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Background: Training deep neural networks
Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

60M	Parameters	~	240	MB
Need	to	cache	activation	maps	for	backpropagation

• Batch	size	=	128
• 128	*	(227*227*3	+	55*55*96*2	+	96*27*27	+	256*27*27*2	+	256*13*13	+	13*13*384	+	
384*13*13	+	256*13*13	+	4096	+	4096	+	1000)	Parameters	~	718MB

• That	assuming	no	
overhead	and	single
precision	values

Tuned splitting across GPUS
to balance communication 
and computation

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Hides details of distribution

But still difficult to reason about end-to-end structure
Inflexible update mechanisms and state management



TensorFlow
Flexible dataflow-based programming model for machine 
learning

Dataflow captures natural structure of computation
in both training and inference
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What is the problem being solved?
Lack of a flexible programming model to build machine learning 
models

Prior approaches restricted innovation due to their inflexibility
E.g., parameter updates in parameter server-based approaches



Dataflow-based programming model
Computation structured as a dataflow graph
Nodes can be stateful
Captures accumulated state as part of the training process
E.g., parameter values

Graph elements
Tensors flow across edges between nodes
Operations are expressions over tensors (e.g., constants, matrix multiplication, add)
Variables can accumulate state 
Queues provide explicit advanced coordination
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What are the metrics of success?
Variety of specialized extensions built over the framework 
“User level” code

Acceptable performance with respect to state-of-the-art



Extensibility
Optimization algorithms
Momentum, AdaGrad, AdaDelta, Adam
E.g., parameter updates in momentum are based on accumulated state over multiple iterations

Difficult to implement extensible optimization algorithms in 
parameter servers



Extensibility
Sharding very large models

E.g., Sparse embedding layers
Shard embedding layer across parameter server tasks
Encode incoming indices as tensors, and ship to the appropriate shard



Extensibility
Use queues to coordinate the execution of workers
Synchronous replication
Straggler mitigation with backup workers



Competitive training times on single node



Key results
Extensibility matters!
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Limitations and scope for improvement
TF’s high-level programming model is tightly coupled with its 
execution model
Translate TF programs to more efficient executables using compilation to hide translation

TF dataflow graphs are static

Key runtime decisions, such as number of PS shards, seem to 
require manual specification
Can these be automatically deduced based on workload characteristics?


