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Abstract

Serving prediction pipelines spanning multiple models
and hardware accelerators is a key challenge in production
machine learning. Optimally configuring these pipelines
to meet tight end-to-end latency goals is complicated by
the interaction between model batch size, the choice of
hardware accelerator, and variation in the query arrival
process.

In this paper we introduce InferLine, a system which
provisions and executes ML prediction pipelines sub-
ject to end-to-end latency constraints by proactively op-
timizing and reactively controlling per-model configura-
tions in a fine-grained fashion. InferLine leverages auto-
mated offline profiling and performance characterization
to construct a cost-minimizing initial configuration and
then introduces a reactive planner to adjust the configu-
ration in response to changes in the query arrival process.
We demonstrate that InferLine outperforms existing ap-
proaches by up to 7.6x in cost while achieving up to 34.5x
lower latency SLO miss rate on realistic workloads and
generalizes across state-of-the-art model serving frame-
works.

1 Introduction

Serving predictions from trained machine learning mod-
els is emerging as a dominant challenge in production
machine learning. Increasingly, pipelines of models and
data transformations [34, 5] spanning multiple hardware
accelerators are being deployed to deliver interactive ser-
vices (e.g., speech recognition [9], content filtering [44],
machine translation [1]). These computationally intensive
prediction pipelines must run continuously with a tight la-
tency budget and in response to stochastic and often bursty
query arrival processes.

This paper addresses the problem of how to opti-
mally allocate and configure complex prediction pipelines
with tight end-to-end latency constraints at low cost un-
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Figure 1: InferLine System Overview

der bursty and unpredictable workloads. Addressing this
problem requires addressing two key challenges.

Complex Configuration Space. The optimal configu-
ration for a model requires choosing a hardware accelera-
tor (e.g., CPU, GPUs, and TPUs) and query batch size to
balance latency against throughput and cost. Larger batch
sizes can improve throughput and reduce the number of
costly hardware accelerators needed for a given workload
but come at the cost of increased query latency. These
configuration decisions are complicated by the combi-
natorial interaction between each stage in a prediction
pipeline and the need to meet end-to-end latency service
level objectives (SLOs).

Workload Dependence. Variation in the query arrival
process can change the cost optimal configuration for the
end-to-end pipeline. A system that has been aggressively
tuned to minimize cost under the assumption of a uniform
arrival process can destabilize under realistic bursty work-
loads (as in Fig. 13(a)) resulting in missed latency dead-
lines. Moreover, previously cost-optimal configurations
become under- or over-provisioned as workloads evolve
over time (as in Fig. 9).

In this paper we propose InferLine, a high-performance
system for provisioning and serving heterogeneous pre-
diction pipelines with strict end-to-end latency constraints
(see Fig. 1). InferLine combines a proactive planner that
explores the full configuration space offline to minimize
cost with a reactive scaling controller that reconfigures the
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pipeline’s replication factors online to maintain latency
SLOs in response to changing workloads. While a reactive
system can react to rapid changes in workloads to ensure
SLOs, it cannot explore the combinatorial configuration
space efficiently to minimize costs. Conversely, an offline
proactive system can afford to explore the configuration
space to find an optimal configuration for a given work-
load, but cannot afford to re-run the offline planner and
migrate the pipeline to a new configuration in response to
rapid workload changes.

One key enabling assumption in InferLine is that the
complex performance characteristics of individual models
can be accurately profiled offline using readily available
training data and composed to accurately estimate end-
to-end system performance. InferLine profiles each stage
in the pipeline individually and uses these profiles and a
discrete event simulator to accurately estimate end-to-end
pipeline latency given hardware and batching configura-
tion parameters. The offline planner uses a hill-climbing
algorithm to find the cost-minimizing pipeline configura-
tion while using the simulator to ensure that it only con-
siders configurations that meet the latency objective. The
pipeline is then served with InferLine’s physical execution
engine, utilizing InferLine’s centralized batched queuing
system to ensure predictable queuing behavior. The on-
line reactive controller leverages traffic envelopes from
network calculus to capture the arrival process dynamics
across multiple time scales and determine when and how
to react to changes. As a consequence, the reactive con-
troller is able to maintain the latency SLO in the presence
of transient spikes and sustained variation in the query ar-
rival process.

In summary, the primary contribution of this paper
is the hybrid proactive-reactive architecture for cost-
efficient provisioning and serving of prediction pipelines
with end-to-end latency constraints. This architecture
builds on three technical contributions:

1. An accurate end-to-end latency estimation procedure
for prediction pipelines spanning multiple hardware
and model configurations.

2. A proactive pipeline optimizer that minimizes hard-
ware costs for a given arrival workload and end-to-
end latency constraints.

3. An online reactive controller algorithm that monitors
and scales each stage in the pipeline to maintain high
SLO attainment at low cost.

We evaluate InferLine across a range of pipelines us-
ing real ML models subjected to query traces spanning
multiple arrival distributions. We compare InferLine to
the state-of-the-art model serving baselines that (a) use
coarse-grain proactive configuration of the whole pipeline

as a unit (e.g., TensorFlow Serving [39], and (b) state-
of-the-art coarse-grain reactive mechanisms [14]. We find
that InferLine significantly outperforms the baselines by a
factor of up to 7.6X on cost, while exceeding two nines of
SLO attainment—the highest level of latency SLO attain-
ment achieved in our experiments.

2 Background and Motivation
Prediction pipelines combine multiple machine learning
models and data transformations to support complex pre-
diction tasks [35]. For instance, state-of-the-art visual
question answering services [2, 26] combine language
models with vision models to answer the question.

A prediction pipeline can be formally encoded as a
directed acyclic graph (DAG) where each vertex corre-
sponds to a model (e.g., a mapping from images to a list of
objects in the image) or some other more basic data trans-
formation (e.g., extracting key frames from a video) and
each edge represents a data flow. In this paper we study
several (Figure 2) representative prediction pipeline mo-
tifs.

The Image Processing pipeline consists of basic im-
age pre-processing (e.g., cropping and resizing) followed
by image classification using a deep neural network. The
Video Monitoring pipeline was inspired by [43] and uses
an object detection model to identify vehicles and people
and then performs subsequent analysis including vehicle
and person identification and license plate extraction on
any relevant images. The Social Media pipeline translates
and categorizes posts based on both text and linked im-
ages by combining computer vision models with multiple
stages of language model to identify the source language
and translate the post if necessary. Finally, the TF Cas-
cade pipeline combines fast and slow models, invoking
the slow model only when necessary.

In the Social Media, Video Monitoring, and TF Cas-
cade pipelines, a subset of models are invoked based on
the output of earlier models in the pipeline. This condi-
tional evaluation pattern appears in bandit algorithms [23,
4] used for model personalization as well as more general
cascaded prediction pipelines [27, 16, 3, 37].

In this work, we demonstrate that InferLine is able to
maintain latency constraints with P99 service level ob-
jectives (99% of query latencies must be below the con-
straint) at low cost, even under bursty and unpredictable
workloads.

2.1 Systems Challenges

Prediction pipelines present new challenges for the de-
sign and provisioning of inference serving systems. We
first discuss how the proliferation of specialized hard-
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Figure 2: Example Pipelines. We evaluate InferLine on four prediction pipelines that span a wide range of models, control flow, and input
characteristics.
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Figure 3: Example Model Profiles on K80 GPU. The preprocess
model has no internal parallelism and cannot utilize a GPU. Thus, it sees
no benefit from batching. Res152 (image classification) & TF-NMT(text
translation model) benefit from batching on a GPU but at the cost of in-
creased latency.

ware accelerators and the need to meet end-to-end la-
tency constraints leads to a combinatorially large con-
figuration space. We then discuss some of the complex-
ities of meeting tight latency SLOs under bursty stochas-
tic query loads. Finally, we contrast this work with ideas
from the data stream processing literature, which shares
some structural similarities but is targeted at fundamen-
tally different applications and performance goals.

Combinatorial Configuration Space Many machine
learning models can be computationally intensive with
substantial opportunities for parallelism. In some cases,
this parallelism can result in orders of magnitude improve-
ments in throughput and latency. For example, in our ex-
periments we found that TensorFlow can render predic-
tions for the relatively large ResNet152 neural network
at 0.6 queries per second (QPS) on a CPU and at 50.6
QPS on an NVIDIA Tesla K80 GPU, an 84x difference
in throughput (see Fig. 3). However, not all models bene-
fit equally from hardware accelerators. For example, sev-
eral widely used classical models (e.g., decision trees [8])
can be difficult to parallelize on GPUs, and often common
data transformations (e.g. text feature extraction) cannot
be efficiently computed on GPUs.

In many cases, to fully utilize the available par-
allel hardware, queries must be processed in batches
(e.g., ResNet152 required a batch size of 32 to maximize
throughput on the K80). However, processing queries in
a batch can also increase latency, as we see in Fig. 3. Be-
cause most hardware accelerators operate at vector level
parallelism, the first query in a batch is not returned until
the last query is completed. As a consequence, it is of-

ten necessary to set a maximum batch size to bound query
latency. However, the choice of the maximum batch size
depends on the hardware and model and affects the end-
to-end latency of the pipeline.

Finally, in heavy query load settings it is often neces-
sary to replicate individual operators in the pipeline to
provide the throughput demanded by the workload. As
we scale up pipelines through replication, each operator
scales differently, an effect that can be amplified by the
use of conditional control flow within a pipeline causing
some components to be queried more frequently than oth-
ers. Low cost configurations require fine-grained scaling
of each operator.

Allocating parallel hardware resources to a single
model presents a complex model dependent trade-off
space between cost, throughput, and latency. This trade-
off space grows exponentially with each model in a pre-
diction pipeline. Decisions made about the choice of hard-
ware, batching parameters, and replication factor at one
stage of the pipeline affect the set of feasible choices
at the other stages due to the need to meet end-to-end
latency constraints. For example, trading latency for in-
creased throughput on one model by increasing the batch
size reduces the latency budget of other models in the
pipeline and as a consequence the feasible hardware con-
figurations.

Queuing Delays Because prediction pipelines span
multiple hardware devices that run at different speeds and
batch sizes, buffering in the form of queues is needed be-
tween stages. However, queuing adds to the latency of the
system. Therefore queuing delays, which depend on the
query arrival process and system configuration, must be
considered during provisioning.

Stochastic and Unpredictable Workloads Prediction
serving systems must respond to bursty, stochastic query
streams. At a high-level these stochastic processes can be
characterized by their average arrival rate λ and their co-
efficient of variation, a dimensionless measure of variabil-
ity defined by CV = σ2

µ2 , where µ = 1
λ

and σ are the mean
and standard-deviation of the query inter-arrival time. Pro-
cesses with higher CV have higher variability and often
require additional over-provisioning to meet query latency
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objectives. However, over-provisioning an entire pipeline
on specialized hardware can be prohibitively expensive.
Therefore, it is critical to be able to identify and provision
the bottlenecks in a pipeline to accommodate the bursty
arrival process. Finally, as the workload changes, we need
mechanisms to quickly detect and re-provision individual
stages in the pipeline.

Comparison to Stream Processing Systems Many of
the challenges around configuring and scaling pipelines
have been studied in the context of generic data stream
processing systems [11, 33, 40, 36]. However, these sys-
tems focus their effort on supporting more traditional data
processing workloads, which include stateful aggregation
operators and support for a variety of windowing opera-
tions. As a result, the concept of per-query latency is of-
ten ill-defined in data pipelines, and instead these systems
tend to focus on maximizing throughput while avoiding
backpressure, with latency as a second order performance
goal (see §8).

3 System Design and Architecture
In this section, we provide a high-level overview of the
main system components in InferLine (Fig. 1). The sys-
tem can be decomposed into offline planning where a cost-
efficient initial pipeline configuration is selected (§4), and
online serving where the pipeline is hosted for serving
live production traffic and reactively scaled to maintain
latency SLOs and remain cost-efficient under changing
workloads (§5).

To deploy a new prediction pipeline in InferLine, de-
velopers provide a driver program, sample query trace
used for planning, and a latency service level objective.
The driver function interleaves application-specific code
with asynchronous RPC calls to models hosted in Infer-
Line. The sample trace is specified as a list of queries and
inter-arrival times, providing information about the distri-
bution of query content and pipeline behavior, as well as
expected arrival process dynamics.

Offline Planning: Offline planning begins by extract-
ing the pipeline’s dependency structure. Next, the Profiler
creates performance profiles of all the individual models
referenced by the driver program. A performance profile
captures model throughput as a function of hardware type
and maximum batch size. An entry in the model profile
is measured empirically by evaluating the model in iso-
lation in the given configuration using the queries in the
sample trace. The last step in offline planning is pipeline
configuration, which finds a cost-efficient initial pipeline
configuration subject to the end-to-end latency SLO and
the specified arrival process. The offline planner sets the

three control parameters for each model in the pipeline
using a globally-aware, cost-minimizing optimization al-
gorithm. The Planner uses the model profiles extracted by
the Profiler to select cost-minimizing steps in each itera-
tion while relying on the Estimator to check for latency
constraint violations.

Online Serving: Once planning is complete, the
pipeline is deployed to the Physical Execution Engine with
the planned configuration for live production serving. The
serving engine adopts a distributed microservice architec-
ture similar to [10, 39]. In addition, the engine interposes
a latency-aware batched queuing system to tightly con-
trol how queries are distributed among model replicas.
The queuing system both minimizes queue waiting time
and ensures that the Estimator can accurately simulate the
queuing process.

The Reactive Controller monitors the dynamic behavior
of the arrival process to adjust per-model replication fac-
tors and maintain high SLO attainment at low cost. The re-
active controller continuously monitors the current traffic
envelope [22] to detect deviations from the sample trace
traffic envelope at different timescales simultaneously. By
analyzing the timescale at which the deviation occurred,
the reactive controller is able to take appropriate mitigat-
ing action to ensure that SLOs are met without unneces-
sarily increasing cost.

3.1 Execution Model

Similar to [10, 18], the Physical Execution Engine adopts a
distributed microservice architecture, allowing models to
dictate their environment dependencies and enabling the
serving system to be distributed across a cluster of hetero-
geneous hardware.

To enable the estimator to accurately simulate the sys-
tem’s queuing behavior, the Physical Execution Engine
interposes a deadline-aware batched queuing system to
tightly control how queries are distributed among model
replicas. All requests to a model are placed in a cen-
tralized queue from which all replicas for that model
pull. To ensure that InferLine is always processing the
queries that will expire first, InferLine uses earliest dead-
line first (EDF) priority queues.

When a model replica is ready to process a new batch
of inputs, it requests a batch from the centralized queue
for that model. The size of the batch is bounded above by
the maximum batch size for the model as configured by
the Planner. By employing a pull-based queuing strategy
and imposing a maximum batch size, InferLine places an
upper bound on the time that a query will spend in the
model container itself after leaving the queue.
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4 Offline Planning
During offline planning, the Profiler, Estimator and Plan-
ner are used to estimate model performance characteris-
tics and optimally provision and configure the system for
a given sample workload and latency SLO. In this section,
we expand on each of these three components.

4.1 Profiler
The Profiler takes a pipeline driver and sample query trace
and extracts the logical pipeline structure. It then creates
performance profiles for each of the models in the pipeline
as a function of batch size and hardware.

Profiling begins with InferLine executing the sample
set of queries on the pipeline. This generates input data
for profiling each of the component models individu-
ally. We also track the frequency of queries visiting each
model. This frequency represents the conditional proba-
bility that a model will be queried given a query enter-
ing the pipeline, independent of the behavior of any other
models. We refer to this frequency as the scale factor, s,
of the model. The scale factor is used by the Estimator
to estimate the effects of conditional control flow on la-
tency (§4.2) and the Reactive Controller to make scaling
decisions ( §5.1).

The profiler captures model throughput as a function
of hardware type and maximum batch size to create per-
model performance profiles. An individual model config-
uration corresponds to a specific value for each of these
parameters as well as the model’s replication factor. Be-
cause the models scale horizontally, profiling a single
replica is sufficient.

4.2 Estimator
The Estimator is responsible for rapidly estimating the
end-to-end latency of a given pipeline configuration for
the sample query trace. It takes as input a pipeline config-
uration, the individual model profiles, and a sample trace
of the query workload, and returns accurate estimates of
the latency for each query in the trace. The Estimator is
implemented as a continuous-time, discrete-event simula-
tor [6], simulating the entire pipeline, including queuing
delays. The simulator maintains a global logical clock that
is advanced from one discrete event to the next with each
event triggering future events that are processed in tem-
poral order. Because the simulation only models discrete
events, we are able to faithfully simulate hours worth of
real-world traces in hundreds of milliseconds.

The estimator leverages the deterministic behavior of
the batched queuing system to accurately simulate queu-
ing behavior. It combines this with the model profile in-
formation which informs the simulator how long a model

Algorithm 1: Find an initial, feasible configuration

1 Function Initialize(pipeline, slo):
2 foreach model in pipeline do
3 model.batchsize = 1;
4 model.replicas = 1;
5 model.hw = BestHardware(model);

6 if ServiceTime(pipeline) ≤ slo then
7 return False;

8 else
9 while not Feasible(pipeline, slo) do

10 model = FindMinThru(pipeline);
11 model.replicas += 1;

12 return pipeline;

under a specific hardware configuration will take to pro-
cess a batch.

4.3 Planning Algorithm
At a high-level, the offline planning algorithm is an it-
erative constrained optimization procedure that greedily
minimizes cost while ensuring that the latency constraint
is satisfied. The algorithm can be divided into two phases.
In the first (Algorithm 1), it finds a feasible initial config-
uration that meets the latency SLO while ignoring cost.
In the second (Algorithm 2), the planner greedily modi-
fies the configuration to reduce the cost while using the
Estimator to identify and reject configurations that violate
the latency SLO. The algorithm converges when it can no
longer make any cost reducing modifications to the con-
figuration without violating the SLO.

Initialization (Algorithm 1): First, an initial latency-
minimizing configuration is constructed by setting the
batch size to 1 using the lowest latency hardware avail-
able for each model (lines 2-5). If the service time under
this configuration (the sum of the processing latencies of
all the models on the longest path through the pipeline
DAG) is greater than the SLO then the latency constraint
is infeasible given the available hardware and the plan-
ner terminates (lines 6-7). The Planner then iteratively
determines the throughput bottleneck and increases that
model’s replication factor until it is no longer the bottle-
neck (lines 9-11).

Cost-Minimization (Algorithm 2): In each iteration
of the cost-minimizing process, the Planner considers
three candidate modifications for each model: increase the
batch size, decrease the replication factor, or downgrade
the hardware (line 5), searching for the modification that
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Algorithm 2: Find the min-cost configuration

1 Function MinimizeCost(pipeline, slo):
2 pipeline = Initialize(pipeline, slo);
3 if pipeline == False then
4 return False;

5 actions = [IncreaseBatch,
RemoveReplica, DowngradeHW ];

6 repeat
7 best = NULL;
8 foreach model in pipeline do
9 foreach action in actions do

10 new = action(model, pipeline);
11 if Feasible(new) then
12 if new.cost < best.cost then
13 best = new;

14 if best is not NULL then
15 pipeline = best;

16 until best == NULL;
17 return pipeline;

maximally decreases cost while still meeting the latency
SLO. It evaluates each modification on each model in the
pipeline (lines 8-10), discarding candidates that violate
the latency SLO according to the Estimator (line 11).

The batch size only affects throughput and does not
affect cost. It will therefore only be the cost-minimizing
modification if the other two would create infeasible con-
figurations. Increasing the batch size does increase la-
tency. The batch size is increased by factors of two as the
throughput improvements from larger batch sizes have di-
minishing returns (observe Fig. 3). In contrast, decreasing
the replication factor directly reduces cost. Removing
replicas is feasible when a previous iteration of the algo-
rithm has increased the batch size for a model, increasing
the per-replica throughput.

Downgrading hardware is more involved than the
other two actions, as the batch size and replication factor
for the model must be re-evaluated to account for the dif-
fering batching behavior of the new hardware. It is often
necessary to reduce the batch size and increase replication
factor to find a feasible pipeline configuration. However,
the reduction in hardware price sometimes compensates
for the increased replication factor. For example, in Fig. 8,
the steep decrease in cost when moving from an SLO of
0.1 to 0.15 can be largely attributed to downgrading the re-
source allocation of a language identification model from
a GPU to a CPU.

To evaluate a hardware downgrade, we first freeze the
configurations of the other models in the pipeline and per-
form the initialization stage for that model using the next

cheapest hardware. The planner then performs a localized
version of the cost-minimizing algorithm to find the batch
size and replication factor for the model on the newly
downgraded resource allocation needed to reduce the cost
of the previous configuration. If there is no cost reducing
feasible configuration the hardware downgrade action is
rejected.

At the point of termination, the planner provides the
following guarantees: (1) If there is a configuration that
meets the latency SLO, then the planner will return a valid
configuration. (2) There is no single action that can be
taken to reduce cost without violating the SLO.

5 Online Serving
During online serving, the Physical Execution Engine pro-
visions model container resources according to the con-
figuration produced by the Planner and hosts pipelines
for serving live production traffic. The Reactive Controller
monitors and detects unexpected changes in the arrival
process and reactively adjusts the configuration to main-
tain the latency SLO.

5.1 Reactive Controller

InferLine’s offline planner finds an efficient, low-cost con-
figuration that is guaranteed to meet the provided la-
tency objective. However, this guarantee only holds for
the sample workload provided during offline planning.
Real workloads evolve over time, changing in both ar-
rival rate (change in λ ) as well as becoming more or less
bursty (change in CV). When the serving workload devi-
ates from the sample, the original configuration will either
suffer from queue buildups leading to SLO misses or be
over-provisioned and incur unnecessary costs. The Reac-
tive Controller both detects these changes as they occur
and takes the appropriate scaling action to maintain both
the latency constraint and cost-efficiency of objective.

In order to maintain P99 latency SLOs, the reactive
controller must be able to detect changes in the arrival
workload dynamics across multiple timescales simultane-
ously. The proactive planner guarantees that the pipeline
is adequately provisioned for the sample trace. The re-
active controller’s detection mechanism detects when the
current request workload exceeds the sample workload.
To do this, we draw on the idea of traffic envelopes from
network calculus [22] to characterize the workloads.

To create a traffic envelope for a workload, we mea-
sure the maximum arrival rate for several different sized
windows. For a given window size ∆Ti measured in sec-
onds, we measure qi as the maximum number of queries
that arrived within ∆Ti seconds of each other at any point
in the workload. The maximum arrival rate is then sim-
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ply ri =
qi

∆Ti
. The reactive controller computes these rates

across exponentially increasing windows. The smallest
window size used is the service time of the pipeline and
the windows double in size until a max of 60 seconds.
The rates computed with smaller windows are a measure
of the burstiness of the arrival dynamics, while the rates
with larger windows approach the mean arrival rate λ of
the workload. By measuring across many different win-
dows we are able to achieve a fine-granularity character-
ization of an arrival workload that can detect changes in
both burstiness and arrival rate.

Initialization Offline, the planner constructs the traffic
envelope for the sample arrival trace. The planner also
computes the max-provisioning ratio for each model ρm =
λ

µm
, the ratio of the arrival rate to the maximum through-

put of the model in its current configuration. While the
max-provisioning ratio is not a fundamental property of
the pipeline, it provides a useful heuristic to measure how
much “slack” the planner has determined is needed for
this model to be able to absorb bursts and still meet the
SLO. The planner then provides the reactive controller
with the traffic envelope for the sample trace, the max-
provisioning ratio ρm and single replica throughput µm for
each model in the pipeline.

In the interactive applications that InferLine targets,
failing to scale up the pipeline in the case of an increased
workload results in missed latency objectives and de-
graded quality of service, while failing to scale down the
pipeline in the case of decreased workload only results in
slightly higher costs. We therefore handle the two situa-
tions separately.

Scaling Up The controller continuously computes the
traffic envelope for the current arrival workload. This
yields a set of arrival rates for the current workload that
can be directly compared to those of the sample workload.
If any of the current rates exceed their corresponding sam-
ple trace rates, the pipeline is underprovisioned and the
procedure for adding replicas is triggered.

At this point, not only has the reactive controller de-
tected that rescaling may be necessary, it also knows what
arrival rate it needs to reprovision the pipeline for: the
current workload rate rmax that triggered rescaling. If the
overall λ of the workload has not changed but it has be-
come burstier, this will be a rate computed with a smaller
∆Ti, and if the burstiness of the workload is stationary but
the λ has increased, this will be a rate with a larger ∆Ti.
In the case that multiple rates have exceeded their sample
trace counterpart, we take the max rate.

To determine how to reprovision the pipeline, the con-
troller computes the number of replicas needed for each
model to process rmax as km =

⌈
rmaxsm
µmρm

⌉
. sm is the scale

factor for model m, which prevents over-provisioning for
a model that only receives a portion of the queries due
to conditional logic. ρm is the max-provisioning ratio,
which ensures enough slack remains in the model to han-
dle bursts. The reactive controller then adds the additional
replicas needed for any models that are detected to be un-
derprovisioned.

Scaling Down InferLine takes a conservative approach
to scaling down the pipeline to prevent unnecessary con-
figuration oscillation which can cause SLO misses. Draw-
ing on the work in [14], the reactive controller waits for
a period of time after any configuration changes to allow
the system to stabilize before considering any down scal-
ing actions. InferLine uses a delay of 15 seconds (3x the
5 second activation time of spinning up new replicas), but
the precise value only needs to provide enough time for
the pipeline to stabilize. Once this delay has elapsed, the
reactive controller computes the max request rate λnew that
has been observed over the last 30 seconds, using 5 second
windows.

The system computes the number of replicas needed for
each model to process λnew similarly to the procedure for
scaling up, setting km =

⌈
λnewsm
µmρp

⌉
. In contrast to scaling

up, when scaling down we use the minimum max provi-
sioning factor in the pipeline ρp = min(ρm∀m ∈models).
Because the max provisioning factor is a heuristic that
has some dependence on the sample trace, using the min
across the pipeline provides a more conservative down-
scaling algorithm and ensures the reactive controller is not
overly aggressive in removing replicas.

6 Experimental Setup
To evaluate InferLine we constructed four prediction
pipelines (Fig. 2) representing common application do-
mains and using models trained in a variety of machine
learning frameworks [29, 38, 30, 28]. We configure each
pipeline with varying input arrival processes and latency
budgets. We evaluate the latency SLO attainment and
pipeline cost under a range of both synthetic and real
world workload traces.

Coarse-Grained Baseline Comparison Current pre-
diction serving systems do not provide first-class sup-
port for prediction pipelines with end-to-end latency con-
straints. Instead, the individual pipeline components are
each deployed as a separate microservice to a prediction
serving system such as [39, 18, 10] and a pipeline is man-
ually constructed by individual calls to each service. Any
performance tuning for end-to-end latency or cost treats
the entire pipeline as a single black-box service and tunes
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it as a whole. We therefore use this same approach as
our baseline for comparison. Throughout the experimental
evaluation we refer to this as the Coarse-Grained base-
line. We deploy both the InferLine and coarse-grained
pipelines on the Physical Execution Engine to eliminate
performance variability caused by different execution en-
vironments.

We use the techniques proposed in [14] for both provi-
sioning and scaling the coarse-grained pipelines as a base-
line for comparison. We profile the entire pipeline as a sin-
gle black box to identify the single maximum batch size
capable of meeting the SLO, in contrast to InferLine’s per-
model profiling. The pipeline is then replicated as a single
unit to achieve the required throughput as measured on
the same sample arrival trace used by the InferLine Plan-
ner. We evaluate two strategies for determining required
throughput. CG-Mean uses the mean request rate com-
puted over the arrival trace while CG-Peak determines the
peak request rate in the trace computed using a sliding
window of size equal to the SLO. The coarse-grained re-
active controller scales the number of pipeline replicas us-
ing the scaling algorithm described in [14].

Physical Execution Environment We ran all exper-
iments in a distributed cluster on Amazon EC2. The
pipeline driver client was deployed on an m4.16xlarge
instance which has 64 vCPUs, 256 GiB of memory, and
25Gbps networking across two NUMA zones. We used
large client instance types to ensure that network band-
width from the client is not a bottleneck. The models were
deployed to a cluster of up to 16 p2.8xlarge GPU in-
stances. This instance type has 8 NVIDIA K80 GPUs, 32
vCPUs, 488.0 GiB of memory and 10Gbps networking all
within a single NUMA zone. All instances were running
Ubuntu 16.04 with Linux Kernel version 4.4.0.

CPU costs were computed by dividing the total hourly
cost of an instance by the number of CPUs. GPU costs
were computed by taking the difference between a GPU
instance and its equivalent non-GPU instance (all other
hardware matches), then dividing by the number of GPUs.
This cost model provides consistent prices across different
GPU generations and instance sizes.

Workload Setup We generated synthetic traces by sam-
pling inter-arrival times from a Gamma distribution with
differing mean µ to vary the request rate, and coefficient
of variation CV to vary the workload burstiness. When
reporting performance on a specific workload as charac-
terized by λ = 1

µ
and CV, a trace for that workload was

generated once and reused across all comparison points
to provide a more direct comparison of performance. We
generated separate traces with the same performance char-
acteristics for profiling and evaluation to avoid overfitting
to the sample trace.

To generate synthetic time-varying workloads, we
evolve the workload generating function between differ-
ent Gamma distributions over a specified period of time,
the transition time. This allows us to generate workloads
that vary in mean throughput, CV, or both, and thus eval-
uate the performance of the Reactive Controller under a
wide range of conditions.

In Fig. 5 we evaluate InferLine on traces derived from
real workloads studied in the AutoScale system [14].
These workloads only report the average request rate
each minute for an hour, rather than providing the full
trace of query inter-arrival times. To derive traces from
these workloads, we followed the approach used by [14]
to re-scale the max throughput to 300 QPS, the maxi-
mum throughput supported by the coarse-grained baseline
pipelines on a 16 node cluster. We then iterated through
each of the mean request rates in the workload and sam-
ple from a Gamma distribution with CV 1.0 for 30 sec-
onds. We use the first 25% of the trace as the sample for
offline planning, and the remaining 75% for evaluation
(see Fig. 5).

7 Experimental Evaluation
In this section we evaluate InferLine’s end-to-end per-
formance. We start with an end-to-end evaluation that
compares InferLine’s hybrid proactive-reactive approach
to the coarse-grained baseline approaches in use today
(§7.1). We demonstrate that InferLine outperforms the
baselines on both latency SLO attainment and cost on
both synthetic and real-world derived workloads. We then
perform a sensitivity analysis through a series of micro-
benchmarks aimed at gauging InferLine’s robustness to
the dynamics of the arrival process (§7.2). We find that
InferLine is robust to unplanned changes in the arrival
rate as well as unexpected inter-arrival bursts. We then
perform an ablation study to show that the system ben-
efits from both (a) offline proactive planning and (b)
online reactive control (§7.3). We conclude by showing
that InferLine generalizes to other prediction serving sys-
tems (§7.4).

7.1 End-to-end Evaluation
We first establish that InferLine’s proactive and reac-
tive components outperform state of the art coarse-grain
pipeline-level configuration alternatives in an end-to-end
evaluation (§7.1). InferLine is able to achieve the same
throughput at significantly lower cost, while maintaining
zero or close to zero latency SLO miss rate.

Proactive control In the absence of a globally reason-
ing planner (§4.3), the options are limited to either (a)
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provisioning for the peak (CG Peak), or (b) provisioning
for the mean (CG Mean). We compare InferLine to these
two end-points of the configuration continuum across 2
pipelines (Fig. 4). InferLine meets latency SLOs at the
lowest cost. CG Peak meets SLOs, but at much higher
cost, particularly for burstier workloads. And CG Mean
is not provisioned to handle bursty arrivals and results
in high SLO miss rates. This result is exacerbated by
higher burstiness and lower SLO. Furthermore, the In-
ferLine planner consistently finds lower cost configura-
tions than both coarse-grained provisioning strategies and
is able to achieve up to a 7.6x reduction in cost by mini-
mizing pipeline imbalance.

Reactive controller InferLine is able to (1) maintain a
negligible SLO miss rate, and (2) and reduce cost by up to
4.2x when compared to the state-of-the-art approach [14]
when handling unexpected changes in the arrival rate and
burstiness. In Fig. 5 we evaluate the Social Media pipeline
on 2 traces derived from real workloads studied in [14].
InferLine finds a 5x cheaper initial configuration than
the coarse-grained provisioning (Fig. 5(a)). Both systems
achieve near-zero SLO miss rates throughout most of the
workload, and when the big spike occurs we observe that
the InferLine’s reactive controller quickly reacts by scal-
ing up the pipeline as described in §5.1. As soon as the
spike dissipates, InferLine scales the pipeline down to
maintain a cost-efficient configuration. In contrast, the
coarse-grained reactive controller operates much slower
and, therefore, is ill-suited for reacting to rapid changes in
the request rate of the arrival process.

In Fig. 5(b), InferLine scales up the pipeline smoothly
and recovers rapidly from an instantaneous spike, un-
like the CG baseline. Furthermore, as the workload drops
quickly after 1000 seconds, InferLine rapidly responds
by shutting down replicas to reduce cluster cost. In the
end, InferLine and the coarse-grained pipelines converge
to similar costs due to the low terminal request rate which
hides the effects of pipeline imbalance, but InferLine has
a 34.5x lower SLO miss rate than the baseline.

We further evaluate the differences between the Infer-
Line and coarse-grained reactive controllers on a set of
synthetic workloads with increasing arrival rates in Fig. 6.
We observe that the traffic envelope monitoring described
in §5.1 enables InferLine to detect the increase in arrival
rate earlier and therefore scale up the pipeline sooner to
maintain a low SLO miss rate. In contrast, the coarse-
grained reactive controller only reacts to the increase in
request rate at the point when the pipeline is overloaded
and therefore reacts when the pipeline is already in an in-
feasible configuration. The effect of this delayed reaction
is compounded by the longer provisioning time needed to
replicate an entire pipeline, resulting in the coarse-grained
baselines being unable to recover before the experiment

ends. They will eventually recover as we see in Fig. 5 but
only after suffering a period of 100% SLO miss rate.

7.2 Sensitivity Analysis

We evaluate the sensitivity and robustness of the Planner
and the Reactive Controller. We analyze the accuracy of
the Estimator in estimating tail latencies from the sample
trace and the proactive Planner’s response to varying ar-
rival rates, latency SLOs, and burstiness factors. For the
reactive controller, we analyze InferLine’s sensitivity to
changes in the arrival process.

Proactive Optimizer Sensitivity We first evaluate how
closely the latency distribution produced by the estima-
tor reflects the latency distribution of the running system
in Fig. 7. We observe that the estimated and measured P99
latencies are close across all four experiments. Further, we
see that the estimator has the critical property of ensuring
that the P99 latency of feasible configurations is below the
latency objective. The near-zero SLO miss rates in Fig. 4
are a further demonstration of the estimator’s ability to
detect infeasible configurations.

Next, we evaluate the Planner’s performance under
varying load, burstiness, and end-to-end latency SLOs.
We observe three important trends in Fig. 8. First, increas-
ing burstiness (from CV=1 to CV=4) requires more costly
configurations as the optimizer provisions more capacity
to ensure that transient bursts do not cause the queues to
diverge more than the SLO allows. We see this trend over
a range of different arrival throughputs. We also see the
cost gap narrowing between CV=1 and CV=4 as the SLO
increases. As the SLO increases, additional slack in the
deadline can absorb more variability in the arrival process.
Second, the cost decreases as a function of the latency
SLO. While this downward cost trend generally holds, the
optimizer occasionally finds sub-optimal configurations,
as it makes locally optimal decisions to change a resource
assignment. Third, the cost increases as a function of ex-
pected arrival rate.

Reactive Controller Sensitivity A common type of un-
predictable behavior is a change in the arrival rate. We
compare the behavior of the system with and without its
reactive controller enabled as the arrival process changes
from the provisioned 150qps to 250qps. We vary the
rate of arrival throughput change τ . InferLine is able to
maintain the SLO miss rate close to zero while matching
or beating two alternatives: (a) a proactive-only planner
given oracular knowledge of the whole arrival trace a pri-
ori, and (b) a proactive-only planner that doesn’t respond
to change. Indeed, in Fig. 9, InferLine continues to meet
the SLO, and increases the cost of the allocation only for
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Figure 4: Comparison of InferLine’s proactive planning to coarse-grained baselines (150ms SLO) InferLine outperforms both baselines,
consistently providing both the lowest cost configuration and highest SLO attainment (lowest miss rate). CG-Peak was not evaluated on λ > 300
because the configurations exceeded cluster capacity.

the duration of the unexpected burst. The oracle proac-
tive planner with full knowledge of the workload is able
to find the cheapest configuration at the peak because it is
equipped with the ability to tune all three control knobs.
But it pays this cost for the entire duration of the work-
load. The proactive-only planner without oracular knowl-
edge starts missing latency SLOs as soon as the ingest rate
increases.

A less obvious but potentially debilitating change in
the arrival process is an increase in its burstiness, even
while maintaining the same mean arrival rate. This type
of arrival process change is also harder to detect, as the
common practice is to look at moments of the arrival rate
distribution, such as the mean or 99th percentile latency.
In Fig. 10 we show that InferLine is able to detect devia-
tion from expected arrival burstiness and react to meet the
latency SLOs.

7.3 Attribution of Benefit

InferLine benefits from (a) offline proactive planning and
(b) online reactive scaling. Thus, we evaluate the follow-
ing comparison points: baseline coarse grain proactive
(Baseline Pro), InferLine proactive (InferLine Pro), In-
ferLine proactive with baseline reactive (InferLine Pro +
Baseline React), and InferLine proactive with InferLine
reactive (InferLine Pro + InferLine React), building up
from pipeline-level configuration to the full feature set In-
ferLine provides. InferLine’s proactive planning reduces
the cost of the initial pipeline configuration by more than
3x (Fig. 11), but starts missing latency SLOs when the
request rate increases. Adding the reactive controller (In-
ferLine Pro + Baseline React) adapts the configuration,
but too late to completely avoid SLO misses, although
it recovers faster than proactive-only options. The Infer-
Line reactive controller has the highest SLO attainment
and is the only point that maintains the SLO across the
entirety of the workload. This emphasizes the need for
both the Planner for initial cost-efficient pipeline config-
uration, and the Reactive Controller to promptly and cost-
efficiently adapt.

7.4 Extension to TF-Serving
The contributions of this work generalize to different
physical serving engines. Here we layer the InferLine
planner and queuing system on top of Tensorflow Serv-
ing (TFS)—a state-of-the-art model serving framework
developed at Google. In this experiment, we achieve the
same low latency SLO miss rate as InferLine. This in-
dicates the generality of the planning algorithms used
to configure individual models in InferLine. In Fig. 12
we show both the SLO attainment rates and the cost of
pipeline provisioning when running InferLine on our in-
house physical execution engine and on TFS. The cost
of the latter is slightly worse due to the additional over-
head of TFS RPC serialization. TFS uses gRPC [15] for
communication which requires an additional copy of the
inputs and outputs of a model, while our serving engine
uses an optimized zero-copy RPC implementation.

8 Related Work
A number of recent efforts study the design of generic
prediction serving systems [10, 5, 39]. TensorFlow Serv-
ing [39] is a commercial grade prediction serving system
primarily designed to support prediction pipelines imple-
mented using TensorFlow [38]. Unlike InferLine, Tensor-
Flow Serving adopts a monolithic design with the pipeline
orchestration living within a single process. Thus, Ten-
sorFlow Serving is able to introduce performance opti-
mizations like operator fusion across computation stages
to reduce coordination between the CPU and GPU at the
expense of fine-grain, independent model configuration.
However, TensorFlow-Serving does not support latency
SLO constraints.

Clipper [10] adopts a more distributed design, similar
to InferLine. Like InferLine, each model in Clipper is
individually managed, configured, and deployed in sep-
arate containers. However, Clipper does not directly sup-
port prediction pipelines or reasoning about latency dead-
lines across models. It also does not dynamically scale to
changing workloads.

There are several systems that have explored offline
pipeline configuration for data pipelines [19, 7]. However,
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Figure 5: Performance comparison of the reactive control algorithms on traces derived from real workloads. These are the same workloads
evaluated in [14] which forms the basis for the coarse-grained baseline. Both workloads were evaluated on the Social Media pipeline with a 150ms
SLO. In Fig. 5(a), InferLine maintains a 99.8% SLO attainment overall at a total cost of $8.50, while the coarse-grained baseline has a 93.7% SLO
attainment at a cost of $36.30. In Fig. 5(b), InferLine has a 99.3% SLO attainment at a cost of $15.27, while the coarse-grained baseline has a 75.8%
SLO attainment at a cost of $24.63, a 34.5x lower SLO miss rate.

these focus on tuning generic data streaming pipelines.
As a result, these systems use black box optimization
techniques that require running the pipeline end-to-end to
measure performance under each candidate configuration.
InferLine instead leverages accurate offline performance
profiles of each stage and a simulation-based performance
estimator to rapidly explore the configuration space of-
fline, without running the pipeline end-to-end using clus-
ter resources.

Dynamic pipeline scaling is a critical feature in data
streaming systems to avoid backpressure and overprovi-
sioning. Systems such as [21, 12] are throughput-oriented
with the goal of maintaining a well-provisioned system
under changes in the request rate. The DS2 autoscaler
in [21] estimates true processing rates for each opera-
tor in the pipeline online by instrumenting the underly-
ing streaming system. They use these processing rates in
conjunction with the pipeline topology structure to esti-
mate the optimal degree of parallelism for all operators at
once. In contrast, [12] identifies a single bottleneck stage

at a time, taking several steps to converge from an under-
provisioned to a well-provisioned system. Both systems
provision for the average ingest rate and ignore any bursti-
ness in the workload which can transiently overload the
system. In contrast, InferLine maintains a traffic envelope
of the request workload and uses this to ensure that the
pipeline is well-provisioned for the peak workload across
several timescales simultaneously, including any bursti-
ness (see §5.1).

In Fig. 13 we evaluate the performance of DS2 [21],
which is an open source, state-of-the-art autoscaling
streaming system, on its ability to meet latency SLOs un-
der a variety of workloads. We deployed the Image Pro-
cessing pipeline (Fig. 2(a)) in DS2 running on Apache
Flink [11] without any batching on a single m4.16xlarge
AWS EC2 instance. As we can see in Fig. 13(a), provi-
sioning for the average request rate is sufficient to meet
latency objectives under uniform workloads. But as CV
increases to 4.0, the latency SLO miss rate increases. Part
of the reason for this increase is that bursts in the re-
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Figure 6: Performance comparison of the reactive control algorithms on synthetic traces with increasing arrival rates. We observe that
InferLine outperforms both coarse-grained baselines on cost while maintaining a near-zero SLO miss rate for the entire duration of the trace.
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Figure 7: Comparison of estimated and measured tail latencies. We
compare the latency distributions produced by the Estimator on a work-
load with λ of 150 qps and CV of 4, observing that in all cases the
estimated and measured latencies are both close to each other and below
the latency SLO.

quest rate transiently overload the system, causing queries
to be delayed in queues until the system recovers. In
addition, DS2 occasionally misinterprets transient bursts
as changes in the overall request rate and scaled up the
pipeline, requiring Apache Flink to halt processing and
save state before migrating to the new configuration.

We observe this same degradation under non-stationary
workloads in Fig. 13(b) where we measure P99 latency
over time for a workload that starts out with a CV of 1.0
and a request rate of 50 qps, then increases the request
rate to 100 qps over 60 seconds. It takes nearly 300 sec-
onds after the request rate starts to increase for the system
to re-stabilize and the queues to fully drain from the re-
peated pipeline re-configurations. In contrast, as we see
in Fig. 9 and Fig. 10, InferLine is capable of maintaining
SLOs under a variety of changes to the workload dynam-
ics. Furthermore, because the operators are all stateless in
InferLine, the Physical Execution Engine does not need to
fully stop processing when scaling but can instead incre-
mentally add and remove replicas. There is ongoing work
such as [17] to address live state migration in streaming
systems but Apache Flink does not currently support any
such mechanisms.

A few streaming autoscaling systems consider latency-
oriented performance goals [13, 24]. The closest work
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Figure 8: Planner sensitivity: Variation in configuration cost across
different arrival processes and latency SLOs for the Social Media
pipeline. We observe that 1) cost decreases as SLO increases, 2) burstier
workloads require higher cost configurations, and 3) cost increases as λ

increases.

to InferLine, [24] from Lohrmann et al. as part of their
work on Nephele [25], treats each stage in a pipeline as
a single-server queuing system and uses queuing theory
to estimate the total queue waiting time of a job under
different degrees of parallelism. They leverage this queu-
ing model to greedily increase the parallelism of the stage
with the highest queue waiting time until they can meet
the latency SLO. However, their queuing model only con-
siders average latency, and provides no guarantees about
the behavior of tail latencies. InferLine’s reactive con-
troller provisions for worst-case latencies.

VideoStorm [43] explores the design of a streaming
video processing system that adopts a distributed design
with pipeline operators provisioned across compute nodes
and explores the combinatorial search space of hardware
and model configurations. VideoStorm jointly optimizes
for quality and lag and does not provide latency guaran-
tees.

A large body of prior work leverages profiling for
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Figure 9: Sensitivity to arrival rate changes (Social Media
pipeline). We observe that the Reactive Controller quickly detects and
scales up the pipeline in response to increases in λ . Further, the reac-
tive controller finds cost-efficient configurations that either match or are
close to those found by the Planner given oracular knowledge of the
trace.
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Figure 10: Sensitivity to arrival burstiness changes (Social Media
Pipeline). We observe that the network-calculus based detection mech-
anism of the Reactive Controller detects changes in workload burstiness
and takes the appropriate scaling action to maintain a near-zero SLO
miss rate.

scheduling, including recent work on workflow-aware
scheduling [32, 20]. In contrast, InferLine exploits the
compute-intensive and side-effect free nature of ML mod-
els to estimate end-to-end pipeline performance based on
individual model profiles.

Autoscale [14] offers a comprehensive literature review
of a body of work aimed at automatically scaling the num-
ber of servers reactively, subject to changing load in the
context of web services. Autoscale works well for single
model replication without batching as it assumes bit-at-
a-time instead of batch-at-a-time query processing. How-
ever, we find that the InferLine fine-grained reactive con-
troller far outperforms the coarse-grain baselines that use
the Autoscale scaling mechanism on both latency SLO at-
tainment and cost (§7.1).

9 Limitations and Generality

One limitation of the offline planner is its assumption
that the available hardware has a total ordering of latency
across all batch sizes. As specialized accelerators for ML
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Figure 11: Attribution of benefit between the InferLine proactive
and reactive components on the Image Processing pipeline. We ob-
serve that the Planner finds a more than 3x cheaper configuration than
the baseline. We also observe that InferLine’s Reactive Controller is the
only combination that maintains the latency SLO throughout the trace.
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Figure 12: Comparison of InferLine’s planner running on our
serving engine and on TensorFlow-Serving on the TF Cascade
pipeline.

continue to proliferate, there may be settings where one
accelerator is slower than another at smaller batch sizes
but faster at larger batch sizes. This would require modifi-
cations to the hardware downgrade portion of the planning
algorithm to account for this batch-size dependent order-
ing.

A second limitation is the assumption that the infer-
ence latency of ML models is independent of their in-
put. There are emerging classes of machine learning tasks
where state-of-the-art models have inference latency that
varies based on the input. For example, object detection
models [31, 30] will take longer to make predictions on
images with many objects in them. Similarly, the infer-
ence latency of machine translation models [42, 41] in-
creases with the length of the document. One simple way
of modifying InferLine to account for this is to measure
this latency distribution during profiling based on the vari-
ability in the sample queries and use the tail of the distri-
bution (e.g., 99% or k standard deviations above the mean)
as the processing time in the estimator, which will lead to
feasible but more costly configurations.

Finally, while we only study machine learning predic-
tion pipelines in this work, there may be other classes of
applications that have similarly predictable performance
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Figure 13: Performance of DS2 on Bursty and Stochastic Work-
loads. We observe that DS2 is unable to maintain the latency SLO under
(a) bursty workloads, and (b) workloads with increasing request rate.

and can therefore be profiled. We leave the extension of
InferLine to applications beyond machine learning as fu-
ture work.

10 Conclusion
Configuring and serving sophisticated prediction
pipelines across heterogeneous parallel hardware while
minimizing cost and ensuring SLO attainment presents
categorically new challenges in system design. In this
paper we introduce InferLine–a system which efficiently
provisions and executes prediction pipelines subject to
end-to-end latency constraints by proactively optimizing
and reactively controlling per-model configurations. We
leverage the predictable performance scaling character-
istics of machine learning models to enable accurate
end-to-end performance estimation and proactive cost
minimizing pipeline configuration. In addition, by ex-
ploiting the model profiles and network-calculus based
detection mechanism we are able to reactively adapt
pipeline configurations to accommodate changes in the
query workload. InferLine builds on three main contri-
bution: (a) the end-to-end latency estimation procedure
for prediction pipelines spanning multiple hardware and
model configurations (§4.1 and §4.2), (b) the offline
proactive planning algorithm for pipeline configuration
(§4.3), and (c) the online robust reactive controller
algorithm to adapt to unexpected changes in load (§5.1),
to achieve the combined effect of cost-efficient het-
erogeneous prediction pipelines that can be deployed
to serve applications with a range of tight end-to-end
latency objectives. As a result, we achieve up to 7.6x
improvement in cost and 34.5x improvement in SLO
attainment for the same throughput and latency objectives
over state-of-the-art alternatives.
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