost.



Technical Ideas in the InferLine Project

Discrete Event Continuous Time Simulator

Arrival Process Characterization
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Offline Proactive Planner Online Reactive Controller

InferLine: Prediction Pipeline
Provisioning and Management
for Tight Latency Objectives

» Technical Ideas (summary)

» Individual model performance profiles + discrete event simulation 2
reason about end-to-end latency in the presence of complex
quevuing behavior

> Simple greedy search heuristic 1o configure for each model:
» Hardware type, number of copies, and batching parameters

» Online re-provisioning using network calculus to optimally resize

» What to look for:
» Too many ideas .... not enough contribution?
» Clarity of presentation



Focus: Querying Large Video Datasets with Low
Latency and Low Cost

» Context: builds on a line of earlier work

» Live Video Analytics at Scale with Approximation and Delay-
Tolerance (NSDI'17)

» Chameleon: Scalable Adaptation of Video Analytics (SIGCOMM'18)

> Big Ideas in the Line of Work:
> Trade-off accuracy and latency in video processing tasks
» Schedule resources according o acc. and latency requirements

> Different “Serving Model”:

» Large queries on historical or video streams:
> Find all the times where a car and a bike are in a frame.


https://www.usenix.org/system/files/conference/nsdi17/nsdi17-zhang.pdf
http://people.cs.uchicago.edu/~junchenj/docs/Chameleon_SIGCOMM_CameraReady.pdf

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> Big Idea(s)
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Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification
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Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification

R-CNN

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fon-7€354377a7c9



https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
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https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9



https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
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https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
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https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

Focus: Querying Large Video Datasets with Low
Latency and Low Cost

> What to look for:

» Framing of relationships between object detection models and
Image classification
» Do they leverage the structure of object detection models?

> Split between ingest and query fime computation
» Tradeoff between accuracy and latency - how is it evaluated?
» Presentation - many optimizations explored, do they fit fogether?
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Cascaded Predictions



Prediction

I D K Cascades

Simple models for simple tasks

Query Simple Model « Accurate Model
Fast Slow
Prediction Prediction

Learn o combine fast (inaccurate) models with
slow (accurate) models to maximize accuracy
while reducing computational costs.
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Prediction Prediction

SkipNet: dynamic execution within a model
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Query Simple Model I,%%'w « Accurate Model
Fast Slow

Prediction Prediction

SkipNet: dynamic execution within a model

' l =H—Predic’rion

Skip Blocks

Query —

AUOD




SkipNet: dynamic execution within a model

I E— ' I H—Predic’rion

Skip Blocks
» Combine reinforcement learning with
supervised pre-training to learn a gating policy
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Efficient Neural Networks

Block Iv\oﬁon Vectors
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Dynamic Networks for fast and accurate inference

IDK Cascades: Using the fastest model possible [UAIr18]

Query ——Slanlell= Mlelel=)
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Fast Slow
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SkipNet: dynamic execution within a model [eccvi1s]
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FLOPs(1e8)

SkipNet: dynamic execution within a model [eccvi1s]

E—E—H‘Predicﬁon

Large Reductions in FLOPS Skip more layers on clear images
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Sl

Task Aware Feature Embeddings
[CVPR'19]

Feature
Network Ba by

Task Aware
Meta-Learner

More accurate and
efficient than existing
dynamic pruning
networks




Sl

Task Aware Feature Embeddings
[CVPR'19]

Feature

Network Yes

Task Aware
Meta-Learner

Task Description: .
4 - 15% improvement

on attribute-object
tasks

“Smiling
Baby”




Leverage motion fo improve the speed
and accuracy of semantic segmentation

Block MO’fion Vectors | Optical Flow
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Query Simple Model = ResNet152

Accuracy Relative Cost
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> Cascades within a Model
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Query Simple Model I&%'w « Accurate Model
Fast Slow

Prediction Prediction
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Skip Blocks

> Cascades within a Model
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Cascading reduces computational cost
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HAHW

Future Directions for Cascades

» Using reinforcement learning techniques to reduce
gating costs

> Query triage during load spikes - forcing fractions
of the network to go dark

> lrregular execution -
» complicates batching
> Issues for parallel execution



