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DNNSs... now ubiquitous!
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But DNN design is getting more complex
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What is the Desigh Automation stack for DNNs?

# of applications >> # of Al experts AutoML tries to automatically generate

high-accuracy models (subject to constraints)

Growing design space of DNNs

Falling price per FLOP

A QUADRO




Controller: proposes ML models

20K

times

Iterate to
find the
most
accurate
model

Train & evaluate models
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Blueprint image: https://arxiv.orq/pdf/1808.05377.pdf
Loop image courtesy Barret Zoph, Quoc Le
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Blueprint for an AutoML paper
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Motivation

 AutoML has exceeded human performance on classification

 Can we apply search to a new vision task (semantic segmentation)?



Semantic Segmentation task

o What is segmentation? Label each pixel of an
Image with an class

o Key application: Autonomous driving, cancer
detection, deforestation detection

o Metric: Intersection-over-Union aka Jaccard index

Area of Overlap

loU =

Area of Union

Images: Mapillary Vistas
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Abstract

The design of neural network architectures is an important component for achiev-
ing state-of-the-art performance with machine learning systems across a broad
array of tasks. Much work has endeavored to design and build architectures auto-
matically through clever construction of a search space paired with simple learning
algorithms. Recent progress has demonstrated that such meta-learning methods
may exceed scalable human-invented architectures on image classification tasks.
An open question is the degree to which such methods may generalize to new
domains. In this work we explore the construction of meta-learning techniques
for dense image prediction focused on the tasks of scene parsing, person-part seg-
mentation, and semantic image segmentation. Constructing viable search spaces
in this domain is challenging because of the multi-scale representation of visual in-
formation and the necessity to operate on high resolution imagery. Based on a sur-
vey of techniques in dense image prediction, we construct a recursive search space
and demonstrate that even with efficient random search, we can identify architec-
tures that outperform human-invented architectures and achieve state-of-the-art
performance on three dense prediction tasks including 82.7% on Cityscapes (street
scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and
87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the
resulting architecture is more computationally efficient, requiring half the param-
eters and half the computational cost as previous state of the art systems.

Wisky [Mltree  [road [Morass [Pwater Jlbidg  Bmntn [ fg obj.

1 Introduction

The resurgence of neural networks in machine learning has shifted the emphasis for building state-
of-the-art systems in such tasks as image recognition [44, 84, 83, 34|, speech recognition [36, 8], and
machine translation [88, 82] towards the design of neural network architectures. Recent work has . . o
demonstrated successes in automatically designing network architectures, largely focused on single- O C t t t f t h t t g t t

label image classification tasks [100,/101, 52] (but see [100, 65] for language tasks). Importantly, in u rre n S a e O e a r I n S e m a n I C S e m e n a I O n
just the last year such meta-learning techniques have identified architectures that exceed the perfor-
mance of human-invented architectures for large-scale image classification problems [101,52] 68].

arX1v:1809.04184v1l [cs.CV] 11 Sep 2018

Image classification has provided a great starting point because much research effort has identified

ineares 153 68 1011 Addionally. gt chostiouion s nbesonly ol eslunen aberehy o Results generalize to scene parsing (above) and

fully convolutional architectures [77, 58] may be trained on low resolution images (with minimal

computational demand) and be transferred to high resolution images [101]. p e rS O n - p a rt m a t C h i n g

Although these results suggest opportunity, the real promise depends on the degree to which meta-
learning may extend into domains beyond image classification. In particular, in the image domain,
many important tasks such as semantic image segmentation [58, 11, 97], object detection [71] 21],
and instance segmentation [20, 33, 9] rely on high resolution image inputs and multi-scale image

o Used AutoML to search space of 10" models,
“Cheap AutoML” = 370 GPUs over one week sampled 28000 models




Blueprint for an AutoML paper
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Search space

Pre-trained

o Majority of network arch is fixed backbone

Voo

Dense

Prediction
" Cell

(DPC)

Search this

e MobileNet V2 classification net

o Xception classification net

« Chop last few layers off
classification net and add some
new layers (DPC)
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lichitecture
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Our search space size 1s on the order

of 10*' and we adopt the random search algorithm implemented by Vizier [30], which basically
employs the strategy of sampling points b uniformly at random as well as sampling some points
b near the currently best observed architectures. We refer the interested readers to [30] for more
details. Note that the random search algorithm 1s a simple yet powerful method. As highlighted in
[101], random search is competitive with reinforcement learning and other learning techniques [52].
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Faster NAS using proxy tasks

 IDEA: Estimate architecture performance using a proxy task
« The better the proxy task is, the more efficient search is

o Key contribution of this paper is task-specific proxy tasks

Proxy #1 — Model #1
Proxy #2 — Model #2

Proxy #3 Model #4
Proxy #4 >< Model #3

Proxy #5 — Model #5



Proxy task 1: Train using MobileNet

o
~
S

o
~
)

 Predict final accuracy by using a smaller
classification network

o Xception: 21% top-1 error, 22M params
e MobileNet v2: 28% top 1 error, 3.4M params

o
~
L

Xception-65 ImageNet
>

O-%'66 068 07 072

MobileNet-v2 ImageNet
(a) p = 0.36




Proxy task 2: Cache activations

Cache classification network activations and
only train new layers (freeze gradient)

$

o Dense
° | Prediction
. Cell

o (DPC)

0.68

052 054 056 0.58
Proxy

(b) p = 0.47
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Cityscapes Semantic Segmentation

Network Backbone @ Module | Params MAdds mIOU (%)
MobileNet-v?2 ASPP [12] | 0.25M 2.82B 73.97
MobileNet-v?2 DPC 0.36M 3.00B 75.38

Modified Xception ASPP[12] | 1.59M  18.12B 80.25
Modified Xception DPC 0.81M 6.84B 80.85

Table 1: Cityscapes validation set performance (labeling IOU) across different network backbones
(output stride = 16). ASPP is the previous state-of-the-art system [12] and DPC indicates this work.

Params and MAdds indicate the number of parameters and number of multiply-add operations in
each multi-scale context module.

Method road | sidewalk | building | wall | fence | pole | light | sign | vege. |terrain | sky | person |rider | car |truck | bus |train | mbike | bicycle || mIOU
PSPNet [97] 98.7| 86.9 93.5 [58.4|63.7 (67.7|76.180.5|93.6 | 72.2 |95.3| 86.8 |71.996.2|77.7{91.5|83.6| 70.8 | 77.5 81.2
Mapillary Research [6] || 98.4| 85.0 93.7 |61.8|63.9 67.7|77.4|80.8/93.7| 71.9 |95.6| 86.7 |72.8|95.7|79.9 |93.189.7| 72.6 | 78.2 || 82.0
DeepLabv3+ [14] 98.7| 87.0 93.9 [(59.5/63.7 |71.4|78.2(82.2|94.0 | 73.0 |95.9| 88.0 |73.3/96.4|78.0 (909|839 | 73.8 | 78.9 | 82.1
DPC 98.7| 87.1 93.8 |57.7|63.5(71.0|78.0|82.1|94.0 | 73.3 |954| 88.2 |74.5|96.5| 81.2 |93.3/89.0| 74.1 | 79.0 | 82.7

Table 2: Cityscapes test set performance across leading competitive models.



Person-part identification

Method

head

torso

u-4arims

l-arms

u-legs

I-legs

bkg

mlIOU

Liang et al. [47]
Xia et al. [89]
Fang et al. [25]

82.89
85.50
87.15

67.15
67.87
72.28

51.42
54.72
57.07

48.72
54.30
56.21

51.72
48.25
52.43

45.91
44.76
50.36

97.18
95.32
97.72

63.57
64.39
67.60

DPC

88.81

74.54

63.85

63.73

57.24

54.55

96.66

71.34

Table 3: PASCAL-Person-Part validation set performance.




PASCAL VOC scene understanding

Method aero | bike | bird | boat | bottle | bus | car | cat |chair | cow |table | dog | horse | mbike | person | plant | sheep | sofa |train| tv || mIOU
EncNet [95] 95.3176.9194.280.2| 85.3 |96.5]90.8(96.347.9 (93.9/80.0 (92.4|96.6 | 90.5 | 91.5 |70.9 | 93.6 |66.5|87.7[80.8| 85.9
DEN [93] 96.478.695.5(79.1| 86.4 |97.1|91.4(95.0(47.7192.9|77.2|91.0|96.7 | 92.2 | 91.7 |76.5| 93.1 |64.4|88.3|81.2| 86.2
DeepLabv3+[14]((97.0(77.197.1|79.3| 89.3 |97.4193.2196.6|56.9 {95.0|79.293.1|97.0 | 94.0 | 928 |71.3| 929 (72.4|/91.0|84.9| 87.8
ExFuse [96] 96.8 80.397.082.5| 87.8 {96.3]92.6(96.4|53.3 (94.3|78.4(94.1(94.9 | 916 | 923 |81.7 | 94.8 |70.3|/90.1 |83.8| 87.9
MSC(I [438] 96.876.8197.0(80.6| 89.3 (97.4|93.8(97.1|56.7 |194.3|78.3|93.5|97.1 | 94.0 | 928 | 723 | 92.6 |73.6|90.8 |85.4| 88.0
DPC 97.4|77.5|96.6|79.4| 87.2 |{97.690.1(96.6|56.8 (97.0|77.0(94.3(97.5| 932 | 925 |789|94.3 |70.1/914(84.0| 87.9
Table 4: PASCAL VOC 2012 test set performance.
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Some discussion points

« What are new application areas for NAS?
e« |deas? object detection, speech generation, GANS?
e Does NAS un-democratize ML?
e (Google leads the training compute arms race
e Will the NAS workload influence how hardware should look?

« Seems like significant domain knowledge is necessary to develop
SOoTA NAS methods — is NAS most useful as a research
productivity tool?



