TensorFlow: A System for Large-Scale Machine Learning

Background: Training deep neural networks

Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

60M Parameters ~ 240 MB

Need to cache activation maps for backpropagation

- Batch size = 128
- 128 * (227*227*3 + 55*55*96*2 + 96*27*27 + 256*27*27*2 + 256*13*13 + 13*13*384 + 384*13*13 + 256*13*13 + 4096 + 4096 + 1000) Parameters ~ 718MB
- That assuming no overhead and single precision values

Tuned splitting across GPUS to balance communication and computation

Background: Training deep neural networks

Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

60M Parameters ~ **240 MB**

Need to cache activation maps for backpropagation

- Batch size = 128
- 128 * (227*227*3 + 55*55*96*2 + 96*27*27 + 256*27*27*2 + 256*13*13 + 13*13*384 + 384*13 + 256*13*13 + 4096 + 4096 + 6000) arameters ~ 718MB
 Too much manual effort!
- That assuming no overhead and single precision values

Tuned splitting across GPUS to balance communication and computation

Background: Training deep neural networks

Trend towards distributed training for large-scale models

Parameter server: A shared key-value storage abstraction for distributed training

E.g., DistBelief, Project Adam

Background: Training deep neural networks Hides details of distribution In the second s

But still difficult to reason about end-to-end structure Inflexible update mechanisms and state management

E.g., DistBelief, Project Adam

Flexible dataflow-based programming model for machine learning

Dataflow captures natural structure of computation in both training and inference


```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
                                                    # 100-element bias vector.
b_1 = tf.Variable(tf.zeros([100]))
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                    # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
                                                    # Connect to the TF runtime.
  sess.run(tf.initialize_all_variables())
                                                    # Randomly initialize weights.
                                                    # Train iteratively for NUM_STEPS.
  for step in range (NUM_STEPS):
    x_data, y_data = \dots
                                                    # Load one batch of input data.
    sess.run(train_op, {x: x_data, y: y_data})
                                                    # Perform one training step.
```

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                    # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros([100]))
                                                    # 100-element bias vector.
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                    # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
                                                    # Connect to the TF runtime.
  sess.run(tf.initialize_all_variables())
                                                    # Randomly initialize weights.
                                                    # Train iteratively for NUM_STEPS.
  for step in range (NUM_STEPS):
    x_data, y_data = \dots
                                                    # Load one batch of input data.
    sess.run(train_op, {x: x_data, y: y_data})
                                                    # Perform one training step.
```

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                   # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
                                                    # 100-element bias vector.
b_1 = tf.Variable(tf.zeros([100]))
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                    # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
```

```
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
```

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                   # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
                                                    # 100-element bias vector.
b_1 = tf.Variable(tf.zeros([100]))
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                   # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                   # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
```

train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)

What is the problem being solved?

Lack of a flexible programming model to build machine learning models

Prior approaches restricted innovation due to their inflexibility

E.g., parameter updates in parameter server-based approaches

Dataflow-based programming model

Computation structured as a dataflow graph Nodes can be stateful

Captures accumulated state as part of the training process E.g., parameter values

Graph elements

Tensors flow across edges between nodes Operations are expressions over tensors (e.g., constants, matrix multiplication, add) Variables can accumulate state Queues provide explicit advanced coordination

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                    # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros([100]))
                                                    # 100-element bias vector.
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                    # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
                                                    # Connect to the TF runtime.
  sess.run(tf.initialize_all_variables())
                                                    # Randomly initialize weights.
                                                    # Train iteratively for NUM_STEPS.
  for step in range (NUM_STEPS):
    x_data, y_data = \dots
                                                    # Load one batch of input data.
    sess.run(train_op, {x: x_data, y: y_data})
                                                    # Perform one training step.
```

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                   # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                    # 784x100 weight matrix.
                                                    # 100-element bias vector.
b_1 = tf.Variable(tf.zeros([100]))
layer 1 = tf.nn.relu(tf.matmul(x, W_1) + b 2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                    # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                    # Output of linear layer.
```

```
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
```

What are the metrics of success?

Variety of specialized extensions built over the framework

"User level" code

Acceptable performance with respect to state-of-the-art

Extensibility

Optimization algorithms

Momentum, AdaGrad, AdaDelta, Adam E.g., parameter updates in momentum are based on accumulated state over multiple iterations

Difficult to implement extensible optimization algorithms in parameter servers

Extensibility

Sharding very large models

E.g., Sparse embedding layers

Shard embedding layer across parameter server tasks Encode incoming indices as tensors, and ship to the appropriate shard

Extensibility

Use queues to coordinate the execution of workers

Synchronous replication Straggler mitigation with backup workers

Competitive training times on single node

	Training step time (ms)			
Library	AlexNet	Overfeat	OxfordNet	GoogleNet
Caffe 38	324	823	1068	1935
Neon 58	87	211	320	270
Torch [17]	81	268	529	470
TensorFlow	81	279	540	445

Key results

Extensibility matters!

Figure 7: Baseline throughput for synchronous replication with a null model. Sparse accesses enable TensorFlow to handle larger models, such as embedding matrices ($\S4.2$).

Key results

Extensibility matters!

Figure 8: Results of the performance evaluation for Inception-v3 training (§6.3). (a) TensorFlow achieves slightly better throughput than MXNet for asynchronous training. (b) Asynchronous and synchronous training throughput increases with up to 200 workers. (c) Adding backup workers to a 50-worker training job can reduce the overall step time, and improve performance even when normalized for resource consumption.

Limitations and scope for improvement

TF's high-level programming model is tightly coupled with its execution model

Translate TF programs to more efficient executables using compilation to hide translation

TF dataflow graphs are static

Key runtime decisions, such as number of PS shards, seem to require manual specification

Can these be automatically deduced based on workload characteristics?