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Join Optimization

Calculate Total Tax Owed  
For ‘Manager I’ Employees

SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
      tax.country = sal.country AND
       emp.position = ‘Manager I’

emp_id position country

1 Manager II USA

2 Engineer I CAN

3 Engineer II USA

4 … ..

sal_id position salary

1 Manager I 120000.00

2 Manager II 150000.00

3 Engineer I 78000.00

4 Engineer II 91000.00

tax_id country rate

1 USA 0.32

2 CAN 0.45

3 CHN 0.17

4 … …



Join Sequence
Calculate Total Tax Owed  

For ‘Manager I’ Employees

SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
      tax.country = sal.country AND
       emp.position = ‘Manager I’

{S,E,T}

E S

T

{S,E}

T

c1 
100

c2 
200

Find the sequence of joins with minimal cumulative cost



“Imagine yourself standing in front of an exquisite 
buffet filled with numerous delicacies.  Your goal is to 

try them all out, but you need to decide in what 
order.  What exchange of tastes will maximize the 

overall pleasure of your palate?   

…That is the type of problem that query optimizers 
are called to solve.”

— Yannis Ioannidis



Dynamic Programming
SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
      tax.country = sal.country  AND
      emp.position = ‘Manager I’

Table subset Best plan Cost

{E} Index on “position” <cost estimate>

{S} File scan …

{T} File scan …

{E,S} Min{ NestedLoopJoin, 
SortMergeJoin }

<increasingly inaccurate 
estimate>

{E,T} … …

{S,T} … …

{E,S,T} … …
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Key Ideas
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1. Observe a native optimizer 
2. Train deep Q-learning model 
3. Allows fine-tuning on real execution

Generalize to unseen queries 
Adapt to workload/hardware 

Efficient planning (by 10x—10,000x) 
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Markov Decision Process
• States: Query graph 

• Actions: a valid join 

• Reward: Negative cost of the join 

• Policy 𝜋:  Given a graph, select a join.

𝜋*(s) = arg max q(s,a)



Q-network
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Q-network
q_approx(s,a) ≈ q(s,a)

“(Approximately) How valuable is it to make join a,  

over unjoined relations s?”

 q_approx(s,a) 

Join Sequences Estimate Long Term CostFunction Approximator

Input  
Layer

Hidden  
Layers

Output  
Layer
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Collecting Data

HashJoin

IndexJoin

HashJoin 

T1 T2

T3

T4

DP emits best plan  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“Decision is optimal for eventually  
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HashJoin 

T3IndexJoin

T1 T2

“Decision is optimal for eventually  
joining T1…T4 with cost V*”HashJoin 

T3IndexJoin

T1 T2

HashJoin 

T4

Key Insight  
In QO, we have an oracle —— 

lots of optimal decisions to learn from! 
(unlike most RL tasks)
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Real ExecutionCost Model

LogicalPlan 
  .stats

Incorporating Feedback

SELECT *  
FROM …

Runtimes

SELECT *  
FROM …

Costs

Inexpensive simulator (~1ms) 
Inaccurate

Expensive to gather 
More accurate

Joined, NextJoin, Cost 

(ES, T(ES), 1e7) 
(ET, (ET)S, 2e7) 
...

Joined, NextJoin, Runtime 

(ES, T(ES), 1000ms) 
(ET, (ET)S, 500ms) 
...

Train on costs, optionally fine-tune on runtimes
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Learning in Databases
B-tree, hash table, 

bloom filters 
(SIGMOD ’18)

Join optimization 
(our work; in submission)

Cardinality estimation
Learned Cardinalities: Estimating Correlated Joins with Deep Learning 
CIDR ’19 

Plan enumeration
This work; Marcus et al., 2018; Ortiz et al., 2019;

End-to-end
SageDB, CIDR ’19 
Towards a Hands-Free Query Optimizer through Deep Learning 
(position paper) CIDR ‘19

DB tuning 
(SIGMOD ’17)



Learning in Databases
B-tree, hash table, 

bloom filters 
(SIGMOD ’18; Brain)

Join optimization 
(our work; in submission)

Cardinality estimation
Learned Cardinalities: Estimating Correlated Joins with Deep Learning 
CIDR ’19 (to appear)

Plan enumeration
This work; Marcus et al., Arxiv 2018; …

End-to-end
Towards a Hands-Free Query Optimizer through Deep Learning 
(position paper) CIDR ‘19

DB tuning 
(SIGMOD ’17; CMU)Can ML replace 40+ years of programmed heuristics 

with data-driven heuristics?



Discussion
• In DB context, possible/how to explore?  

(disastrous plans exist) 

• Breaking free from faulty cost model 

• Generalizing query optimization to program 
optimization


