CS294: Deep Learning Frameworks

Joey Gonzalez and Ion Stoica February 4, 2019

History: single machine

2007: Sci-kit learn:

- Public release: 2010
- Machine learning (ML) library for Python
- Large number of "classic" ML algorithms, e.g.,
 - Linear and logistic regression, SVM, random forests,
 - k-means, gradient-boosting
- Highly successful to this day

History: big data ML

Lots of more data available, so people developed distributed algorithms:

- Still "classic" ML, e.g., logistic regression, collaborative filtering
- 2009: Mahout: ML library on top of Apache Hadoop
 - Slow. Each iteration reads/writes data on disk
- 2011: MLlib: ML library for Apache Spark
 - Developed at AMPLab, Berkeley
 - Much faster than Mahout: no reads/writes to the disk
 - Still the library of choice for distributed "classic" ML algorithms

Neural Networks: Single machine libraries

2007: Theano

theano

- Developed by Montreal Institute for Learning Algorithms (MILA)
- Initially no support for GPUs

Why support for GPU important?

- NN requires basically matrix multiplication
 - Space complexity: O(N²)
 - Computation complexity: O(N³)
- Thus, computation complexity super-linear in the input

Neural Networks: Single machine libraries

2007: Theano

- Developed by Montreal Institute for Learning Algorithms (MILA)
- Initially no support for GPUs
- 2014: Caffee
 - Developed by Berkeley Vision and Learning Center Caffe
- Support for GPUs, some popular neural networks, e.g., AlexNet 2016: PyTorch
 - Developed by Facebook
 - Loosely based on Torch (started in 2002, but no longer sctive)
 - Initially single machine, recently distributed
- <mark>(</mark>' PyTorch

theano

Neural Networks: Distributed systems

- 2015: Tensorflow
 - Developed by Google Brain
 - The most popular ML library today
- 2015: MXNet
 - Initially, by UW and others; now by AWS

Systems for data-parallel training leveraging singlemachine Tensorflow and PyTorch

• Horovod, RLlib (Ray), ...

Computation model

Dataflow graph, e.g.,

• MLlib (Spark), Tensorflow, MXNet, PyTorch

Evaluation:

- Lazy: MLlib (Spark), MXNet, Tensorflow (originally)
 - Enable better optimizations
- Eager: PyTorch
 - Easier to debug

Data:

- Immutable (e.g., Mllib): easy provide fault tolerance
- Mutable (e.g., Tensorflow, MXNet) : more efficient

Compute system requirements

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Compute requirements doubling every 3 months!

rea

AI and Compute (https://blog.openai.com/ai-and-compute/)

Figure 1. Following Hennessy and Patterson,¹⁷ we plotted highest SPECCPUint performance per year for 32-bit and 64-bit processor cores over the past 40 years; the throughputoriented SPECCPUint_rate reflects a similar profile, with plateauing delayed a few years.

Moore's law is dead

Dennard scaling

- As transistors get smaller, their power density stays constant
- Performance & **memory capacity** per-watt increase exponentially

In the meantime...

GPU performance increase still follows Moore's law

A plethora of NN accelerators are being developed (e.g. TPU)

So, what does it mean?

- 1. The computation requirements growing much faster than Moore's law
- 2. FLOPs still continue to double every 18 months
 - GPUs and hardware accelerators
- 3. However, RAM capacity growing very slowly
- 4. Next generation of ML systems
 - Distributed
 - Efficiently use specialized, heterogeneous hardware

Projects

By Wednesday 2/6:

- Check current list of projects: <u>https://tinyurl.com/ycbqz22q</u>
- Add your own project

Al-Sys Spring 2019

- When: Mondays and Wednesdays from 9:30 to 11:00
- Where: Soda 405
- Instructors: Ion Stoica and Joseph E. Gonzalez
- Announcements: Piazza
- Sign-up to Present: Google Spreadsheet
- Project Ideas: Google Spreadsheet

Projects

By Wednesday 2/6:

- Check current list of projects: https://tinyurl.com/ycbqz22q
- Add your own project

By Friday 2/8:

• Specify your project preference

By Monday 2/11:

• Project matching: at least two, and at most three people per project.