
Asynchronous Methods for
Deep Reinforcement Learning

Ashwinee Panda, 6 Feb 2019

Reinforcement Learning Background

Value-based Methods
● Don’t learn policy explicitly
● Learn Q-function

○ Deep RL: Train neural network to approximate Q-function

Policy-based Methods
● Parametrize policy with theta and update theta with gradient descent

● Reduce variance by subtracting an NN baseline
● Use learned estimate of value function as baseline
● This baseline is a “critic” => “actor-critic”

Policy-based Methods
● Reduce variance by subtracting an NN baseline
● Use learned estimate of value function as baseline
● This baseline is a “critic” => “actor-critic”

Motivations

General RL Computation

Deep Reinforcement Learning
● Problem: Instability

○ Cause: Correlation between samples
○ Cause: Incremental updates to Q change the policy => distribution
○ Cause: Correlation between Q-values and target values

● Solution: Experience Replay
○ Randomize over data distribution, removing correlations

● Problem: Limits us to off-policy RL

General RL Computation
When possible, reuse data

Ideas in Asynchronous RL

History of Dist. RL
● DQN (already saw this)
● Gorilla - param. Server

● Replay buffer
● Enables multiple machines

● Problems w parameter servers?
○ Communication cost
○ Unavoidable when using multiple machines

Asynchronous Actor-Learners
● Rather than separate machines coordinated by a parameter server…
● Multiple CPU threads on single machine coordinated by OS
● Removes communication costs (so what?)
● Actors walk through environment and send updates to learners
● Learners use observations to compute gradients

Parallel Exploration
● Multiple actors running in parallel
● Divergence => Divergence
● Exploring different parts of environment decorrelates observations
● Can also use diff. Exploration policies for each learner
● = = > Can avoid instability due to data correlation w/o using replay buffer!

○ Allows us to use on-policy methods

● Almost-linear reduction in training time w/more actor-learners

Asynchronous RL Algorithms

Asynchronous 1-step Q Learning
● Each thread interacts w copy of env
● Computes gradient of Q-loss
● Problem: Actor-learners may overwrite!

○ Fix: Accumulate updates over several steps

● Optimization: Separate explorations

Asynchronous Sarsa
● Use as target with a’, s’

Asynchronous n-step Q Learning
● To compute one update, the algo:
● Selects n <= t_max / terminal actions
● Receives n <= t_max rewards
● Computes gradients for each s/a pair
● Each n-step update has n updates
● Accumulated updates applied at once

A3C: Async. Advantage Actor-Critic

A3C (simplified)
● Each worker regularly syncs weights
● Collects sample from env
● Computes grad
● Async. Sends grad to global net

A3C
● Maintain policy
● Maintain value estimate
● Update both after t_max actions
● Grad of log policy

○ Scaled by advantage

● Advantage: diff between future

 and current value functions

A3C
● Share params b/t policy and value
● Policy: CNN (shared) w/softmax
● Value: CNN (shared) w/linear
● Entropy regularization
● “Critic” is value-function baseline
● Reduces variance
● Unbiased estimator

Key Metrics and Results

Limitations and Conclusions

Limitations and Improvements
● A3C doesn’t scale and can’t take advantage of prioritization

○ Ape-X uses priorities from Prioritized-DQN adapted for distributed setting

● Asynchrony => actors working with outdated models
○ IMPALA further improves w importance weighting (fixes policy lag)

● Actors working w diff models => aggregated update is schizophrenic
○ Fixed in A2C by removing asynchrony -turns out the benefit outweighs the costs, A2C>A3C

● Authors themselves admit they should try to use replay
○ Ape-X reintroduces replay buffer

● Too many small changes => instability
● Unsurprisingly, too many large changes => instability

○ Some “bells and whistles” can help

Conclusions
● A3C made Dist. Deep RL possible w/o relying on replay buffer
● “Model-agnostic” DDRL
● Good performance without bells and whistles made it widely used
● Though suffering from problems, still a major step forward in DDRL

DQN -> Gorilla -> A3C -> A2C/Ape-X -> IMPALA -> ?

