Asynchronous Methods for

Deep Reinforcement Learning
Ashwinee Panda, 6 Feb 2019

Reinforcement Learning Background

Value-based Methods

e Don't learn policy explicitly
e Learn Q-function
o Deep RL: Train neural network to approximate Q-function

Q4(s,a) « r(s,a) +ymaxy Qu(s’,a’)

fit a model to
F estimate return

generate
samples (i.e.
run the policy)

; ihptove e

policy

ll

a = argmaxa Q4(s, a)

Policy-based Methods

e Parametrize policy with theta and update theta with gradient descent

REINFORCE algorithm:
> 1. sample {7'} from mg(ay|s;) (run it on the robot)

2. VoJ(0) =Y, (3, Vologma(alls)) (3, r(si, al))
30+ 0+ aVeJ(0)
e Reduce variance by subtracting an NN baseline

e Use learned estimate of value function as baseline
e This baseline is a “critic” => “actor-critic”

Policy-based Methods

e Reduce variance by subtracting an NN baseline
e Use learned estimate of value function as baseline
e This baseline is a “critic” => “actor-critic”

batch actor-critic algorithm:

,"' - 71‘/

b 1.
2.
3.
4.
5. 0« 0+ aVyJ(0)

sample {s;,a;} from 7y (als) (run it on the robot)
fit Vggr (s) to sampled reward sums)
evaluate A™(s;,a;) = r(s;,a;) + vV (s]) — Vi (si)
VoJ(0) = >, Vologmg(a;|s;)A™ (s, a;)

Motivations

General RL Computation

Original Batch Optimization
Simulation
Agent
S Cuesition, Optimization Simulation Optimization
Environment
Simulation

Deep Reinforcement Learning

e Problem: Instability
o Cause: Correlation between samples
o Cause: Incremental updates to Q change the policy => distribution
o Cause: Correlation between Q-values and target values
e Solution: Experience Replay
o Randomize over data distribution, removing correlations

e Problem: Limits us to off-policy RL

Sy Lo L Ee.

General RL Computation

When possible, reuse data

process 2
target update
| >

:’/ .

. r
= R I
- \\/} (‘:\/‘7

N
D
Y
4
™
A
\
L
4

process 1: data collection

(s,a,s’,r)

e
anll

V'

m(als) (e.g., e-greedy) evict old data

ldeas in Asynchronous RL

Sync every
global N steps

Parameter Server Learner

DQN Loss
Shard 1 Shard 2 Shard K Gradient ol
riloss ; max, Q(sa’; 6)

Gradient Target Q

e DAQN (already saw this) Network
e Goirilla - param. Server |
e Replay buffer Acor -
e Enables multiple mach

e Problems w parameter servers?
o Communication cost
o Unavoidable when using multiple machines

History of Dist. RL

Environment

Asynchronous Actor-Learners

Rather than separate machines coordinated by a parameter server...
Multiple CPU threads on single machine coordinated by OS
Removes communication costs (so what?)

Actors walk through environment and send updates to learners
Learners use observations to compute gradients

Parallel Exploration

Multiple actors running in parallel
Divergence => Divergence
Exploring different parts of environment decorrelates observations
Can also use diff. Exploration policies for each learner

= = > Can avoid instability due to data correlation w/o using replay buffer!
o Allows us to use on-policy methods

e Almost-linear reduction in training time w/more actor-learners

Asynchronous RL Algorithms

Asynchronous 1-step Q Learning

e Each thread interacts w copy of env Algorithm 1 Asynchronous one-step Q-learning - pseu-
) docode for each actor-learner thread.
® CompUteS gradlent Of Q-lOSS // Assume global shared 8, 6, and counter T = (.
: Initialize thread
e Problem: Actor-learners may overwrite! Inifalze targe ;;;5;3;:’;:{;,:; g
o Fix: Accumulate updates over several steps anihiglize rietwpork gracients/diis—1)
o)) Get initial state s
e Optimization: Separate explorations repeat _ ,
Take action a with e-greedy policy based on Q(s, a; 6)
Receive new state s' and reward r
_ { r for terminal s’
Asynchronous Sarsa = sty Qdi i) el
oo g o Accumulate gradi 6: df « df + 2lu=Qls.00))”
o User+7Q(s',a’;07)gs target with a’, s Scin;x}m ate gradients wrt < 5

T+T+1landt+t+1

ifT mOd Itargez == 0 then
Update the target network 8~ « 6

end if

ift mod asynctpdate == 0 or s is terminal then
Perform asynchronous update of & using d6.
Clear gradients df «- 0.

end if

until 7" > Tmaz

Asynchronous n-step Q Learning

To compute one update, the algo:
Selects n <=t _max / terminal actions
Receives n <=t _max rewards
Computes gradients for each s/a pair
Each n-step update has n updates
Accumulated updates applied at once

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-

/ Assume global shared parameter vector 6.
/ Assume global shared target parameter vector 6.
// Assume global shared counter T' = (.
Initialize thread step counter ¢ - 1
Initialize target network parameters 6~ + 6
Initialize thread-specific parameters §' = 6
Initialize network gradients df < 0
repeat
Clear gradients df « 0
Synchronize thread-specific parameters §' = 6
tstart =1
Get state s;
repeat
Take action a, according to the e-greedy policy based on Q(s¢, a;8")
Receive reward r; and new state 8, ;

te=t+1
T«T+1
until terminal s; or t — tstart == tinax
7 0 for terminal s:
~ | max, Q(s:,a;67) for non-terminal s,
forie {t—1,...,t5a} do
R+ ri+9R 4
Accumulate gradients wrt 8': df « df + W
end for

Perform asynchronous update of € using df.
if ' mod Itarget == () then
0~ « 86
end if
until 7' > Tz

A3C: Async. Advantage Actor-Critic

A3C (simplified)

Global Network

Each worker regularly syncs weights
Collects sample from env

Computes grad

Async. Sends grad to global net

Sends gradients

/ \ ‘\ back
=

Worker 1 Worker 3 Worker n
$ t $ $

A3C

Maintain policy

Maintain value estimate

Update both after t max actions
Grad of log policy

o Scaled by advantage
Advantage: diff between future

and current value functions

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-]

// Assume global shared parameter vectors 6 and 6, and global shared counter T' = 0
// Assume thread-specific parameter vectors 6’ and 6.,
Initialize thread step counter ¢ - 1
repeat
Reset gradients: df < 0 and df, + 0.
Synchronize thread-specific parameters 8’ = 6 and 6, = 6,
tstart =1
Get state s,
repeat
Perform a: according to policy m(a«|s:; ")
Receive reward r; and new state s, ;

t—t+1
T+T+1
until terminal s; or t — ts10rt == tmax
0 for terminal s,

A= V(s¢,0.) for non-terminal s,// Bootstrap from last state

fori€ {t—1,...,tstart} do
R+ ri+aR
Accumulate gradients wrt 8': df < df + V log w(a:|s:;0") (R — V(s:;6.))
Accumulate gradients wrt 8.,: df,, + df, + 8 (R — V (s:;6.))% /06,

end for

Perform asynchronous update of 8 using df and of 6,, using dé,,.

until 7" > Thaz

A3C

Share params b/t policy and value
Policy: CNN (shared) w/softmax
Value: CNN (shared) w/linear
Entropy regularization

“Critic” is value-function baseline
Reduces variance

Unbiased estimator

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-]

// Assume global shared parameter vectors 6 and 6, and global shared counter T' = 0
// Assume thread-specific parameter vectors 6’ and 6.,
Initialize thread step counter ¢ - 1
repeat
Reset gradients: df < 0 and df, + 0.
Synchronize thread-specific parameters 8’ = 6 and 6, = 6,
tstart =1
Get state s,
repeat
Perform a: according to policy m(a«|s:; ")
Receive reward r; and new state s, ;

t—t+1
T+T+1
until terminal s; or t — ts10rt == tmax
0 for terminal s,

A= V(s¢,0.) for non-terminal s,// Bootstrap from last state

fori€ {t—1,...,tstart} do
R+ ri+aR
Accumulate gradients wrt 8': df < df + V log w(a:|s:;0") (R — V(s:;6.))
Accumulate gradients wrt 8.,: df,, + df, + 8 (R — V (s:;6.))% /06,

end for

Perform asynchronous update of 8 using df and of 6,, using dé,,.

until 7" > Thaz

Key Metrics and Results

Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LST™M 4 days on CPU 623.0% | 112.6%

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

Table SS3 shows the raw scores for all games.

Number of threads
Method 1 2 4 8 16
1-step Q 10| 3.0 | 6.3 | 13.3 | 24.1
1-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 22.1
n-step Q 1.0 | 27 | 59 | 10.7 | 17.2
A3C 10121 1 37 | 69 | 125

Table 2. The average training speedup for each method and num-
ber of threads averaged over seven Atari games. To compute the
training speed-up on a single game we measured the time to re-
quired reach a fixed reference score using each method and num-
ber of threads. The speedup from using n threads on a game was
defined as the time required to reach a fixed reference score using
one thread divided the time required to reach the reference score
using n threads. The table shows the speedups averaged over
seven Atari games (Beamrider, Breakout, Enduro, Pong, Q*bert,
Seaquest, and Space Invaders).

Limitations and Conclusions

Limitations and Improvements

e A3C doesn’t scale and can’t take advantage of prioritization
o Ape-X uses priorities from Prioritized-DQN adapted for distributed setting

e Asynchrony => actors working with outdated models
o IMPALA further improves w importance weighting (fixes policy lag)

e Actors working w diff models => aggregated update is schizophrenic
o Fixed in A2C by removing asynchrony -turns out the benefit outweighs the costs, A2C>A3C

e Authors themselves admit they should try to use replay
o Ape-X reintroduces replay buffer

e Too many small changes => instability
e Unsurprisingly, too many large changes => instability
o Some “bells and whistles” can help

Conclusions

A3C made Dist. Deep RL possible w/o relying on replay buffer
“Model-agnostic” DDRL

Good performance without bells and whistles made it widely used
Though suffering from problems, still a major step forward in DDRL

DQN -> Gorilla -> A3C -> A2C/Ape-X -> IMPALA -> ?

