Graph Neural Networks

Amog Kamsetty
January 30, 2019

Motivations

Traditional Deep Learning
I M AG E N ET Speech data

U

Grid games

Natural language Sentence
proceSSing (NLP) Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase

Noun Phrase

Article Noun Verb Preposition Article Noun
| I | | | I

The cat sat on the mat.

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

Slide from Thomas Kipf

Graph Structured Data

:country

K L

o _-
el

A lot of real-world data does not live on “grids”

:university

educated_at
Know|edge Graphs [Mikhail Baryshnikov]—*[Vaganova Academy

@ ® :ballet_dancer
Social Networks
Citation Networks S . Vilcek prize
Communication Networks .° '. ®)

i ° © ®
Multi-Agent Systems ® e e Y o
@
° r y e - ®
o LR ® .
® e

Protein Interaction
Networks

Slide from Thomas Kipf

Inspiration from CNNs

e Advantages of CNNs

o Local Connections
o Shared Weights
o Use of multiple Layers

e But, hard to define convolutional and pooling layers for non-Euclidean data

O~ _
\\\\ b :"j;o
jo o
O SRy //
o K
Y
e //C)\ b . /O
o \\ o
O

Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean
space

Deep Learning on Graphs

e Need architecture for machine learning on graph structured data

e Also need to take advantage of the structural relationships in graphs, similar
to CNNs

e Collect information via message passing and then aggregation

Hidden layer Hidden layer
& T T “Graph neural networks (GNNs)
/ o are connectionist models that
\. N —e capture the dependence of graphs
¢ o via message passing between the

nodes of graphs.”
RelLU

Image from Thomas Kipf

Types of Graph Networks

The original Graph Neural Network (GNN)

e Each node is defined by its own features and those of its neighbors
e Learn some state embedding for each node
e Scarsellietal., 2009

hy = f(xva Lecolv] hne[v] ; xne[v])
Oy = Q(hv, wv)

H'' = F(H', X)

s

N
fe)—
SR
L

)

)

The original Graph Neural Network (GNN)
hi =) o(Whi ™' +b),

J

3\

*10
(ho)— Lo J;' Y
\ S & ‘<I4/)x4 2 D ;
\ ’ T ."\\ | ,/’ |
\l\(ll'l"“’/l’ \ \\\ |\1(56) v/,/ ‘/
4 L4 R / -
\l\,' \ \~ A I [Uj 6_/\/ (‘U!‘)
Y J
I’ \,'."3 .l‘(, L //‘\
A . 1(6")/(\16\J | [Las)
p S —— e "\\] | o
\ N\ " / . . .
. i , Update equation if parametrized
b ~ 4 \\]
b 4 Nes | by MLP
b TR . /
\ B \ (
, ’, \ |
xg ‘\ 'l \\ |
I.’ \\ l : \\ \ A\
I_E)/L e "g:)'.;—).,, \\ xl ‘/’ -"8 (>I J\)
— / 3,
\\ A= &g ’
\ o
\\ » r
1= fo (L 2y s Laay die, 1) s X2, X3, X, X6, D 1y g)
X nell)] l nefn]

!.'u.'l,'
Graph and the neighborhood of a node. The state 2, of the node 1

Fig. 2.
depends on the information contained in its neighborhood.

Inductive Capability

train on one graph |

Zy,

|generalize to new graph

Inductive node embedding = generalize to entirely unseen graphs

ftrain with snapshot

new node arrives

generate embedding

for new node

Slide from Stanford Snap Lab

Limitations of GNN

o Very computationally intensive to recursively compute fixed point solution

e Same parameters are used in every timestep, while other neural networks
use different parameters in each layer

e Informative edge features are difficult to model
o Can't alter message propagation depending on edge type

These pitfalls led to many variations of GNNSs, particularly in how the propagation
occurs

Graph Convolutional Networks

Single CNN layer Kipf & Welling, 2017
with 3x3 filter: h h
0 1
(L0

o & on

h; € RY are (hidden layer) activations of a pixel/node

Slide from Thomas Kipf

Graph Convolutional Networks

k—1
- h*
h: =0 | W, Vi ol
/ ueN(v)Uv \
use the same transformation Instead of simple average,
matrix for self and neighbor normalization varies across

embeddings neighbors

Slide from Stanford Snap Lab

Graph Convolutional Networks

e Semi-supervised learning on
Zachary’s Karate Club Network

e Only one node from each class
is labeled

e 300 iterations

Video from Thomas Kipf

https://docs.google.com/file/d/17DxWl7TIqp7CINz3Gso-P-9TXK_od5Jo/preview

Graph Convolutional Networks

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL

ManiReg [3] 60.1 50.5 70.7 21.8

SemiEmb [2R] H9.6 59.0 711 26.7

LP [32] 45.3 68.0 63.0 26.5

DeepWalk [22] 43.2 67.2 65.3 58.1

ICA [18] 69.1 75.1 73.9 23.1

Planetoid* |29] 64.7 (26s) TH.7(13s) T7.2(25s) 61.9(185s)

GCN (this paper) 703 (7s) 81.5(4s) 79.0(38s) 66.0 (48s)

GCN ‘rdnd .\Phlb) 67905 80.1x0.5 78.9x0.7 584+1.7 Table 3: COmPﬁI‘iSOﬂ of propagation models.
Description Propagation model Citeseer Cora Pubmed

g . K=3 K e 69.8 T79.5 74.4

Chebysheyv filter (Eq. 5) K =29 Yo Te(L)X Oy 696 812 738
1*-order model (Eq. 6) X6y +D 1AD iXe, 68.3 80.0 1.5
Single parameter (Eq. 7) Uy +D-2AD-3)X© 693 792 77.4
Renormalization trick (Eq. 8) D 3AD :Xe 70.3 815 79.0
1*"-order term only D 2AD iXxe 68.7 805 77.8
Multi-layer perceptron XO 46.5 55.1 71.4

Gated Graph Neural Networks

e Uses LSTM for aggregation
e Allows for deep graph networks without worrying about overfitting or
vanishing/exploding gradient

= Intuition: Neighborhood aggregation
with RNN state update. Li et al.. 2016
1. Get "message” from neighbors at step k:

m,’;‘ —W E | hz—l . aggregation function

v does not depend on k
uEN (v)

2. Update node “state” using Gated Recurrent
Unit (GRU). New node state depends on the
old state and the message from neighbors:

h* = GRU(h*!, m*)

Slide from Stanford Snap Lab

Many more variants...perhaps too many

w» GraphSAGE
I Neighborhood =
et P ADOPM ‘ sampling - FastGON
A Gapn] A Adaptive
Grapa Types - [leterogeneous i > Umphincer s
: . . Training /! Reoeptivefield |, goceoinens
w7 \ s Methods «_ L Conwo =
*I informative =) R 4 . Co-training
._Gaph ST ‘:’ Boosting ‘: T GCN
2 R-GCN et U Selfemining
GCN
(a) Graph Types (L) Training Methods
Spectral
Network oo
Graph e v Spestnd
rlp. | Spectral | Methods il
» Convolutionel ~'-------- ChebNet
5 Networks -
VG \ Moleculas
: C::;?cl:t;;a ! “a Non-spectral Convolutional MuNet
Vi od o : x Methods < Nerwark
o Graph Attention
: 2l Networss = : SR
" AAttentmn , Gated Graph DCNN GraphSAGE
Propagation —3_ Aggregator {~"7="""%—""| Neural Networks
Step | LORY, g
Gate = pmememmas
Updater ~ 5™ | i
Senstns "> Graph ISTM ~= _
"J""s'k‘.‘p""‘. v Highway GNN
L
! connection |
"""""" “a Jump Knowledge f--------, Semence
Network LSTM

(c) Fropagetior Steps

Generalizations

e Message Passing Neural Networks (MPNN)

Unifies GNN and GCN

Message Passing Phase that constructs message based on local neighborhood
Update function which interprets message and updates node’s hidden state
Readout phase computes feature vector for the whole graph

All of these functions can have different settings

e Non-local Neural Networks (NLNN)

o Unification of self-attention style methods
o Node update based on neighbor nodes, not edges

o O O O O

Graph Nets

Relational Inductive Biases

e Battaglia et al., 2018

e Combinatorial Generalization
o New inferences, predictions, and behaviors from known building blocks
o Relies on humans’ mechanism for representing structure and reasoning about relations

e But, modern deep Learning relies on end-to-end design and does away with
any explicit structure

e Instead, advocates for use end-to-end and hand-engineering jointly
o Combination of “nature” and “nurture”

e Biases/constraints on structure and relations is necessary

e Structured representations have entities and relations (aka graphs) at their
core

e Thus, argues for graph networks as foundational building block for Al

Relational Inductive Biases

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

Relational Inductive Biases

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -

Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

\

rH=0 05
@ L)]
: g
& <
c

<3 @ 2

g & ()
@ —\
 1—U S

(a) Fully connected (b) Convolutional (¢) Recurrent

Figure 1: Reuse and sharing in common deep learning building blocks. (a) Fully connected layer,
in which all weights are independent, and there is no sharing. (b) Convolutional layer, in which
a local kernel function is reused multiple times across the input. Shared weights are indicated by
arrows with the same color. (¢) Recurrent layer, in which the same function is reused across different
processing steps.

Graph Networks

e \While RNNs and CNNs use relational inductive biases, they do not generalize
to arbitrary relations

e Need a framework that can learn from graphs

Proposes graph networks, which generalizes MPNN, NLNN, and other

variants

Graph is defined as a 3-tuple G p— (’u,, .‘/7 E)

Where u is global attribute

V is set of vertices with attributes

E is set of edges with attributes

Graph Networks

Attributes are updated in a sequence of updates and aggregations, as we've

seen before

Update functions can be parametrized with neural networks
Same 6 functions are used for all nodes and edges

= 6 (et Vi Yoy) &, = o (E)
— 6" (&, vi,u) & =y (E)
= " (é’ v, u) =/ _ vou (V’)

Graph Networks

Algorithm 1 Steps of computation in a full GN block.

function GRAPHNETWORK(E, V', u)
for k€ {1...N°} do
€}, — 9° (ek, Vry, Vs,, 1)
end for
forie{1...N"} do
let E; = {(€}, 7k, k) },, —i p1.nve
€ « p=7Y (E))
V. «— ¢V (€}, v;,u)
end for
let V' = {v'};o.ve
let El = {(e/k’rk’sk)}kzlu\"'
é/ (_ /)(f—)'ll. (El)
¥« pv (V)
u «— ¢4 (€,v',u)
return (E', V' u’)
end function

> 1.

> 2.
> 3.

> 4.
> 5.
> 6.

Compute updated edge attributes

Aggregate edge attributes per node
Compute updated node attributes

Aggregate edge attributes globally
Aggregate node attributes globally
Compute updated global attribute

Graph Networks

e 3 main properties
o Nodes and edges provide a strong relational bias
o Entities and relations are represented as sets and are thus order invariant
o Per-edge and per-node functions are shared across the entire network
e 3 design principles
o Flexible representations
o Configurable within block structure
o Composable multi-block architectures

exible Representations

Edge block

Node block Global block

(a) Full GN block

Edge block

(c) Message-passing neural network

Node block Global block

Edge block

Node block Global block

(e) Relation network

u, Upid —

V, Vhia —

E, Enia—

@_

®
[
Edge block Node block Global block

(b) Independent recurrent block

Edge block Node block Global block

(d) Non-local neural network

/ !
=, Wyiq

rtoys!

=V’ Viia

! /
—E, Epq

-V’

Node block Global block

(f) Deep set

Edge block

Composable Multi-block Architectures

Go=—> GN; [G 1= GNy [=GNy > Gy N igre G GN_ore Ghia
L) x M | x M
C;Nc'n(' (;N(lm- ;N(‘Hl' (;N,h'l'
("() = GN('or(' —> (;;\l T l T l
x M 3 v vt vt
('iup Gout Tinp T out
(a) Composition of GN blocks (b) Encode-process-decode (¢) Recurrent GN architecture

Figure 6: (a) An example composing multiple GN blocks in sequence to form a GN “core”. Here,
the GN blocks can use shared weights, or they could be independent. (b) The encode-process-decode
architecture, which is a common choice for composing GN blocks (see Section 4.3). Here, a GN
encodes an input graph, which is then processed by a GN core. The output of the core is decoded
by a third GN block into an output graph, whose nodes, edges, and /or global attributes would be
used for task-specific purposes. (¢) The encode-process-decode architecture applied in a sequential
setting in which the core is also unrolled over time (potentially using a GRU or LSTM architecture),
in addition to being repeated within each time step. Here, merged lines indicate concatenation, and
split lines indicate copying.

Impact and Challenges

Impact

e Graph networks have applications in many areas

e \Works well for any data that can be represented as graphs

o Node/Graph classification
o Link prediction
o Clustering

e Use case in biology, chemistry, physical systems

e Can be used for non-structured data but difficult to generate graphs from raw
data

e \Whether the idea of relational inductive biases will be adopted remains to be
seen

Challenges

Shallow Structure
Dynamic Graphs
Non-structural scenarios
Scalability

W=

References

“Graph Neural Networks: A Review of Methods and Applications” Zhou et al. 2019
“Gated Graph Sequence Neural Networks” Li et al. 2017

“The Graph Neural Network Model” Scarselli et al. 2009

“Relational inductive biases, deep learning ,and graph networks” Battaglia et al. 2018
The morning paper blog, Adrian Coyler

Structured Deep Models: Deep Learning on Graphs and Beyond, talk by Thomas Kipf
“Convolutional Networks on Graphs for Learning Molecular Fingerprints” Duvenaud et al. 2015
“Semi-Supervised Classification with Graph Convolutional Networks” Kipf & Welling 2017
“Graph Convolutional Networks”, Kipf 2016

“‘Representation Learning on Graphs: Methods and Applications” Hamilton et al. 2017
“Geometric Deep Learning: Going Beyond Euclidean Data” Bronstein et al. 2017

“Gated Graph Sequence Neural Networks” Li et al., 2016

