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Accelerators?
Who Needs Them?
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2.5K – 30K X increase in MOPs/mW
TOPS/W

25,300 MOPS/mW11,500 MOPS/mW 140,300 MOPS/mW

~3.23 – 4 MOPS/mW (835)
11– 16.6 GFLOPs SGEMM (835)

SnapDragon 835 (à 845 à 855) 
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Why Now?
The Power Wall

From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, Sept. 15, 2006

Vax “Star”, 
Microcoded CISC

Vax “Nautilus”, 
Pipelined CISC,

Sparc V7 RISC
5 stage, 1 issue 
in-order RISC
16.7 MHz

PowerPC 604, 100 MHz
7 stage, 4 issue OoO
RISC

Pentium 4, 3.0 GHz, 
20 stage, 3 issue OoO
CISCPentium Pro,

12 stage,  
150 MHz,
3 issue OoO CISC

Pentium,
5 stage,  
60 MHz,
2 issue in-order CISC



Also: PALLAS Group Machine Learning 
2007-2012

• Accelerated (10x – 55x) a broad variety of vision, audio, and multimedia problems
• Published in top venues: ICCV, ECCV, CVPR, InterSpeech, ICMR etc. 4

Computer 
Vision and 
Core ML

Contour Detection Object Detection

Video Segmentation

Optical Flow

Multimedia

Speech
Recognition 

Call-center
Sentiment Analysis

Speaker 
Diarization

Music RecommendationVideo Event 
Detection

Audio Analysis

Support Vector
Machines



20 Selected Machine Learning 
Algorithms We Employed

• Computer vision
– Convolution
– K-means
– Mean shift
– Agglomerative algorithms
– Vector distance
– Histogram accumulation
– Hough transform
– Eigen decomposition
– Feature matching
– Support Vector machines

• Speech recognition and 
audio analysis
– Convolution
– K-means
– Agglomerative hierarchical 

modeling
– Orthogonal transformations
– Gaussian Mixture models
– Weighted-finite state 

transducers
– Hidden-Markov-models
– Dynamic Bayesian 

networks
– Expectation maximization
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• Distilled these algorithms down to their “computational patterns” or “dwarfs”
• Accelerated those computational patterns 
• GPUs did well on some (e.g. SVM) not so well on others (e.g. HMM) 



ML  Algorithms were Displaced by a Single DNN!
Now it’s really clear what to accelerate

• Computer vision
– Convolution
– K-means
– Mean shift
– Agglomerative algorithms
– Vector distance
– Histogram accumulation
– Hough transform
– Eigen decomposition
– Feature matching
– Support Vector machines

• Speech recognition and 
audio analysis
– Convolution
– K-means
– Agglomerative hierarchical 

modeling
– Orthogonal transformations
– Gaussian Mixture models
– Hidden-markov models
– Dynamic Bayesian network
– Expectation maximization

6Convolutional Neural Nets Recurrent Neural Nets



Co-Design of NN Accelerators: 
The Ideal

Application

NN 
Accelerator

Deep Neural 
Net
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Co-Design: The Reality

Application

NN 
Accelerator

Deep Neural 
Net
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Misrepresentative 
application data
• e.g. ImageNet

Only gross constraint
• power budget
• cost
• form factor

Outdated information 
exchange – if any at all

• counting FLOPs/MACS
• counting model parameters

• Datasets: MNIST, CIFAR
• DNN: AlexNet, VGG



Let’s Do Better!

Application

NN 
Accelerator

Deep Neural 
Net
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Outline

• Applications their characteristics, and targets

• Determining key NN Accelerator architectural elements

• How much further can we improve NN accelerators with 
co-design?
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basicmi.github.io/AI-chip



Three Broad Targets for Deployment

12

DataCenter Mobile Cell Phone
(IP Block)

IOT/Edge
AIOT



Three Broad Classes of Accelerators

Training/Inference in the Cloud
• Training + Inference
• 10,000s PEs
• Area: 300 -- 800 mm2

• 80--300 Watts
• 60-150s TOPS
• Clock rate: 700MHz – 1.6GHz
• 10s MB on-chip memory
• Typical batch size: 10s – 100s
• High/complete connectivity PEs
• 8-32 bit precision (floating point) 
• Example: TPU 1-3, Graphcore

Inference at the Edge: 
Standalone Chip

• Only Inference
• 16 -1000s of PEs
• Area: 1s-10s mm2

• 1 – 10,000 mWatts
• 100s-1000 GOPS
• Clock rate: 25-400 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• mixed connectivity among PE
• 1-16 bit precision (fixed point)
• Example: GreenWaves, ZU3 + 

Gyrfalcon Lightspeeur, Synetgy
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• Only Inference
• 16-64 PEs
• Area: 1s  mm2

• 10’s-100s mWatts
• 10s-5000s GOPS
• Clock rate: 600 – 1000 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• Local (mesh) connectivity
• 1-16 bit precision (fixed point)
• Example: Apple NPU, Tensilica

DNA 100, Squeezelerator

Inference at the Edge: 
IP Block/System-in-Package



Cloud Workloads at Google
Dave Patterson UC Berkeley 10/2019
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Cloud Workloads at FB
Carole-Jean Wu, FB AI Systems Faculty Summit 9//2019
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Cloud Workloads at FB
Carole-Jean Wu, FB AI Systems Faculty Summit 9//2019
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GPU
as DL 
Acce
lerat
ors

Product K40 M40 Tesla P100 Tesla V100 T4

GPU GK180 Kepler GM200 Maxwell GP100 Pascal GV100 Volta TU104

Year 2013 2015 2016 Early 2018 Late 2018

Streaming 
Multiprocessors

15 24 56 80 40

FP32 cores/SM 192 128 64 64 64 CUDA cores

FP32 cores/GPU 2880 3072 3584 5120 2560 CUDA Cores

Tensor cores/SM N/A N/A N/A 8 8

Tensor cores/GPU N/A N/A N/A 640 320

Peak TOPS FP32 5 6.8 10.6 15.7 8.1

Peak TOPS Tensor N/A N/A N/A 125 
fp16xfp16àfp32

130 TOPS INT8, 
260 TOPS INT4

TDP (W) 235 W 250W 300W 300W 70W

TOPS/W 0.02 
TFLOPS/W 
fp32

0.027 TFLOPS/W 
fp32

0.035 TFLOPS/W 
fp32

0.42 TFLOPS/W 
tensor fp16/32

1.85 TOPS/W INT8

Shared memory/SM
(L1 cache)

16kB-48kB 96kB 64kB Up to 96kB 96kB

RegFile/SM (per GPU) 256kB 
(3840kB)

256kB (6144kB) 256kB 256kB 256kB

L2 Cache 1536kB 3072kB 4096kB 6144kB 4096kB



Three Broad Classes of Accelerators

Training/Inference in the Cloud
• Training + Inference
• 10,000s PEs
• Area: 300 -- 800 mm2

• 80--300 Watts
• 60-150s TOPS
• Clock rate: 700MHz – 1.6GHz
• 10s MB on-chip memory
• Typical batch size: 10s – 100s
• High/complete connectivity PEs
• 8-32 bit precision (floating point) 
• Example: TPU 1-3, Graphcore

Inference at the Edge: 
Standalone Chip

• Only Inference
• 16 -1000s of PEs
• Area: 1s-10s mm2

• 1 – 10,000 mWatts
• 100s-1000 GOPS
• Clock rate: 25-400 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• mixed connectivity among PE
• 1-16 bit precision (fixed point)
• Example: GreenWaves, ZU3 + 

Gyrfalcon Lightspeeur, Synetgy
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• Only Inference
• 16-64 PEs
• Area: 1s  mm2

• 10’s-100s mWatts
• 10s-5000s GOPS
• Clock rate: 600 – 1000 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• Local (mesh) connectivity
• 1-16 bit precision (fixed point)
• Example: Apple NPU, Tensilica

DNA 100, Squeezelerator

Inference at the Edge: 
IP Block/System-in-Package



Most Popular ML/DL Applications
at the Edge and their DNNs

• Models characteristics (model size, computations, Arithmetic Intensity) vary widely 
from application area to application area 19

Computer Vision:
CNNs, ConvNets

Classification Object Detection Semantic Segmentation 

Natural 
Language
transformer 
networks

Speech
Recognition 

Call-center
Sentiment Analysis

Speaker 
Diarization

Recommendation
Systems

Speech 
Enhancement

Audio/Speech:
LSTMs, RNN

Chat Bots

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation

Sedan:	0.98
Motorcycle:	0.005
Truck:	0.005
…

Sedan Sedan

Road

(a)	Image	classification (b)	Object	detection (c)	Semantic	segmentation



Mobile Devices Bring Constraints

Power (Watts)

• Convenient and economical packaging
limits how much power our mobile devices 
can dissipate 

• 2-5W max seems common among mobile 
handsets

• IP Blocks will have much stricter constraints

Energy (Joules) = power * time

• Battery life limits the total energy that our 
mobile devices can use

• iPhoneX battery 10.35 WHours

20https://www.macrumors.com/2017/11/03/iphone-x-teardown-ifixit/

Applications may bring further constraints on accuracy and latency
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Snapdragon 845 Snapdragon 855

Timeframe, Phone, Process node Feb. 2018, Galaxy S9, Samsung 10nm [2] Q1 2019, Galaxy S10, TSMC 7nm [6]

Die area Entire chip 95mm2 [2] Entire chip 73mm2 [6]

CPU cores 4x A75 @ 2.8GHz, 4x A55 @ 1.8GHz 4x A76+ @ 2.4-2.8GHz, 4x A55 @ 1.8GHz

CPU FP Perf. 2x 64-bit pipes [9], can do 2x fp32 or 8x int8 each
è ~90 GFLOPS for 4 cores

2x 128-bit pipes, can do 4x fp32 or 16x int8 
each
è 154-180 GFLOPS for 4 cores

Actual CPU perf, Geekbench 4, 
SGEMM

~66 GFLOPS / 4 cores [5] Qualcomm quotes +35% FP perf over 845

CPU int8 perf / ARM dot product Int8 dot product with int32 accumulation, 4-cycle 
MAC
16 ops/clock (8 macs) è 153-180 GOPS int8
Shares Neon vector pipe with FP unit?

Int8 dot product with int32 accumulation, 1-
cycle MAC
64 ops/clock (16 macs) è 614-717 GOPS int8
Shares Neon vector pipe with FP unit?

GPU Adreno 630 @ 710MHz, dual-core [3] Adreno 640 @ 585MHz, tri-core [3]

GPU Perf. 727 GFLOPS fp32 [3] 955 GFLOPS fp32, 1853 GFLOPS fp16 [3]

NPU Hexagon 685 DSP w/ vector extensions + NPE 
Neural Processing Engine
1.8 TOPS int8 [8]

Hexagon 690 DSP + TensorAccel
DSP Est. 1.5 int8 TOPS 
TensorAccel Est. 32x32 array, 2 int8 macs 
each/clock è 4.4 int8 TOPS + ~1.5 int8 TOPS 
DSP

Android NNAPI support [7] Int8 on DSP, fp16 on and fp32 on GPU ?? Same as 845



IOT END: Standalone Chip: GreenWaves Gap8
DRONET: RESNET based Autonous Drone

21/3/2019 Tiny ML Summit. March 2019 22

• Developed by UZH and ETH-Z
• Autonomously follow a road/corridor and avoid collision
• Up to 18 Frames Per Second at maximum frequency
• @1.0V, FC: 50MHz, Cluster: 100MHz   è 6.5fps   40mW

Courtesy, Eric Flamand, CTO



Three Broad Classes of Accelerators

Training/Inference in the Cloud
• Training + Inference
• 10,000s PEs
• Area: 300 -- 800 mm2

• 80--300 Watts
• 60-150s TOPS
• Clock rate: 700MHz – 1.6GHz
• 10s MB on-chip memory
• Typical batch size: 10s – 100s
• High/complete connectivity PEs
• 8-32 bit precision (floating point) 
• Example: GPUs, TPU 1-3, Graphcore

Inference at the Edge: 
Standalone Chip

• Only Inference
• 16 -1000s of PEs
• Area: 1s-10s mm2

• 1 – 10,000 mWatts
• 100s-1000 GOPS
• Clock rate: 25-400 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• mixed connectivity among PE
• 1-16 bit precision (fixed point)
• Example: GreenWaves, ZU3 + 

Gyrfalcon Lightspeeur, Synetgy
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• Only Inference
• 16-64 PEs
• Area: 1s  mm2

• 10’s-100s mWatts
• 10s-5000s GOPS
• Clock rate: 600 – 1000 MHz
• 100s KB on-chip memory
• Typical batch size: 1
• Local (mesh) connectivity
• 1-16 bit precision (fixed point)
• Example: Apple NPU, Tensilica

DNA 100, Squeezelerator

Inference at the Edge: 
IP Block/System-in-Package



Embedded IP Block in Mobile Phone
Apple A12 Bionic NN Engine

24

Apple A12 Bionic

~6.9B transistors
TSMC 7nm, ~83 mm2

5 TOPS peak
NN Engine:
8 cores, int8
NPU ~5.8 mm2

8.42
mm

9.89mm

https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/2
https://en.wikichip.org/wiki/apple/ax/a12

https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/2
https://en.wikichip.org/wiki/apple/ax/a12


Like to have a NN Accelerator Architectural Family
That is Useful Across Wide Range of Mobile Apps

Typical handset
32g, 13cc, 5.5Wh = 19.8 kJ
Typical usage
5kJ active + 12kJ standby = 1 battery 

charge
Per Ljung – Nokia, 2012OZO Digital Pedometer

80μW, 0.72Wh | 1 year

iwatch Series 3 1.07Wh | 3.8kJ
60mW, 18 hours

2017 iPhone8 | 6.96Wh = 25kJ
Talk time: 14h = 0.5 W
Video: 13h = 0.54 W 

iPad Pro | 41Wh = 147kJ
Apple: 10h use = average 4.1W

Kindle Oasis | 0.91Wh = 3.276kJ
Ebook Friendly: “15days @ 30m/day” = 7.5h @ 0.12 W average

Eee PC 1000HE | 49Wh = 176kJ
Asus: 9.5h = 5.2 W

13 inch Macbook Air  | 54Wh = 194.4kJ
Apple: 12h = 4.5 W

15 inch Macbook Pro |
76Wh = 273.6kJ
Apple: 10h = 7.6 W

Average Power D
iss

ipatio
n

----
----

----
----

----
----

--

Batte
ry Lif

e

1-1000 m
W

8-240 Hours

11 W

2.4  H
ours

2.5 W

8.4 Hours

1 Wh = 3.6 kJ



Architectural Family to Support Broad Range of
Inference at the Edge

• “Enabling On-Device AI Across a Wide Range of Inference from 0.5 to 100s of TMACs”

26



High level NN Accelerator Application Characteristics
For Mobile/Embedded Applications

• Characteristics of Deep Neural Nets for embedded computer vision
– (Only) need to support varieties of Convolution Nets 

• But do need to recognize their diverse layers! 
– Moreover, to support a wide range of accuracies we will need to support a wide range of 

size of models

27



Accuracy requirements important:
Precise requirements are application specific

28

iPhone Dog Identifier Application Object Detector in Autonomous Vehicle

• Most overlooked question in Deep Learning: what does accuracy mean?

Application



At the Core of a CNN is ...
A Convolution

29
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256
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Convolutional Layers
in SqueezeNet

• https://deeplearnjs.org/demos/imagenet/ 30

3 channels (RGB)

96 channels 256 channels 1000 channels

https://deeplearnjs.org/demos/imagenet/


Actually Many Different Variants
All Have Different Computational Characteristics

31

Spatial Convolution
e.g. 3x3

Pointwise Convolution
1x1

ShiftChannel Shuffle

Depthwise Convolution

Alon Amid, ... Kurt Keutzer. "Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded Vision 
Applications." Invited paper: to appear IBM Journal of Research and Development.



High level NN Accelerator Application Characteristics
For Mobile/Embedded Applications

• Characteristics of Deep Neural Nets for embedded computer vision
– (Only) need to support varieties of Convolution Nets 

• But do need to recognize their diverse layers! 
– Moreover, to support a wide range of accuracies we will need to support a wide range of 

size of models
• Batch size?

32



Latency Constraint: Natural Batch Size for
Embedded/IOT/Mobile is 1

• Batching up input images allows for more reuse of convolutional filters à better numbers
• However, real-time requirements will almost always dictate minimizing latency à batch size 1

33

Batch Size of 1

car 

<car,
car,
....
car> 

Batch Size of 16, 44 etc. 



High level NN Accelerator Application Characteristics
For Mobile/Embedded Applications

• Characteristics of Deep Neural Nets for embedded computer vision
– (Only) need to support varieties of Convolution Nets 

• But do need to recognize their diverse layers! 
– Moreover, to support a wide range of accuracies we will need to support a wide range of 

size of models
• Benchmark using batch size of 1 

– Presuming larger batch sizes, as is common, will give unrealistic numbers on FPS etc.

34



NN Accelerator Application Characteristics
For Mobile/Embedded Applications

• Characteristics of Deep Neural Nets for embedded computer vision
– (Only) need to support varieties of Convolution Nets 

• But do need to recognize their diverse layers! 
– Moreoever, to support a wide range of accuracies we will need to support a wide range of 

size of models
• Presume batch size of 1 

– Presuming larger sizes, as is common, will give unrealistic numbers on OPS/Watt
• Power ranges as low as 1mW and up to 10W
• Capable of providing real time performance for common computer vision kernels 

(classification, object detection) across:
– Range of resolutions: CIFAR (32 x 32) up to UHD (2160 x 3840)
– Range of speeds: 1 Frames per second (FPS) à 60 FPS

35



Outline

• Applications and their characteristics

• Determining key NN Accelerator architectural elements

• How much further can we improve NN accelerators with 
co-design?

36



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Direct mapping of NN to accelerator
– Layered double-buffer strategy

37



FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks, MICHAELA BLOTT et al., ACM Transactions on Reconfigurable Technology and Systems, 
Vol. 1, No. 1. Publication date: September 2018.

Dataflow (Spatial) vs
Multilayer (Double Buffer) Architecture



On-Chip
RAM: 

weights
& bias

Conv
3x3

BN

ReLU

Inputs

weights
& bias

BN

ReLU

Pool

weights
& bias

...

Layer1 Layer2 LayerN

Conv
1x1 FC

Very efficient if all weights and layers can fit on-chip
Typical usage: small net on FPGA or full-chip NN accelerator

NN to HW Mapping: Spatial mapping
Aka: Dataflow approach

... ........



More general mapping strategy:
Layer-based/Double-buffered

• Process the DNN one layer at a time
• Disadvantages:

– Must address more challenges to PE—PE 
or PE– Memory communication

– Likely to be much more memory traffic 
overall

• Advantages: 
– accelerator is able to accommodate a very 

broad range of DNN models

40

PYang, Yifan, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio 
Gambardella, Michaela Blott et al. "Synetgy: Algorithm-hardware co-design 
for convnet accelerators on embedded fpgas." In Proceedings of the 2019 
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 
pp. 23-32. ACM, 2019.

P



MAGNet: A Modular Accelerator 
Generator for Neural Networks, 
Rangharajan Venkatesan† Yakun
Sophia Shao† Miaorong Wang‡ 
Jason Clemons† Steve Dai† 
Matthew Fojtik† Ben Keller† Alicia 
Klinefelter† Nathaniel Pinckney† 
Priyanka Raina⋄ Yanqing Zhang† 
Brian Zimmer† William J. Dally† 
Joel Emer†‡ Stephen W. Keckler† 
Brucek Khailany†, ICCAD ‘19

MAGNet: Template for a Double-Buffer
HW Accelerator



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function

43



PE’s 
number and basic function ...

44

Feature Example of trade-offs

Generality Simple MAC unit to scalar processor, vector units, specialized DSP units

Programmability Richness and completeness of instruction set, instruction memory size

Organization Register files: Number – scalar + specialized RFs i.e. weights; Size; Vector unit RF; 2nd level 
general purpose RF

Local memory, data 
movement

SRAM data buffer, instruction memory, double buffering to support dataflow, specialized 
engines to move data between buffers

full-featured scalar + vector processor

Gyrfalcon 2802M -- ~28K PEs Xilinx AI Versal VC1092 – 400 PEs
Datacenter/Heavy duty computing

simple ALU/MAC array 

Range of choices
Many intermediate points



Data types matter a lot! 
Data types: 32bit FP MAC vs int4 MAC

• int4 MAC
• 4 bit multiply , 16 bit accumulator
• ~700 gates

45

X

+

4b

16b

4b

8b

• 32 bit FP fused MAC
• 17K gate equivalents

24 X less gates



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes, and interconnect

46



On-chip memory hierarchy & sizing
Keep data (very) close to the processing units

47



Memory (Bandwidth) Wall

Memory Location Size Relative (Absolute) 
Bandwidth

L0 – Memory next to Processing Elements, 
Distributed on-chip

KB to 10s KB/PE 1x (2000 TB/s)

L1 – Share buffers, on-chip 100 KBs to 1 MB 1/10 (200 TB/s)

L2 – Global buffer, on-chip 10s MB 1/100 (20 TB/s)

HBM2 DRAM, off-chip, in-package 10s GB 1/2000 (1 TB/s)

Adapted from “DaVinci: A Scalable Architecture for Neural Network Computing”, Heng Liao, Jiajin Tu, Jing Xia, 
Xiping Zhou, Huawei, Hot Chips 2019



Williams Roofline Model

• For decades programmers and architects did back-of-the-envelope 
calculations on compute vs communication at various levels of the memory 
hierarchy
– Processor to register file
– On-chip L1, L2 (L3?) caches
– Off-chip DRAM
– Interprocessor communication

• UC Berkeley grad student Sam Williams gave a simple model, known as the 
Roofline Model, for reasoning about these issues 
– Aimed at reasoning about kernel arithmetic intensity and interprocessor

communication, we can use it across the memory hierarchy

49

Williams, Samuel, Andrew Waterman, and David Patterson. Roofline: An insightful visual 
performance model for floating-point programs and multicore architectures. No. LBNL-2141E. 
Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009.



Roofline Model: y-axis
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Williams, Samuel, Andrew 
Waterman, and David 
Patterson. Roofline: An 
insightful visual 
performance model for 
floating-point programs 
and multicore 
architectures. No. LBNL-
2141E. Lawrence Berkeley 
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Berkeley, CA (United 
States), 2009.



Roofline Model: x-axis
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fetch two double precision 
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v 1 double precision float: 8 
bytes (64 bits)

v 2 double precision float: 16 
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Bandwidth as Slope
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Bandwidth Meets Arithmetic Intensity
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FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks, MICHAELA BLOTT et al., ACM Transactions on Reconfigurable 
Technology and Systems, Vol. 1, No. 1. Publication date: September 2018.

Roofline Model vs. Data type
Vs Different Models (Blott) 



Deep Neural Network Approximation for Custom Hardware: Where We’ve Been, Where We’re Going, ERWEI 
WANG et al., ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Roofline Model vs. Data Types



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, 

56



On-chip memory hierarchy & sizing:
Consider Small Register Files for Higher Energy Efficiency

57

Figure 12
Xuan Yang, Mingyu Gao, Jing Pu, Ankita Naya, Qiaoyi Liu, 
Steven Emberton Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, 
Christos Kozyrakis and Mark Horowitz, “DNN Dataflow Choice 
Is Overrated”, arXiv:1809.04070v1. [Yang-Horowitz 2018]

• Consider smaller Register Files: 
64B is ~2.6x more energy efficient 
overall.

• Smaller RF has much lower energy 
cost per access, yielding big savings 
for Conv layers.

• More RF “misses”, but these go to 
large on-chip global buffer.

• As a result, DRAM access cost does 
not change.



On-chip memory hierarchy & sizing:
Consider Large Global Buffer

58

Xuan Yang, Mingyu Gao, Jing Pu, Ankita Naya, Qiaoyi Liu, 
Steven Emberton Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, 
Christos Kozyrakis and Mark Horowitz, “DNN Dataflow Choice 
Is Overrated”, arXiv:1809.04070v1 [Yang-Horowitz 2018]

• Global buffer catches “misses” 
from Register File, minimizing 
expensive DRAM accesses.

• Major savings going from 64kB to 
128kB, some gain up to 256kB.

• No gains once DRAM accesses are 
minimized – input data read once, 
output data written once.



GPU “Inverted” Memory Hierarchy

59

Product K40 M40 Tesla P100 Tesla V100 T4

GPU GK180 
Kepler

GM200 Maxwell GP100 Pascal GV100 Volta TU104

Year 2013 2015 2016 Early 2018 Late 2018

Streaming 
Multiprocessors

15 24 56 80 40

Shared memory/SM (L1 
cache)

16kB-48kB 96kB 64kB Up to 96kB 96kB

RegFile/SM (per GPU) 256kB 
(3840kB)

256kB (6144kB) 256kB 256kB 256kB

L2 Cache 1536kB 3072kB 4096kB 6144kB 4096kB

Shared Memory per SM : 
RF per SM

0.18x 0.37x 0.25x 0.37x 0.37x

L2 cache : Shared 
Memory per SM

32x 48x 64x 64x 42x

L2 cache : RF per SM 6x 12x 16x 24x 16x

• Very different from Horowitz recommendation; RF very large; Shared memory typically smaller than RF!



On-chip memory hierarchy & sizing:
Consider Adding an Extra Level of Memory Hierarchy

60

Xuan Yang, Mingyu Gao, Jing Pu, Ankita 
Naya, Qiaoyi Liu, Steven Emberton Bell, Jeff 
Ou Setter, Kaidi Cao, Heonjae Ha, Christos 
Kozyrakis and Mark Horowitz, “DNN 
Dataflow Choice Is Overrated”, 
arXiv:1809.04070v1 [Yang-Horowitz 2018]

• Adding a 2nd level RegFile, private 
to each PE, saves ~25% energy 
overall.

• Savings are most pronounced for 
Conv layers, about 30%.

• Ratio of memory sizes between 
adjacent memory levels should be at 
least 8x-16x, i.e. 16B/256B.

• DNNs can support larger ratios than 
CPU caches thanks to predictable 
data patterns and perfect prefetching.



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes

61
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Data types: 32bit FP MAC vs int4 MAC

• int4 MAC
• 4 bit multiply , 16 bit accumulator
• ~700 gates

63

X

+

4b

16b

4b

8b

• 32 bit FP fused MAC
• 17K gate equivalents

24 X less gates
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Circuit level implications [Marian Verhelst, KU Leuven]

Area large small medium
Energy 500TOPS/W 200TOPs/W 16b: 0.5 TOPs/W

8b: 1 TOPs/W
4b: 5 TOPs/W
2b: 10 TOPs/W

analog 
MAC    

or 1-bit 
digital MAC   

or multi-precision 
digital MAC  

Flexibility low medium high
Accuracy

[Bankman, 
ISSCC18]

[Moons, 
CICC18]

[Moons, 
ISSCC17]

With Stanford 
(Murmann)

20 – 400 X
50 – 1000 X

KK: Low hanging fruit is in memory/arithmetic
support for low bit-precisions



Resulting Datatypes and  Memory Hierarchy 
for NN Accelerator (Inference)

Figure 3, [Yang-Horowitz 2018] 65

one  PE 
Squeezelerator, 

DAC 2018

Table IV
[Yang-Horowitz 2018] 

KK: Data Types
• 4, 8, 16 bits 
• 32 bits?
• 1,2 bits?



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes, and interconnect

66



On-Chip Interconnect?

67

Microprocessor Report, April 2017

https://anysilicon.com/understanding-amba-bus-architechture-protocols/

Traditional NoCs scale 
poorly to many-core NN 
accelerators…..

…New approaches are 
needed to support 1,000s 
of cores.

Multicast
Novel Architectures
Photonics?
On-chip Waveguides?

[Optical NoC] A Survey of Emerging Interconnects for On-Chip Efficient 
Multicast and Broadcast in Many-Cores, IEEE Circuits and Systems 
Magazine, Q1 2016.

[Kalray Mesh] Microprocessor Report, Feb. 2015

https://anysilicon.com/understanding-amba-bus-architechture-protocols/


Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes, and interconnect
– Economical sizes of register files; sufficient memory size and hierarchy

• PE—PE — Memory dataflow

68



Systolic Array Weight Stationary Example: 
TPU [1] (Google)

69
[1] N. Jouppi, et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” 2017.

• “Matrix Multiply Unit” performs general matrix-vector multiplications.
• The weight matrix is preloaded in the PE Array.
• A stream of input activation vectors is passed to each column of the array.
• Partial sums of PEs are vertically propagated

𝑂64
⋮

𝑂8914
=

𝑊6,6 ⋯ 𝑊6,.91
⋮ ⋱ ⋮

𝑊891,6 ⋯ 𝑊891,.91

𝐼64
⋮

𝐼.914

Output = Weight-Matrix x Inputs

W0,0 W1,0 W2,0 W3,0

W0,1 W1,1 W2,1 W3,1

W0,2 W1,2 W2,2 W3,2

W0,3 W1,3 W2,3 W3,3
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...* =
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Systolic Array Output Stationary Example:
ShiDianNao [1] (Cambrian)

70[1] Z. Du, et. al., “ShiDianNao: Shifting Vision Processing Closer to the Sensor,” 2015.

Example of 3x3 convolution on 3x6 input feature map

• Each PE in “Neural Functional Unit” computes parts of the convolution that will 
contribute to one output pixel, and accumulate the results.

• In each cycle, a weight is broadcasted to all PEs, and the corresponding region of the 
input feature map is provided to the NFU.

W0,0

PE PE PE PE

I0,0 I0,1 I0,2 I0,3

I0,0 I0,1 I0,2 I0,3 I0,4 I0,5

I1,0 I1,1 I1,2 I1,3 I1,4 I1,5

I2,0 I2,1 I2,2 I2,3 I2,4 I2,5

W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

W2,0 W2,1 W2,2

O0,0 O0,1 O0,2 O0,3* =

W0,1

I0,1 I0,2 I0,3 I0,4

W0,2

I0,2 I0,3 I0,4 I0,5

W1,0

I1,0 I1,1 I1,2 I1,3

W1,1

I1,1 I1,2 I1,3 I1,4

W1,2

I1,2 I1,3 I1,4 I1,5

W2,0

I2,0 I2,1 I2,2 I2,3

W2,1

I2,1 I2,2 I2,3 I2,4

W2,2

O0,0 O0,1 O0,2 O0,3

2 I2,3 I2,4 I2,5

Input Weight Output PE Array



Squeezelerator: Hybrid WS/OS
(Berkeley, Samsung)

71

• Squeezelerator: Supports hybrid WS and OS data flow: up to 6x reduction in energy over OS, WS
– Determines execution flow statically based on trained weights (one time setup cost per network)

Output Stationary

Weight Stationary

Kwon, Kiseok, Alon Amid, Amir Gholami, Bichen Wu, 
Krste Asanovic, and Kurt Keutzer. "Co-design of deep 
neural nets and neural net accelerators for 
embedded vision applications." In 2018 55th 
ACM/ESDA/IEEE Design Automation Conference 
(DAC), pp. 1-6. IEEE, 2018.



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes
– Economical sizes of register files; sufficient memory size and hierarchy

• PE—PE dataflow
– Hybrid OS/WS dataflow approach

• Other special purpose hardware
– Support for static compression of weights, sparsity
– Analog
– Memory-based computing 72



HW Support for Compressing Weights

• Typical features include support for weight sparsity, weight quantization, weight sharing, 
Huffman coding of weights, dynamic activation sparsity, relative indexing, zero detect.

73

Angshuman Parashar et al., “SCNN: An
Accelerator for Compressed-sparse
Convolutional Neural Networks”.
arXiv:1708.04485v1

Song Han et al., “EIE: Efficient Inference Engine 
on Compressed Deep Neural Network”, 
arXiv:1602.01528v2

131K weights compressed storage per PE.
Each PE stores part of network in RAM.



Analog Computing: Mythic

• In-memory evaluation of matrix-vector multiply.
• 1-2 orders of magnitude power reduction.
• 40nm embedded Flash process, 8-bit accuracy.
• 5MB on-chip. Claims 0.5pJ/MAC vs. 10-25 pJ/MAC digital.
Issues:
• Sensitivity to process,

voltage, temp.
• Embedded Flash

process is typically
several nodes behind.

• Less benefit from process
shrink over time.

74

Batch size=1.
Tesla T4 GPU does 4,395 
fps @ b=128.



Where does IMC stand today?

Energy Efficiency (TOPS/W)
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Bankman, 
ISSCC’18, 28nm
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Zhang, 
VLSI’16, 
130nm

Khwa, ISSCC’18, 65nm

Jiang, VLSI’18, 
65nm
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Chen, ISSCC’16, 
65nm

Yin, VLSI’17, 65nm

Ando, VLSI’17, 65nm Moons, 
ISSCC’17, 
28nm

IMC
Not IMC

• Potential for 10× higher efficiency & 
throughput

• Limited scale, robustness, configurability

Naveen Verma, Princeton
“Ready to move from research to R&D.”



Key Architectural Decisions

• NN to  Accelerator Mapping strategy
– Layered execution: double buffered

• Number of PE’s and their function
– Minimal PE consisting of MAC unit

• On-chip memory hierarchy, sizes, datatypes
– Economical sizes of register files; sufficient memory size and hierarchy

• PE—PE dataflow
– Hybrid OS/WS dataflow approach

• Low hanging fruit is additional memory and arithmetic support for low (1-4 bit) 
data types
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First Summary

• NN accelerators have potential to give 10-100x  reduction in latency and energy to Deep Neural 
Network computations

• But, both DNN design and NN accelerator design are progressing so quickly, the two sub-areas 
are not keeping up with each other

• Application constraints for NN accelerators are quite different, so need to focus:
– Most important application constraint, accuracy, is often implicit or misunderstood
– Cloud or client?
– AI sub-area : Computer vision, speech, natural language processing? Talk was all CV

• For accelerators for inference in mobile/at-the-edge NN, there are many familiar architectural 
choices to be made, and given up-to-date DNN models traditional data-driven architectural 
analysis can drive them
– Factors of 10x hinge on making these correct choices in the light of application constraints 

and DNN characteristics: PE, memory hierarchy uppermost, dataflow
– Anything new?: support for low-bit precisions (1-4 bit) datatypes is low hanging fruit

• Given a good NN accelerator architecture that is tuned to support a family of nets, presuming 
quantization, further DNN optimization currently might net 2X 

• Much bigger gains (10x) if we can tune the NN accelerator to a particular application and co-
design the DNN and NN accelerator for the application (e.g. eliminating 3x3 convolutions 
altogether)

77



Outline

• Applications and their characteristics

• Determining key NN Accelerator architectural elements

• How much further can we improve NN accelerators when 
we co-design them with DNNs?
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Finding the right DNN model just got a lot easier!!
DNAS: Differentiable Neural Architecture Search

79

Differentiable Neural Architecture Search:
• Extremely fast: 8 GPUs, 24 hours
• Optimize for actual latency

CVPR Oral 2019
Wu, Bichen, Xiaoliang
Dai, Peizhao Zhang, 

Yanghan Wang, Fei Sun, 
Yiming Wu, Yuandong

Tian, Peter Vajda, 
Yangqing Jia, and Kurt 

Keutzer. "FBNet: 
Hardware-Aware 

Efficient ConvNet Design 
via Differentiable Neural 

Architecture 
Search." arXiv preprint 

arXiv:1812.03443 (2018)
.



DNAS for mixed precision quantization search

80

• Quantizing different layers of a ConvNet to different precisions
• Candidate operators are quantized convolutions

For DeepScale only, please do not distribute



Quantization Can Save 12X:
Inception-V3 on ImageNet

81
Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, 

HGQ: Hessian Guided Quantization of Neural Networks with Mixed-Precision



MobileNetV2: [1] 
Acc: 71.8%, latency: 21.7 ms

FBNet Family in context (Latency)
Tools Beating the Best Human DNN Designers

82

Longer Latency (bad)

ImageNet top-1 Accuracy

* Estimated from the paper description

[1] Sandler, Mark, et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks.” CVPR18
[2] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." arXiv preprint 
arXiv:1807.11626 (2018).

FBNet-A: (ours) 
Acc: 73.0%, lat: 19.8 ms

MobileNetV2-1.3: [1] 
Acc: 74.4%, lat: 33.8 ms

MobileNetV2-1.4: [1] 
Acc: 74.7%, lat: 37.4 ms

FBNet-B: (ours) 
Acc: 74.1%, lat: 23.1 ms

FBNet-C: (ours) 
Acc: 74.9%, latency: 28.1 ms

MnasNet: [2] 
Acc: 74.0%, lat: 23.7 ms3.1%

25% reduction
in latency



Design Study 1:
A11 vs Snapdragon 835

Apple A11

• Big: 2 ARMv8 @ 2.5 GHz
• Little: 4 ARMv8 @ 1.4 GHz
• Vectorization: 4-wide 32-bit MAC
• LPDDR4x memory (30 GB/s)
• GPU + Neural Processing Engine

Snapdragon 835

• Big: 4 ARMv8 @ 2.4 GHz
• Little: 4 ARMv8 @ 1.9 GHz
• Vectorization: 4-wide 32-bit MAC
• LPDDR4x memory (30 GB/s)
• Adreno 540 GPU

83



DNAS for device-aware search

NET Latency on 
iPhoneX

Latency on 
Samsung S8

Top-1 acc

DNAS-iPhoneX 19.84 ms 23.33 ms
(20% slower)

73.20%

DNAS-S8 27.53 ms
(25% slower)

22.12 ms 73.27%

84

• For different targeted devices, both DNASNets achieve similar 
accuracy. 

• However, per target DNN optimization yield 20-25% reduction in 
latency



Design Study 2: Squeezelerator
Collaboration with Samsung (Kwon)

85

PE

Global Buffer

...

Preload Buffer
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dc
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from adjacent PE’s

from broadcast buffer

MUL

MUX

...

from top PE

RF

ADD

X Y

FF

to bottom PE

MUX

to adjacent PE’s

• Squeezelerator evolved to support both OS and WS dataflow modes.
• Initial results improved accelerator performance on MobileNets v1 by 6x

Kwon, Kiseok, Alon Amid, 
Amir Gholami, Bichen Wu, 
Krste Asanovic, and Kurt 
Keutzer. "Co-Design of Deep 
Neural Nets and Neural Net 
Accelerators for Embedded 
Vision Applications." DAC 
2018. To appear IBM Journal 
of Research and 
Development.
Also,
arXiv:1804.10642 (2018).



Subsequent DNN Optimization

86

• After Squeezelerator was designed to optimize SqueezeNet, MobileNet, further optimizing 
SqueezeNext to Squeezelerator improved energy efficiency/latency by (only) 30%  
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Design Study 3: 
DiracDeltaNet & Synetgy Accelerator [1]

87

• Collaboration with Xilinx
• Xilinx Zynq ZU3EG

– Relatively weaker (than GPU) 
support for linear algebra

– Very flexible
– Excellent support for bit-level 

operations
– Excellent support for fixed-point 

quantization
• Developed Synetgy NN Accelerator Synetgy accelerator architecture

Yang, Yifan, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela Blott et al. 
"Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded fpgas." In Proceedings of the 
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 23-32. ACM, 2019.



Co-Design DNN: DiracDeltaNet

• Dramatically simplified operation set to better match FPGA

88

• ShuffleNetV2 [1]
– 1x1 conv
– 3x3 conv stride=2
– 3x3 depth-wise conv stride=1
– 3x3 depth-wise conv stride=2
– 3x3 max-pooling
– Shuffle and concatenation

• DiracDeltaNet
– Eliminated spatial 

convolutions altogether
– 1x1 conv
– 2x2 max-pooling
– Shift [2]
– Shuffle and concatenation

[1] Ma, Ningning, et al. "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design." arXiv preprint arXiv:1807.11164 (2018).
[2] Wu, Bichen, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, and Kurt Keutzer. 
"Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions



Comparison with Previous Works

• 11.6x faster (among FPGA accelerators whose top-1 accuracy is 
higher than 60%)

• 6.3x more power efficient

89

Platform Framerate Top-1 Acc Precision Energy/
Frame (J)

VGG16 [1] Zynq 7Z020 5.7 67.72% 8-8b 0.526
VGG-SVD [2] Zynq 7Z045 4.5 64.64% 16-16b 0.666
VGG16 [3] Stratix-V 3.8 66.58% 8-16b 5.026
Ours Zynq ZU3EG 66.3 68.30% 4-4b 0.083

[1] Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y. and Yang, H. Software-Hardware Codesign for Efficient Neural Network Acceleration. IEEE Micro, 37 (2). 18-25. 
[2] Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song, S., Wang, Y. and Yang, H. Going Deeper with Embedded {FPGA} Platform 
for Convolutional Neural Network, 2016, 26-35.
[3] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S.B.K., Seo, J.S. and Cao, Y. Throughput-Optimized OpenCL-based {FPGA} Accelerator 
for Large-Scale Convolutional Neural Networks, 2016, 16-25.



Summary

• NN accelerators have potential to give 10-100x  reduction in latency and energy to Deep Neural 
Network computations

• But, both DNN design and NN accelerator design are progressing so quickly, the two sub-areas 
are not keeping up with each other

• Application constraints for NN accelerators are quite different, so need to focus:
– Most important application constraint, accuracy, is often implicit or misunderstood
– Cloud or client?
– AI sub-area : Computer vision, speech, natural language processing? Talk was all CV

• For accelerators for inference in mobile/at-the-edge NN, there are many familiar architectural 
choices to be made, and given up-to-date DNN models traditional data-driven architectural 
analysis can drive them
– Factors of 10x hinge on making these correct choices in the light of application constraints 

and DNN characteristics: PE, memory hierarchy uppermost, dataflow
– Anything new?: support for low-bit precisions (1-4 bit) datatypes is low hanging fruit

• Given a good NN accelerator architecture that is tuned to support a family of nets, presuming 
quantization, further DNN optimization currently might net 2X 

• Much bigger gains (10x) if we can tune the NN accelerator to a particular application and co-
design the DNN and NN accelerator for the application (e.g. eliminating 3x3 convolutions 
altogether)
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Extras
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Practical Strategies for

Power-Efficient Computing 
Technologies

By Leland Chang, Dennard et al., 
Proceedings of the IEEE | Vol. 98, 
No. 2, February 2010

The way it was: Dennard Scaling



Practical Strategies for

Power-Efficient Computing 
Technologies

By Leland Chang, Dennard et 
al., Proceedings of the IEEE | 
Vol. 98, No. 2, February 2010

The way it is: End of power scaling



IEEE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS, 2018 EDITION . Red curve – CPU freq at constant power density.

The way it is: Limited clock rates



Analyzing the Energy-Efficiency of Sparse Matrix
Multiplication on Heterogeneous Systems: A
Comparative Study of GPU, Xe on Phi and FPGA
Heiner Giefers et al., 2016 IEEE International 
Symposium on Performance Analysis of Systems 
and Software (ISPASS)

Consider I/O Bandwidth and Latency as well…

https://ieeexplore.ieee.org/xpl/conhome/7480598/proceeding


Animated Versions
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Systolic Array Weight Stationary Example: TPU

97
[1] N. Jouppi, et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” 2017.

• “Matrix Multiply Unit” performs general matrix-vector multiplications.
• The weight matrix is preloaded in the PE Array.
• A stream of input activation vectors is passed to each column of the array.
• Partial sums of PEs are vertically propagated

𝑂64
⋮

𝑂8914
=

𝑊6,6 ⋯ 𝑊6,.91
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Systolic Array Output Stationary Example:
ShiDianNao

98[1] Z. Du, et. al., “ShiDianNao: Shifting Vision Processing Closer to the Sensor,” 2015.

Example of 3x3 convolution on 3x6 input feature map

• Each PE in “Neural Functional Unit” computes parts of the convolution that will 
contribute to one output pixel, and accumulate the results.

• In each cycle, a weight is broadcasted to all PEs, and the corresponding region of the 
input feature map is provided to the NFU.

W0,0

PE PE PE PE

I0,0 I0,1 I0,2 I0,3

I0,0 I0,1 I0,2 I0,3 I0,4 I0,5

I1,0 I1,1 I1,2 I1,3 I1,4 I1,5

I2,0 I2,1 I2,2 I2,3 I2,4 I2,5

W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

W2,0 W2,1 W2,2

O0,0 O0,1 O0,2 O0,3* =

W0,1

I0,1 I0,2 I0,3 I0,4

W0,2

I0,2 I0,3 I0,4 I0,5

W1,0

I1,0 I1,1 I1,2 I1,3

W1,1

I1,1 I1,2 I1,3 I1,4

W1,2

I1,2 I1,3 I1,4 I1,5

W2,0

I2,0 I2,1 I2,2 I2,3

W2,1

I2,1 I2,2 I2,3 I2,4

W2,2

O0,0 O0,1 O0,2 O0,3

2 I2,3 I2,4 I2,5

Input Weight Output PE Array



Co-Design with DeepPhi
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MAC Unit
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Added Material



102Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices, Yu-Hsin Chen et al., IEEE JOURNAL ON EMERGING AND SELECTED TOPICS 
IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

EyeRiss V2: Flexible NoC, multiple forms of data re-use



Enables Row Stationary data flow

103“DNN Accelerator Architectures”, ISCA tutorial 2017, J. Emer, V. Sze, YH Chen

• Hardware unrolling such that each 
PE gets a particular filter row / input 
row combination.

• RS+ extends this to include batch & 
channel dimensions for increased 
parallelism, but requires larger RF at 
each PE.

• Larger RFs, i.e. entire row ideally for 
RS, multiple rows time multiple 
channels for RS+.



Input feature maps re-used diagonally

104

“DNN Accelerator 
Architectures”, ISCA tutorial 
2017, J. Emer, V. Sze, YH Chen

• Ifmap rows are re-
used diagonally.

• But, requires large 
RF per PE.


