
CS294: 
Deep Learning Frameworks

Joey Gonzalez and Ion Stoica
February 4, 2019



History: single machine
2007: Sci-kit learn: 

• Public release: 2010
• Machine learning (ML) library for Python
• Large number of “classic” ML algorithms, e.g.,

– Linear and logistic regression, SVM, random forests, 
k-means, gradient-boosting

• Highly successful to this day



History: big data ML
Lots of more data available, so people developed 
distributed algorithms:
• Still “classic” ML, e.g., logistic regression, collaborative filtering
• 2009: Mahout: ML library on top of Apache Hadoop

– Slow. Each iteration reads/writes data on disk
• 2011: MLlib: ML library for Apache Spark 

– Developed at AMPLab, Berkeley
–Much faster than Mahout: no reads/writes to the disk
– Still the library of choice for distributed “classic” ML algorithms



Neural Networks: Single machine libraries
2007: Theano

• Developed by Montreal Institute for Learning Algorithms (MILA)
• Initially no support for GPUs

Why support for GPU important?
• NN requires basically matrix multiplication

– Space complexity: O(N2)
– Computation complexity: O(N3) 

• Thus, computation complexity super-linear in the input



Neural Networks: Single machine libraries
2007: Theano

• Developed by Montreal Institute for Learning Algorithms (MILA)
• Initially no support for GPUs

2014: Caffee
• Developed by Berkeley Vision and Learning Center
• Support for GPUs, some popular neural networks, e.g., AlexNet

2016: PyTorch
• Developed by Facebook

– Loosely based on Torch (started in 2002, but no longer sctive)
• Initially single machine, recently distributed



Neural Networks: Distributed systems 
2015: Tensorflow

• Developed by Google Brain
• The most popular ML library today

2015: MXNet
• Initially, by UW and others; now by AWS

Systems for data-parallel training leveraging single-
machine Tensorflow and PyTorch

• Horovod, RLlib (Ray), …



Computation model
Dataflow graph, e.g.,

• MLlib (Spark), Tensorflow, MXNet, PyTorch
Evaluation:

• Lazy: MLlib (Spark), MXNet, Tensorflow (originally)
– Enable better optimizations

• Eager: PyTorch
– Easier to debug

Data:
• Immutable (e.g., Mllib): easy provide fault tolerance
• Mutable (e.g., Tensorflow, MXNet) : more efficient 



Compute system requirements

AI and Compute (https://blog.openai.com/ai-and-compute/)

Compute requirements doubling every 3 months!



Communication of the ACM (https://myacm.acm.org/dashboard.cfm?svc=cacmde&ref=mags)Moore’s law is dead



Dennard scaling
• As transistors get smaller, their power density stays constant 
• Performance & memory capacity per-watt increase exponentially



In the meantime…
GPU performance increase still follows Moore’s law

A plethora of NN accelerators are being developed (e.g. TPU)



So, what does it mean?
1. The computation requirements growing much faster 

than Moore’s law
2. FLOPs still continue to double every 18 months
• GPUs and hardware accelerators

3. However, RAM capacity growing very slowly
4. Next generation of ML systems
• Distributed 
• Efficiently use specialized, heterogeneous hardware



Projects
By Wednesday 2/6:

• Check current list of projects: https://tinyurl.com/ycbqz22q
• Add your own project



Projects
By Wednesday 2/6:

• Check current list of projects: https://tinyurl.com/ycbqz22q
• Add your own project

By Friday 2/8:
• Specify your project preference 

By Monday 2/11:
• Project matching: at least two, and at most three people per 

project.


