
Joseph E. Gonzalez
Co-director of the RISE Lab

jegonzal@cs.berkeley.edu

AI-Systems
Deep Learning
Compilers

Some content has been borrowed from:
• Simon Mo’s Lecture (Ai-Sys SP19)
• UW-CSE 599W Systems for ML Class

https://ucbrise.github.io/cs294-ai-sys-sp19/assets/lectures/lec12/dl-compilers.pdf
https://dlsys.cs.washington.edu/pdf/lecture7.pdf

Deep Learning Execution Model

Ø DL frameworks execute
the network by running
one operator at a time
Ø May optimize choice of

operator implementation
Ø Each operator reads input

and produces new output

Ø Issues?

Image from http://torch.ch/blog/2016/02/04/resnets.html

Example (Conv Op):
volta_scudnn_winograd_1
28x128_ldg1_ldg4_relu_tile
148t_nt_v1

http://torch.ch/blog/2016/02/04/resnets.html

Issues with operator at a time
execution model
Ø Interpreted execution

Ø Multiple scans of data
Ø Potentially large temp.

memory requirements

Ø Need optimized
implementations of
operators
Ø Difficult to build new ops.
Ø Difficult to target new

hardware

Image from http://torch.ch/blog/2016/02/04/resnets.html

Example (Conv Op):
volta_scudnn_winograd_1
28x128_ldg1_ldg4_relu_tile
148t_nt_v1

http://torch.ch/blog/2016/02/04/resnets.html

Hardware for Deep Learning

- Heterogenous hardware:

- Need to optimize workload for

different hardware.

- Layered Memory Hierarchy:

- Complex scheduling space

- Parallel Compute Primitives

- Threads

- SIMD/Vector parallelism

- Specialized primitives

(e.g., Tensor Cores)

Challenges of
Implementing Ops.

Ø Need to reason about:
Ø Loop order and Tiling
Ø Memory layout
Ø Relation to other operations

Ø Relationship to memory
hierarchy and specialized
hardware

Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

can fuse element-wise operators to its output. We can
apply these rules to transform the computational graph
into a fused version. Figure 4 demonstrates the impact
of this optimization on different workloads. We find that
fused operators generate up to a 1.2⇥ to 2⇥ speedup by
reducing memory accesses.

Data Layout Transformation. There are multiple
ways to store a given tensor in the computational graph.
The most common data layout choices are column major
and row major. In practice, we may prefer to use even
more complicated data layouts. For instance, a DL ac-
celerator might exploit 4⇥4 matrix operations, requiring
data to be tiled into 4⇥ 4 chunks to optimize for access
locality.

Data layout optimization converts a computational
graph into one that can use better internal data layouts
for execution on the target hardware. It starts by spec-
ifying the preferred data layout for each operator given
the constraints dictated by memory hierarchies. We then
perform the proper layout transformation between a pro-
ducer and a consumer if their preferred data layouts do
not match.

While high-level graph optimizations can greatly im-
prove the efficiency of DL workloads, they are only as
effective as what the operator library provides. Cur-
rently, the few DL frameworks that support operator fu-
sion require the operator library to provide an implemen-
tation of the fused patterns. With more network opera-
tors introduced on a regular basis, the number of possible
fused kernels can grow dramatically. This approach is
no longer sustainable when targeting an increasing num-
ber of hardware back-ends since the required number
of fused pattern implementations grows combinatorially
with the number of data layouts, data types, and accel-
erator intrinsics that must be supported. It is not feasi-
ble to handcraft operator kernels for the various opera-
tions desired by a program and for each back-end. To

for y in range(1024):
 for x in range(1024):
 C[y][x] = 0
 for k in range(1024):
 C[y][x] += A[k][y] * B[k][x]

for yo in range(128):
 for xo in range(128):
 C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
 for ko in range(128):
 for yi in range(8):
 for xi in range(8):
 for ki in range(8):
 C[yo*8+yi][xo*8+xi] +=
 A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
 for xo in range(128):
 vdla.fill_zero(CL)
 for ko in range(128):
 vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
 vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
 vdla.fused_gemm8x8_add(CL, AL, BL)
 vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)

+ Cache Data on Accelerator Special Buffer

A = t.placeholder((1024, 1024))
B = t.placeholder((1024, 1024))
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024), lambda y, x:
 t.sum(A[k, y] * B[k, x], axis=k))
s = t.create_schedule(C.op)

schedule schedule
transformation

corresponding
low-level code

+ Map to Accelerator Tensor Instructions

CL = s.cache_write(C, vdla.acc_buffer)
AL = s.cache_read(A, vdla.inp_buffer)
additional schedule steps omitted …

s[CL].tensorize(yi, vdla.gemm8x8)

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

Figure 5: Example schedule transformations that opti-
mize a matrix multiplication on a specialized accelerator.

this end, we next propose a code generation approach
that can generate various possible implementations for a
given model’s operators.

4 Generating Tensor Operations

TVM produces efficient code for each operator by gen-
erating many valid implementations on each hardware
back-end and choosing an optimized implementation.
This process builds on Halide’s idea of decoupling de-
scriptions from computation rules (or schedule optimiza-
tions) [32] and extends it to support new optimizations
(nested parallelism, tensorization, and latency hiding)
and a wide array of hardware back-ends. We now high-
light TVM-specific features.

4.1 Tensor Expression and Schedule Space
We introduce a tensor expression language to support au-
tomatic code generation. Unlike high-level computation
graph representations, where the implementation of ten-
sor operations is opaque, each operation is described in

4

Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

can fuse element-wise operators to its output. We can
apply these rules to transform the computational graph
into a fused version. Figure 4 demonstrates the impact
of this optimization on different workloads. We find that
fused operators generate up to a 1.2⇥ to 2⇥ speedup by
reducing memory accesses.

Data Layout Transformation. There are multiple
ways to store a given tensor in the computational graph.
The most common data layout choices are column major
and row major. In practice, we may prefer to use even
more complicated data layouts. For instance, a DL ac-
celerator might exploit 4⇥4 matrix operations, requiring
data to be tiled into 4⇥ 4 chunks to optimize for access
locality.

Data layout optimization converts a computational
graph into one that can use better internal data layouts
for execution on the target hardware. It starts by spec-
ifying the preferred data layout for each operator given
the constraints dictated by memory hierarchies. We then
perform the proper layout transformation between a pro-
ducer and a consumer if their preferred data layouts do
not match.

While high-level graph optimizations can greatly im-
prove the efficiency of DL workloads, they are only as
effective as what the operator library provides. Cur-
rently, the few DL frameworks that support operator fu-
sion require the operator library to provide an implemen-
tation of the fused patterns. With more network opera-
tors introduced on a regular basis, the number of possible
fused kernels can grow dramatically. This approach is
no longer sustainable when targeting an increasing num-
ber of hardware back-ends since the required number
of fused pattern implementations grows combinatorially
with the number of data layouts, data types, and accel-
erator intrinsics that must be supported. It is not feasi-
ble to handcraft operator kernels for the various opera-
tions desired by a program and for each back-end. To

for y in range(1024):
 for x in range(1024):
 C[y][x] = 0
 for k in range(1024):
 C[y][x] += A[k][y] * B[k][x]

for yo in range(128):
 for xo in range(128):
 C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
 for ko in range(128):
 for yi in range(8):
 for xi in range(8):
 for ki in range(8):
 C[yo*8+yi][xo*8+xi] +=
 A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
 for xo in range(128):
 vdla.fill_zero(CL)
 for ko in range(128):
 vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
 vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
 vdla.fused_gemm8x8_add(CL, AL, BL)
 vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)

+ Cache Data on Accelerator Special Buffer

A = t.placeholder((1024, 1024))
B = t.placeholder((1024, 1024))
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024), lambda y, x:
 t.sum(A[k, y] * B[k, x], axis=k))
s = t.create_schedule(C.op)

schedule schedule
transformation

corresponding
low-level code

+ Map to Accelerator Tensor Instructions

CL = s.cache_write(C, vdla.acc_buffer)
AL = s.cache_read(A, vdla.inp_buffer)
additional schedule steps omitted …

s[CL].tensorize(yi, vdla.gemm8x8)

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

Figure 5: Example schedule transformations that opti-
mize a matrix multiplication on a specialized accelerator.

this end, we next propose a code generation approach
that can generate various possible implementations for a
given model’s operators.

4 Generating Tensor Operations

TVM produces efficient code for each operator by gen-
erating many valid implementations on each hardware
back-end and choosing an optimized implementation.
This process builds on Halide’s idea of decoupling de-
scriptions from computation rules (or schedule optimiza-
tions) [32] and extends it to support new optimizations
(nested parallelism, tensorization, and latency hiding)
and a wide array of hardware back-ends. We now high-
light TVM-specific features.

4.1 Tensor Expression and Schedule Space
We introduce a tensor expression language to support au-
tomatic code generation. Unlike high-level computation
graph representations, where the implementation of ten-
sor operations is opaque, each operation is described in

4

Basic gemm operation from TVM paper

Compiler’s PerspectiveCompiler’s Perspective to this Problem

 Hardware

Intermediate Representation (s)

 Frameworks CNTK

Express computation

Code generation

Reusable
Optimizations

Slide borrowed from UW-CSE 599W Systems for ML Class

https://dlsys.cs.washington.edu/pdf/lecture7.pdf

Computation Graph as IR

Slide borrowed from UW-CSE 599W Systems for ML Class

Computational Graph as IR

conv2d

relu

bn
fused-conv2d-

bn-relu

conv2d

relu

conv2d

relu

flatten

dense

softmax

operation

inputs
dataflow
dependency

w1

w2

w3

data

channels=32,
kernel_size=(3,3),
padding=(1,1),
use_bias=0

attributes

shape=(1,10)

Represent High level
Deep Learning Computations

Effective Equivalent Transformations
to Optimize the Graph

Approach taken by: TensorFlow XLA, Intel NGraph, Nvidia TensorRT

https://dlsys.cs.washington.edu/pdf/lecture7.pdf

TensorFlow XLA Compiler

Ø XLA HLO is an IR composed to tensor
operations

Ø Generates optimized binaries to
evaluate models
Ø Fuses kernels à eliminating reads and

writes to slow memory
Ø Optimized data layout
Ø Reduced environment size

Ø User still needs to implement optimized
tensor ops for each architecture
Ø Smaller set then all of TF

Nvidia TensorRT

Ø Nvidia’s platform for optimizing deep neural networks
Ø Quantization of weights
Ø Data layout and kernel section
Ø Fuses kernels -- Vertically (conv, relu) and horizontally (reuse inputs)

Intermediate Representation (IR)
Approaches

Computation Graph Tensor Loop Algebra

DAG Optimization:
- Operator Fusion
- No-op Elimination

Typically leverage pre-existing
tensor operations

Halide

- Optimize loop order,
tiling, and memory layout
across operators in DAG

- Support new operator
design

MetaFlow

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- So we can express operator in a simple language

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm, and optionally the schedule.

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide DSL

- Functional Language
- Embed in C++
- Much Simpler than writing

threaded or CUDA program
- Downside:

- Still requires domain
experts to tune it

- Not built for Deep
Learning

- TC: Assume infinite
input range, cannot
be optimized for
fixed ops.

- TVM: No special
memory scope; no
custom hardware
intrinsics

Reading This Week

Reading for the Week
Ø Optimizing DNN Computation with Relaxed Graph Substitutions

(SysML’19)
Ø Improves the graph search but does not modify individual ops.
Ø Leverages basic cost model

Ø TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning (OSDI’18)
Ø Optimizes graph and then individual tensor operations
Ø Uses learning based approach

Ø Learning to Optimize Halide with Tree Search and Random
Programs (TOG’19)
Ø Schedule optimization in Halide using hybrid learning based approach

https://www.sysml.cc/doc/2019/22.pdf
https://arxiv.org/abs/1802.04799
https://halide-lang.org/papers/halide_autoscheduler_2019.pdf

MetaFlow (SysMl’19)
Ø Optimizes graph only by transforming groups of operators

into revised versions of existing operators

Ø Key Insights:
Ø Use “backtracking” search to allow for less myopic opt.
Ø Cluster ops. using dep. flow analysis to identify subgraphs
Ø Static operator impl. have predictable costs

Optimizing DNN Computation with Relaxed Graph Substitutions

conv3x3x256
relu

conv1x1x256
relu

input

conv3x3x256

add

relu

conv3x3x256
relu

conv3x3x256
relu

input

conv3x3x256

add

relu

input

conv3x3x512
relu

conv3x3x256

add

relu

split

input

conv3x3x512
relu

conv3x3x256

relu

input

conv3x3x512
relu

conv3x3x256
relu

enlarge
conv kernel

fuse conv
ops

fuse conv
and add fuse conv

and relu

Figure 1. A sequence of relaxed graph substitutions on a ResNet module (He et al., 2016). Each arrow is a graph substitution, and the
dotted subgraphs in the same color indicate the source and target graph of a substitution. “conv axbxc” indicates a convolution with kernel
size a⇥ b and c output channels. The final graph (right-most) is 1.3x faster than the original graph (left-most) on a NVIDIA V100 GPU.

resulting in an overall improvement. Section 3 describes the
other graph substitutions in more detail.

Adding relaxed graph substitutions to existing DNN opti-
mizers and applying them greedily could easily result in
degraded performance. For example, the enlarge operator
substitution in Figure 1 will likely degrade performance
if the resulting convolution cannot be fused with another
operator. While one could attempt to address this by adding
special case rules and heuristics to an existing system, we
believe such an approach would be error-prone and brittle
in the face of new architectures and new substitution rules.
Instead we use cost-based backtracking search to effectively
explore the large space of computation graphs generated
by applying relaxed graph substitutions, without requiring
optimizer developers to implement numerous new rules.

First we introduce a cost model that incorporates multiple
cost dimensions (e.g., FLOPs, execution time, memory us-
age, etc.) and can accurately estimate the performance of
different computation graphs. The cost model allows us to
quickly compare different graphs.

Second, we propose a backtracking search algorithm that
quickly finds efficient solutions for small graphs. However,
the computation graphs of state-of-the-art DNNs are too
large to directly explore the search space of all equivalent
computation graphs. Therefore, we use a graph split algo-
rithm that recursively splits an original computation graph
into individual subgraphs with smaller sizes. The graph is
split in a way that minimizes the number of graph substi-
tutions spanning different subgraphs and is computed by
solving a max-flow problem (Cormen et al., 2009). These
subgraphs are optimized by the backtracking search and then
stitched back together to form the final optimized graph. Fig-
ure 3 depicts an overview of our graph optimization process.

We implement relaxed graph substitutions in a system called

MetaFlow, which can be used to optimize DNN computa-
tion graphs for any existing deep learning framework. In
particular, we show that TensorFlow, TensorFlow XLA, and
TensorRT can directly use MetaFlow’s optimized graphs to
improve both inference and training performance.

We evaluate MetaFlow on five real-world DNNs, including
Inception-v3 (Szegedy et al., 2016), SqueezeNet (Iandola
et al., 2016), ResNet-50 (He et al., 2016), RNN Text Classi-
fication (Kim, 2014), and Neural Machine Translation (Wu
et al., 2016). MetaFlow’s search algorithm is able to op-
timize each of these DNNs in under 5 minutes. We show
that MetaFlow outperforms existing deep learning optimiz-
ers with speedups ranging from 1.1-1.6⇥ for inference and
1.1-1.2⇥ for training. The performance improvement is
achieved by discovering efficient computation graphs that
decrease the overall memory usage by up to 1.5⇥ and the
total number of kernel launches by up to 3.3⇥. Finally,
we show that MetaFlow’s optimized graphs can be directly
fed into existing frameworks and improve their inference
performance by up to 1.3⇥.

To summarize, our contributions are:

• We introduce relaxed graph substitutions, which en-
able the exploration of complex graph optimizations
inaccessible to existing deep learning frameworks.

• We propose a cost-based search algorithm that can
automatically find optimized computation graphs in the
search space generated by relaxed graph substitutions.

• We implement MetaFlow, the first relaxed graph substi-
tution optimizer for DNNs. On a collection of standard
DNNs, we show that compared to existing frameworks
MetaFlow improves runtime performance by 1.1-1.6⇥,
while maintaining the same network accuracy.

Optimizing DNN Computation with Relaxed Graph Substitutions

BatchNorm

Convolution

FullyConnected

Softmax

Prediction
(output)

Inference Data
(input)

(a) Inference

Softmax

Training Labels
(input)

Training Samples
(input)

Softmax
(Backward)

Derivatives
(output)

Derivatives
(output)

Derivatives
(output)FullyConnected

BatchNorm

Convolution Convolution
(Backward)

BatchNorm
(Backward)

FullyConnected
(Backward)

(b) Training

Figure 2. The inference and training graphs of a 4-layer example
CNN model. Dotted edges are the inputs and outputs of each
computation graph.

2 OVERVIEW

Similar to existing DNN optimizers (Abadi et al., 2016;
Chen et al., 2018; PyTorch), MetaFlow uses a computation
graph G to define computation and state in a DNN model.
Each node is a mathematical operator (e.g., matrix multi-
plication, convolution, etc.), and each edge is a tensor (i.e.,
n-dimensional array). For a computation graph G taking
input tensors I and producing output tensors O, we define
its computation as O = G(I).

We define two computation graphs G and G
0 to be equiv-

alent if G and G
0 compute mathematically equivalent out-

puts for arbitrary inputs (i.e., 8I : G(I) = G
0(I)). For a

given computation graph G, MetaFlow automatically finds
an equivalent computation graph G

0 with optimized run-
time performance by using compositions of provided graph
substitutions.

For a DNN model, the inference and training procedures
are defined by different computation graphs, as shown in
Figure 2. An inference graph includes a single input and
one or more outputs, while a training graph generally has
two inputs (i.e., training samples and labels) and multiple
outputs (i.e., derivatives for trainable parameters in each
operator). MetaFlow merely treats inference and training as
different graphs to optimize and applies the same techniques
on both graphs.

Figure 3 shows the main components of MetaFlow. First,
for any input computation graph, MetaFlow uses a flow-
based graph split algorithm to recursively divide the input
graph into subgraphs that are amenable to direct search.
Second, MetaFlow optimizes each individual subgraph with
a backtracking search on the search space defined by re-
peated application of relaxed graph substitutions to each

Input Comp.
Graph

Independent
Subgraphs

Flow-based
Graph Split

Optimized
Subgraphs

Optimized
Comp. Graph

Search-based
Graph Subst.

Final Graph
Generation

Figure 3. MetaFlow Overview.

subgraph. Finally, MetaFlow generates an optimized com-
putation graph of the input graph by using the optimized
subgraphs as basic building blocks.

MetaFlow is a framework-agnostic computation graph opti-
mizer: an optimized computation graph by MetaFlow can
be executed on various deep learning runtimes, such as Ten-
sorRT (TensorRT), TensorFlow (Abadi et al., 2016), and
TensorFlow XLA.1

3 RELAXED GRAPH SUBSTITUTIONS

This section introduces relaxed graph substitutions, each of
which consists of a source graph that can map to particular
subgraphs in the computation graph of a DNN and a target
graph that defines how to create a new subgraph to replace
a mapped subgraph.

Source graph. A source graph defines the structure of valid
subgraphs for a substitution. Each node in a source graph
is associated with a type and can only be mapped to an
operator of the same type. A source graph can also include
wildcard nodes, each of which can be mapped to any sin-
gle operator. The wildcard nodes are useful when the type
of an operator does not affect the substitution procedure
and allow a source graph to describe multiple substitution
scenarios that are similar. In addition to type constraints,
a source graph can also incorporate additional constraints
on one or multiple operators to further restrict mapping.
Figure 4a demonstrates a substitution for fusing two convo-
lutions, which defines constraints on conv1 and conv2 to
guarantee they can only be mapped to convolutions with the
same kernel size, stride, and padding.

Edges in a source graph describe data dependencies between
operators. A graph substitution requires the mapped sub-
graph to have the same data dependencies as the source
graph. Each operator can optionally have an external edge
(shown as dotted edges in Figure 4) that can map to zero,
one, or multiple edges connecting to external operators in
the computation graph. An external edge indicates that the
operator’s output can be accessed by external operators and

1https://www.tensorflow.org/xla

TVM

Ø Originally derived from Halide
Ø Leverages similar IR and separation

of algorithm from schedule

Frameworks

High Level Graph Rewriting

Machine Learning Based
Automated Optimizer

Optimized Computational Graph

Computational Graph

Hardware-Aware
Optimization Primitives

Declarative
Tensor Expressions

Optimized Low Level Loop Program

LLVM IR CUDA/Metal/OpenCLAccelerator Backend

Deployable Module

Operator-level Optimization and Code Generation

Section 3

Section 4

Section 5

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3),
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3

Tensor Index Expression

import tvm

m, n, h = tvm.var('m'), tvm.var('n'), tvm.var('h')
A = tvm.placeholder((m, h), name='A')
B = tvm.placeholder((n, h), name=‘B')

k = tvm.reduce_axis((0, h), name=‘k')
C = tvm.compute((m, n), lambda i, j: tvm.sum(A[i, k] * B[j, k], axis=k))

Inputs

Shape of C

Compute C = dot(A, B.T)

Computation Rule

TVM
Ø Originally derived from Halide

Ø Leverages similar IR and separation
of algorithm from schedule

Frameworks

High Level Graph Rewriting

Machine Learning Based
Automated Optimizer

Optimized Computational Graph

Computational Graph

Hardware-Aware
Optimization Primitives

Declarative
Tensor Expressions

Optimized Low Level Loop Program

LLVM IR CUDA/Metal/OpenCLAccelerator Backend

Deployable Module

Operator-level Optimization and Code Generation

Section 3

Section 4

Section 5

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3),
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3

Tensor Expressions are Expressive

out = tvm.compute(shape, lambda *i: tvm.max(0, out(*i))

ReLU

Affine Transformation

out = tvm.compute((n, m), lambda i, j: tvm.sum(data[i, k] * w[j, k], k))
out = tvm.compute((n, m), lambda i, j: out[i, j] + bias[i])

out = tvm.compute((c, h, w),
 lambda i, x, y: tvm.sum(data[kc,x+kx,y+ky] * w[i,kx,ky], [kx,ky,kc]))

Convolution
Guess what this describes?

TVM
Ø Enables declaring new hardware intrinsics

Ø Simplifies adding support for new hardware

Frameworks

High Level Graph Rewriting

Machine Learning Based
Automated Optimizer

Optimized Computational Graph

Computational Graph

Hardware-Aware
Optimization Primitives

Declarative
Tensor Expressions

Optimized Low Level Loop Program

LLVM IR CUDA/Metal/OpenCLAccelerator Backend

Deployable Module

Operator-level Optimization and Code Generation

Section 3

Section 4

Section 5

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3),
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3

able data reuse across threads through shared memory
regions. TVM supports this well-known GPU optimiza-
tion using a schedule primitive to achieve optimal per-
formance. The following GPU code example optimizes
matrix multiplication.

Barrier inserted
automatically
by compiler

All threads cooperatively
load AS and BS in different
parallel patterns

for thread_group (by, bx) in cross(64, 64):
 for thread_item (ty, tx) in cross(2, 2):
 local CL[8][8] = 0
 shared AS[2][8], BS[2][8]
 for k in range(1024):
 for i in range(4):
 AS[ty][i*4+tx] = A[k][by*64+ty*8+i*4+tx]
 for each i in 0..4:
 BS[ty][i*4+tx] = B[k][bx*64+ty*8+i*4+tx]
 memory_barrier_among_threads()
 for yi in range(8):
 for xi in range(8):
 CL[yi][xi] += AS[yi] * BS[xi]
 for yi in range(8):
 for xi in range(8):
 C[yo*8+yi][xo*8+xi] = CL[yi][xi]

Figure 7 demonstrates the impact of this optimiza-
tion. We introduce the concept of memory scopes to the
schedule space so that a compute stage (AS and BS in the
code) can be marked as shared. Without explicit memory
scopes, automatic scope inference will mark compute
stages as thread-local. The shared task must compute
the dependencies of all working threads in the group.
Additionally, memory synchronization barriers must be
properly inserted to guarantee that shared loaded data is
visible to consumers. Finally, in addition to being use-
ful to GPUs, memory scopes let us tag special memory
buffers and create special lowering rules when targeting
specialized DL accelerators.

4.3 Tensorization

DL workloads have high arithmetic intensity, which
can typically be decomposed into tensor operators like
matrix-matrix multiplication or 1D convolution. These
natural decompositions have led to the recent trend of
adding tensor compute primitives [1, 12, 21]. These
new primitives create both opportunities and challenges
for schedule-based compilation; while using them can
improve performance, the compilation framework must
seamlessly integrate them. We dub this tensorization: it
is analogous to vectorization for SIMD architectures but
has significant differences. Instruction inputs are multi-
dimensional, with fixed or variable lengths, and each has
different data layouts. More importantly, we cannot sup-
port a fixed set of primitives since new accelerators are
emerging with their own variations of tensor instructions.
We therefore need an extensible solution.

We make tensorization extensible by separating the
target hardware intrinsic from the schedule with a mech-
anism for tensor-intrinsic declaration. We use the same
tensor expression language to declare both the behavior
of each new hardware intrinsic and the lowering rule as-
sociated with it. The following code shows how to de-
clare an 8⇥8 tensor hardware intrinsic.

w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j:
 t.sum(w[i, k] * x[j, k], axis=k))

def gemm_intrin_lower(inputs, outputs):
 ww_ptr = inputs[0].access_ptr(“r")
 xx_ptr = inputs[1].access_ptr("r")
 zz_ptr = outputs[0].access_ptr("w")
 compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
 reset = t.hardware_intrin("fill_zero", zz_ptr)
 update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
 return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)

declare behavior

lowering rule to generate
hardware intrinsics to carry
out the computation

Additionally, we introduce a tensorize schedule primi-
tive to replace a unit of computation with the correspond-
ing intrinsics. The compiler matches the computation
pattern with a hardware declaration and lowers it to the
corresponding hardware intrinsic.

Tensorization decouples the schedule from specific
hardware primitives, making it easy to extend TVM
to support new hardware architectures. The generated
code of tensorized schedules aligns with practices in
high-performance computing: break complex operations
into a sequence of micro-kernel calls. We can also use
the tensorize primitive to take advantage of handcrafted
micro-kernels, which can be beneficial in some plat-
forms. For example, we implement ultra low precision
operators for mobile CPUs that operate on data types
that are one- or two-bits wide by leveraging a bit-serial
matrix vector multiplication micro-kernel. This micro-
kernel accumulates results into progressively larger data
types to minimize the memory footprint. Presenting the
micro-kernel as a tensor intrinsic to TVM yields up to a
1.5⇥ speedup over the non-tensorized version.

4.4 Explicit Memory Latency Hiding
Latency hiding refers to the process of overlapping mem-
ory operations with computation to maximize utilization
of memory and compute resources. It requires different
strategies depending on the target hardware back-end.
On CPUs, memory latency hiding is achieved implic-
itly with simultaneous multithreading [14] or hardware
prefetching [10, 20]. GPUs rely on rapid context switch-
ing of many warps of threads [44]. In contrast, special-
ized DL accelerators such as the TPU [21] usually favor
leaner control with a decoupled access-execute (DAE)
architecture [35] and offload the problem of fine-grained
synchronization to software.

Figure 9 shows a DAE hardware pipeline that reduces
runtime latency. Compared to a monolithic hardware de-
sign, the pipeline can hide most memory access over-
heads and almost fully utilize compute resources. To
achieve higher utilization, the instruction stream must be
augmented with fine-grained synchronization operations.
Without them, dependencies cannot be enforced, leading
to erroneous execution. Consequently, DAE hardware
pipelines require fine-grained dependence enqueuing/d-
equeuing operations between the pipeline stages to guar-

6

- Parametrized the AST
- Use Gradient Boosted Trees

(GBT) to optimize a “rank loss”
to predict the relative order of
program runtime

TVM
Ø Learning based auto-tuner

Frameworks

High Level Graph Rewriting

Machine Learning Based
Automated Optimizer

Optimized Computational Graph

Computational Graph

Hardware-Aware
Optimization Primitives

Declarative
Tensor Expressions

Optimized Low Level Loop Program

LLVM IR CUDA/Metal/OpenCLAccelerator Backend

Deployable Module

Operator-level Optimization and Code Generation

Section 3

Section 4

Section 5

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3),
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3

5 Automating Optimization

Given the rich set of schedule primitives, our remaining
problem is to find optimal operator implementations for
each layer of a DL model. Here, TVM creates a special-
ized operator for the specific input shape and layout as-
sociated with each layer. Such specialization offers sig-
nificant performance benefits (in contrast to handcrafted
code that would target a smaller diversity of shapes and
layouts), but it also raises automation challenges. The
system needs to choose the schedule optimizations –
such as modifying the loop order or optimizing for the
memory hierarchy – as well as schedule-specific param-
eters, such as the tiling size and the loop unrolling factor.
Such combinatorial choices create a large search space of
operator implementations for each hardware back-end.
To address this challenge, we built an automated sched-
ule optimizer with two main components: a schedule ex-
plorer that proposes promising new configurations, and
a machine learning cost model that predicts the perfor-
mance of a given configuration. This section describes
these components and TVM’s automated optimization
flow (Figure 11).

5.1 Schedule Space Specification
We built a schedule template specification API to let a
developer declare knobs in the schedule space. The tem-
plate specification allows incorporation of a developer’s
domain-specific knowledge, as necessary, when specify-
ing possible schedules. We also created a generic mas-
ter template for each hardware back-end that automati-
cally extracts possible knobs based on the computation
description expressed using the tensor expression lan-
guage. At a high level, we would like to consider as many
configurations as possible and let the optimizer manage
the selection burden. Consequently, the optimizer must
search over billions of possible configurations for the real
world DL workloads used in our experiments.

5.2 ML-Based Cost Model
One way to find the best schedule from a large configu-
ration space is through blackbox optimization, i.e., auto-
tuning. This method is used to tune high performance
computing libraries [15, 46]. However, auto-tuning re-
quires many experiments to identify a good configura-
tion.

An alternate approach is to build a predefined cost
model to guide the search for a particular hardware back-
end instead of running all possibilities and measuring
their performance. Ideally, a perfect cost model con-
siders all factors affecting performance: memory access
patterns, data reuse, pipeline dependencies, and thread-

Raspberry Pi

Tracker
Mali GPU

Nvidia GPU

TensorOp
Specification

Schedule Space
Template

Database

Device Cluster

Schedule Explorer

ML Cost Model

log

querytraining
data FPGA Board

rpc
get_perf

…

update

Figure 11: Overview of automated optimization frame-
work. A schedule explorer examines the schedule space
using an ML-based cost model and chooses experiments
to run on a distributed device cluster via RPC. To im-
prove its predictive power, the ML model is updated pe-
riodically using collected data recorded in a database.

Method Category Data
Cost

Model
Bias

Need
Hardware
Info

Learn
from
His-
tory

Blackbox auto-tuning high none no no
Predefined cost model none high yes no
ML based cost model low low no yes

Table 1: Comparison of automation methods. Model bias
refers to inaccuracy due to modeling.

ing patterns, among others. This approach, unfortu-
nately, is burdensome due to the increasing complexity
of modern hardware. Furthermore, every new hardware
target requires a new (predefined) cost model.

We instead take a statistical approach to solve the cost
modeling problem. In this approach, a schedule explorer
proposes configurations that may improve an operator’s
performance. For each schedule configuration, we use
an ML model that takes the lowered loop program as in-
put and predicts its running time on a given hardware
back-end. The model, trained using runtime measure-
ment data collected during exploration, does not require
the user to input detailed hardware information. We up-
date the model periodically as we explore more config-
urations during optimization, which improves accuracy
for other related workloads, as well. In this way, the qual-
ity of the ML model improves with more experimental
trials. Table 1 summarizes the key differences between
automation methods. ML-based cost models strike a bal-
ance between auto-tuning and predefined cost modeling
and can benefit from the historical performance data of
related workloads.

Machine Learning Model Design Choices. We must
consider two key factors when choosing which ML
model the schedule explorer will use: quality and speed.
The schedule explorer queries the cost model frequently,
which incurs overheads due to model prediction time
and model refitting time. To be useful, these overheads
must be smaller than the time it takes to measure per-

8

Learning to Optimize Halide with Tree
Search and Random Programs
Ø Published in ACM Transactions of Graphics (2019)

Ø Halide grew out of graphics community

Ø Addresses missing scheduler optimizer + auto-tuner
Ø Adopts learning based approach

Learning to Optimize Halide with Tree Search and Random Programs

ANDREW ADAMS, Facebook AI Research
KARIMA MA, UC Berkeley
LUKE ANDERSON, MIT CSAIL
RIYADH BAGHDADI, MIT CSAIL
TZU-MAO LI, MIT CSAIL
MICHAËL GHARBI, Adobe
BENOIT STEINER, Facebook AI Research
STEVEN JOHNSON, Google
KAYVON FATAHALIAN, Stanford University
FRÉDO DURAND, MIT CSAIL
JONATHAN RAGAN-KELLEY, UC Berkeley

We present a new algorithm to automatically schedule Halide programs
for high-performance image processing and deep learning. We signi�cantly
improve upon the performance of previous methods, which considered a lim-
ited subset of schedules. We de�ne a parameterization of possible schedules
much larger than prior methods and use a variant of beam search to search
over it. The search optimizes runtime predicted by a cost model based on a
combination of new derived features and machine learning. We train the
cost model by generating and featurizing hundreds of thousands of random
programs and schedules. We show that this approach operates e�ectively
with or without autotuning. It produces schedules which are on average
almost twice as fast as the existing Halide autoscheduler without autotun-
ing, or more than twice as fast with, and is the �rst automatic scheduling
algorithm to signi�cantly outperform human experts on average.

CCS Concepts: • Computing methodologies → Image processing; •
Software and its engineering→ Domain speci�c languages.

Additional Key Words and Phrases: optimizing compilers, Halide

ACM Reference Format:
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo
Durand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with
Tree Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121
(July 2019), 12 pages. https://doi.org/10.1145/3306346.3322967

Authors’ addresses: Andrew Adams, Facebook AI Research, andrew.b.adams@gmail.
com; Karima Ma, UC Berkeley, karima_ma@berkeley.edu; Luke Anderson, MIT CSAIL,
lukea@mit.edu; Riyadh Baghdadi, MIT CSAIL, baghdadi@mit.edu; Tzu-Mao Li, MIT
CSAIL, tzumao@mit.edu; Michaël Gharbi, Adobe, mgharbi@adobe.com; Benoit Steiner,
Facebook AI Research, benoitsteiner@fb.com; Steven Johnson, Google, srj@google.com;
Kayvon Fatahalian, Stanford University, kayvonf@cs.stanford.edu; Frédo Durand, MIT
CSAIL, fredo@csail.mit.edu; Jonathan Ragan-Kelley, UC Berkeley, jrk@berkeley.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART121 $15.00
https://doi.org/10.1145/3306346.3322967

tree search
on schedules

training

random Halide
algorithms

input Halide
algorithm

importance
sample

with autotuning

direct

plausible
schedules

train

autoscheduling

benchmark
performance

random Halide
algorithms

guides

learned
cost model

tree search
on schedules

importance
sample

search optimum

fine-tune

guides

learned
cost model

plausible
schedules

fast
schedule

fast
schedule

benchmark
performance

Fig. 1. We generate schedules for Halide programs using tree search over
the space of schedules (Sec. 3) guided by a learned cost model and optional
autotuning (Sec. 4). The cost model is trained by benchmarking thousands of
randomly-generated Halide programs and schedules (Sec. 5). The resulting
code significantly outperforms prior work and human experts (Sec. 6).

1 INTRODUCTION
Image processing and deep learning are pervasive. They are com-
putationally intense, and implementations often have to be highly
optimized by experts, at great cost, to be usable in practice. The
Halide programming language has proven to be a powerful tool for
this task because it separates the algorithm — what you want to
compute — from the schedule — how you want to compute it, includ-
ing choices about memory locality, redundant computation, and
parallelism [Ragan-Kelley et al. 2012, 2013]. While Halide makes it
easy to try di�erent schedules, writing schedules that achieve high
performance is hard: it requires expertise in hardware architecture
and optimization, and even then, the space of possible schedules is
enormous and their performance can be di�cult to predict.

Automating the synthesis of high-performance schedules is sorely
needed, but prior methods are limited in multiple ways [Mullapudi
et al. 2016, 2015; Sioutas et al. 2018]. First, by design they only con-
sider a small subset of all possible schedules. They generally work by
modestly generalizing speci�c schedule templates or idioms, which
are di�cult to compose or extend to capture the countless other
potentially fruitful choices for each application and target architec-
ture. Second, they explore their key choices using specialized search
procedures, which are tightly coupled to the family of schedules
they consider. Third, they navigate this space using hand-designed
cost models which struggle to accurately predict performance on
real machines. These cost models can be tuned to guide the search to
good performance on a few speci�c applications at a time, but they

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree Search and Random Programs

ANDREW ADAMS, Facebook AI Research
KARIMA MA, UC Berkeley
LUKE ANDERSON, MIT CSAIL
RIYADH BAGHDADI, MIT CSAIL
TZU-MAO LI, MIT CSAIL
MICHAËL GHARBI, Adobe
BENOIT STEINER, Facebook AI Research
STEVEN JOHNSON, Google
KAYVON FATAHALIAN, Stanford University
FRÉDO DURAND, MIT CSAIL
JONATHAN RAGAN-KELLEY, UC Berkeley

We present a new algorithm to automatically schedule Halide programs
for high-performance image processing and deep learning. We signi�cantly
improve upon the performance of previous methods, which considered a lim-
ited subset of schedules. We de�ne a parameterization of possible schedules
much larger than prior methods and use a variant of beam search to search
over it. The search optimizes runtime predicted by a cost model based on a
combination of new derived features and machine learning. We train the
cost model by generating and featurizing hundreds of thousands of random
programs and schedules. We show that this approach operates e�ectively
with or without autotuning. It produces schedules which are on average
almost twice as fast as the existing Halide autoscheduler without autotun-
ing, or more than twice as fast with, and is the �rst automatic scheduling
algorithm to signi�cantly outperform human experts on average.

CCS Concepts: • Computing methodologies → Image processing; •
Software and its engineering→ Domain speci�c languages.

Additional Key Words and Phrases: optimizing compilers, Halide

ACM Reference Format:
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo
Durand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with
Tree Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121
(July 2019), 12 pages. https://doi.org/10.1145/3306346.3322967

Authors’ addresses: Andrew Adams, Facebook AI Research, andrew.b.adams@gmail.
com; Karima Ma, UC Berkeley, karima_ma@berkeley.edu; Luke Anderson, MIT CSAIL,
lukea@mit.edu; Riyadh Baghdadi, MIT CSAIL, baghdadi@mit.edu; Tzu-Mao Li, MIT
CSAIL, tzumao@mit.edu; Michaël Gharbi, Adobe, mgharbi@adobe.com; Benoit Steiner,
Facebook AI Research, benoitsteiner@fb.com; Steven Johnson, Google, srj@google.com;
Kayvon Fatahalian, Stanford University, kayvonf@cs.stanford.edu; Frédo Durand, MIT
CSAIL, fredo@csail.mit.edu; Jonathan Ragan-Kelley, UC Berkeley, jrk@berkeley.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART121 $15.00
https://doi.org/10.1145/3306346.3322967

tree search
on schedules

training

random Halide
algorithms

input Halide
algorithm

importance
sample

with autotuning

direct

plausible
schedules

train

autoscheduling

benchmark
performance

random Halide
algorithms

guides

learned
cost model

tree search
on schedules

importance
sample

search optimum

fine-tune

guides

learned
cost model

plausible
schedules

fast
schedule

fast
schedule

benchmark
performance

Fig. 1. We generate schedules for Halide programs using tree search over
the space of schedules (Sec. 3) guided by a learned cost model and optional
autotuning (Sec. 4). The cost model is trained by benchmarking thousands of
randomly-generated Halide programs and schedules (Sec. 5). The resulting
code significantly outperforms prior work and human experts (Sec. 6).

1 INTRODUCTION
Image processing and deep learning are pervasive. They are com-
putationally intense, and implementations often have to be highly
optimized by experts, at great cost, to be usable in practice. The
Halide programming language has proven to be a powerful tool for
this task because it separates the algorithm — what you want to
compute — from the schedule — how you want to compute it, includ-
ing choices about memory locality, redundant computation, and
parallelism [Ragan-Kelley et al. 2012, 2013]. While Halide makes it
easy to try di�erent schedules, writing schedules that achieve high
performance is hard: it requires expertise in hardware architecture
and optimization, and even then, the space of possible schedules is
enormous and their performance can be di�cult to predict.

Automating the synthesis of high-performance schedules is sorely
needed, but prior methods are limited in multiple ways [Mullapudi
et al. 2016, 2015; Sioutas et al. 2018]. First, by design they only con-
sider a small subset of all possible schedules. They generally work by
modestly generalizing speci�c schedule templates or idioms, which
are di�cult to compose or extend to capture the countless other
potentially fruitful choices for each application and target architec-
ture. Second, they explore their key choices using specialized search
procedures, which are tightly coupled to the family of schedules
they consider. Third, they navigate this space using hand-designed
cost models which struggle to accurately predict performance on
real machines. These cost models can be tuned to guide the search to
good performance on a few speci�c applications at a time, but they

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree
Search and Random Programs
Ø Beam search of rich schedule space

Ø Beam search ~ breadth first search with pruning
Ø Search is constructed inductively from final stage in pipeline

Learning to Optimize Halide with Tree Search and Random Programs • 121:5

current beam search state

candidate successor states

(a) compute
 at root

(b) compute h at
an existing tiling (c) compute h at a

new outer tiling of f

(d) compute h at
a new sub-tiling of g

(e) store h at tiles of f,
compute h at a new sub-tiling of g

(f) store h at a new outer tiling
of f, compute h at sub-tiles of f

for f.y1 f.x1

allocate g

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for g.y2 g.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for g.y2 g.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y3 f.x3

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

allocate g

allocate h

for g.y1 g.x1

for f.y3 f.x3

for f.y2 f.x2

for h.y1 h.x1

Fig. 3. We navigate the space of Halide schedules using beam search. Consider a three stage pipeline h ! � ! f . We begin scheduling at the end of the
pipeline. In the state shown at top le�, we have already scheduled � at some tiling of f , and must now generate a list of candidates for how to schedule h for
the cost model to evaluate and rank. The existing Halide autoscheduler enforces a single level of tiling, so it only considers options a and b. Our search space
includes di�erent nested tilings (c, d), and tilings in which the storage and compute occur at di�erent granularities (e, f), which in turn enables sliding window
optimizations (shown as arrows). Each of these choices is parameterized by the tile sizes to use, and the choice space is further expanded by choice of storage
layout for h, and the possibility of inlining it entirely.

this by de�ning a hash function hashd which hashes the loop nest
up to some �xed depth d . We penalize the cost of all states in the
beam for which a higher-rated state has the same hash. The e�ect
of this is to preserve the backtracking ability granted by the beam
for top-level scheduling decisions (e.g. which stages are computed
at the root level) that are likely to have a large impact on runtime.
However, �ne-level decisions also bene�t from beam search, so we
perform a second pass in which we only consider those states with
coarse-level hashes shared by states in the �rst pass that ultimately
lead to a good �nal answer. The �rst pass �nds coarse valleys in the
search space, and the second pass explores them more thoroughly.

We then generalize this to an arbitrary number of passes by de�n-
ing a permissible set of states. Passp (forp > 1) only considers states
whose hashes at depth p � 1 are in the permissible set, and penalizes
duplicate states according to a hash at depth p + 1. At the end of
the pass, all ancestors of the top few states in the beam have their
hashes at depth p added to the permissible set. We use �ve passes for
our results below. Please see the code in the supplemental material
for the full details of the hash and the penalization procedure.

The full implementation of this search space and algorithm appear
in AutoSchedule.cpp in the supplemental material.

3.3 Unexplored Schedules
Our algorithm explores a very large class of nested tilings, but the
set of legal Halide schedules is larger still. Some scheduling features
are handled using heuristics instead of search. First, we do not

enumerate all possible ways to unroll loops, but instead just entirely
unroll the innermost non-SIMD loop node if it is of constant size and
has no more than 16 iterations total. Second, while we reorder the
storage layout so that the vectorized dimension is innermost, we do
not change the relative order of the other dimensions in the storage
layout. For anymulti-dimensional loop nodes that remain after tiling,
we nest the generated loops in the same order as the storage layout,
with any additional loops over a reduction domain innermost for
serial loops, or outermost if the other loopswere unrolled.We always
fuse parallel loops into a single parallel loop when legal, avoiding
the slight overhead involved in nested parallelism. We automatically
select a strategy for tails of loops split by factors that do not divide
their extent, and we automatically choose a memory space for each
stage. Other Halide scheduling directives (e.g. rfactor, memoize,
or prefetch), are not considered at all. However, we have designed
our search such that any of these features could be added to the
space by adding more decision points per stage.

4 PREDICTING RUNTIME
Having de�ned a state space and a method for generating successors
within it, the �nal component required of beam search is a cost
metric for evaluating states.

The most natural cost to minimize is actual recorded runtime, ob-
tained via benchmarking. However, we wish to evaluate hundreds of
thousands of potential schedules for each algorithm, and compiling
and benchmarking a single schedule takes several seconds. Builds

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree Search and Random Programs • 121:3

This has also been extended with backtracking and a richer cost
model to some bene�t [Jangda and Bondhugula 2018], but with-
out changing the fundamentally restricted search space. Sioutas
et al. [2018] improved local scheduling of individual Halide opera-
tions by de�ning a richer manual cost model to capture cache and
prefetcher behaviour on CPUs. This was built on to schedule entire
algorithms using a similar cost model coupled with a backtrack-
ing search over fusion strategies [Sioutas et al. 2019]. The space
of schedules considered was broader than prior work in that it in-
cluded sliding window strategies in addition to fusion in tiles. The
space we search is broader still, and our cost model is more complex
and learned, but we took substantial inspiration from their work in
designing key terms in our model and featurization.
Many other polyhedral compilers use variants of the Pluto al-

gorithm for automatic scheduling of a�ne loop nests [Baghdadi
et al. 2015; Bondhugula et al. 2008; Grosser et al. 2012; Vasilache
et al. 2018]. They formalize as an integer linear program (ILP) the
problem of �nding an a�ne loop transformation which maximizes
outer loop parallelism and minimizes statement-to-statement reuse
distance. The resulting ILP can be solved exactly, but the schedules
considered exclude many key choices o�ered by Halide (introduc-
ing redundant computation to improve locality and parallelism),
and the implicit cost model is only weakly correlated with actual
performance. Changing either makes the problem no longer an ILP
and intractable to solve.

TVM [Chen et al. 2018a] follows a similar philosophy to ours, com-
bining generic search with learning and benchmarking to �nd good
schedules [Chen et al. 2018b], but supports only semi-automatic
scheduling: search is automated, but the search space must be man-
ually de�ned by the programmer for each algorithm (“operator” in
the parlance of deep learning frameworks) as a template. They also
focus on locally optimizing individual operators in isolation, where
we emphasize exploring long-range fusion through large programs.

There have also been many other attempts to use machine learn-
ing to improve prediction in compilers [Ashouri et al. 2018]. This
includes predicting the best order for optimization passes [Fursin
et al. 2008], the best tile sizes [Rahman et al. 2010], whether kernels
should be mapped to CPUs or GPUs [Cummins et al. 2017], and the
throughput of straight-line x86 code [Mendis et al. 2018].

3 NAVIGATING THE HALIDE SCHEDULING SPACE
To better understand the choice space we de�ne, we begin with a
brief introduction to core ideas in Halide.
A Halide program speci�es an algorithm (which we often call

a pipeline) as a directed acyclic graph (DAG) of stages producing
multidimensional arrays of values. Each stage is de�ned as a func-
tion from any coordinate in an in�nite grid to the value at that
coordinate. Each stage can consume data from arbitrary points in
prior stages, but — unlike in traditional languages like C++ — the
order of evaluation of elements within each stage and across stages,
their placement into arrays in memory, and even how many (and
which) should be computed, are unspeci�ed.

Consider a simple program:
h(x, y) = ...;
g(x, y) = pow(h(x, y), 1.8);
f(x, y) = g(x, y�1) + g(x, y+1);

It has three stages, with each point in f depending on a small window
in g, which in turn depends on h. To evaluate this pipeline, we need
to ask for a desired region of the output (say, [0,w] ⇥ [0,h]). Given
this, the Halide compiler can infer what regions are required of

for g.y from 0 to 1:
 for g.x from 0 to g.w:

for f.y from 0 to h:
 for f.x from 0 to w:

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for g.y from 0 to g.h:
 for g.x from 0 to g.w:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for g.y from 0 to g.h:
 for g.x from 0 to g.w:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 1:

for f.y3 from 0 to 1:
 for f.x3 from 0 to 2:

for f.y4 from 0 to 1:
 simd for f.x4 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

(a) compute f in row-major order

(b) compute f in parallel, vectorized, nested tiles

(c) compute g at root

(e) compute g incrementally within tiles of f

(d) compute g at tiles of f

intra-stage
order

cross-stage
granularity

Fig. 2. Loop nests corresponding to di�erent scheduling choices. Top: two
di�erent schedules of the same function, f, over the interval [0, w] ⇥ [0, h].
(a) is a simple row-major loop nest, while (b) has been tiled two levels
deep, with the outermost tile loop mapped across parallel threads, and
the innermost across the lanes of a SIMD vector. Bo�om: three di�erent
cross-stage granularity choices for the stage g, given a two-level tiling of its
consumer f. The structure of the loop over g does not change, but the size
of the regions computed and stored varies depending on the granularity.

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Done!

