Learning to Optimize Join
Queries with Deep RL

Join Optimization
DQ: Deep Q-learning for join optimization

Discussion

CS294 Al-Sys
Presented by: Zongheng Yang
zongheng@berkeley.edu

oin Optimization

Calculate Total Tax Owed
For ‘'Manager I' Employees

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

(((0

emp_id position country

1 Manager II USA
p) Engineer I CAN
3 Engineer II USA
4

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country

Join Sequence

Calculate Total Tax Owed
For ‘Manager I' Employees

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

. ’01

100 / 2C020

Find the sequence of joins with minimal cumulative cost

“Imagine yourself standing in front of an exquisite
buffet filled with numerous delicacies. Your goal is to
try them all out, but you need to decide in what
order. What exchange of tastes will maximize the
overall pleasure of your palate?

...That is the type of problem that query optimizers
are called to solve.”

— Yannis loannidis

Dynamic Programming

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

Table subset Best plan Cost

{E} Index on “position” <cost estimate>
{S} File scan
{T} File scan

{E,S} Min{ NestedLoopJoin, <increasingly inaccurate

SortMeraeJoin } estimate>
{E,T}
{5,T}

{E,S, T}

Key ldeas

This work: DQ, a learned join optimizer

Key ldeas

This work: DQ, a learned join optimizer

1. Observe a native optimizer
2. Train deep Q-learning model
3. Allows fine-tuning on real execution

Key ldeas

This work: DQ, a learned join optimizer

1. Observe a native optimizer
2. Train deep Q-learning model
3. Allows fine-tuning on real execution

Generalize to unseen queries

Adapt to workload/hardware
Efficient planning (by 10x—10,000x)

Outline

DQ: Deep Q-learning for join optimization

Markov Decision Process

States: Query graph
Actions: a valid join
Reward: Negative cost of the join

Policy m: Given a graph, select a join.

IT*(s) = arg max q(s,a)

Q-network

Q-network

g_approx(s,a) = gq(s,a)

Q-network

g_approx(s,a) = gq(s,a)

Join Sequences Function Approximator Estimate Long Term Cost

(ES,T(ES),5.14) —

(ST, (ST)E,10.96) NN 8.—’ g_approx(s,a)
(SE,(SE)T,1.45) —_
Input Hidden Output

Layer Layers Layer

Q-network

g_approx(s,a) = gq(s,a)

Join Sequences Function Approximator Estimate Long Term Cost

(ES,T(ES),5.14) —

(ST, (ST)E,10.96) NN 8.—’ g_approx(s,a)
(SE,(SE)T,1.45) —

Input Hidden Output

Layer Layers Layer

“(Approximately) How valuable is it to make join a,

over unjoined relations s?”

Collecting Data

HashJoin

N

HashJoin | :T4:

/\..
IndexJoin| :T3:

AN
T T

DP emits best plan
with optimal
cumulative cost V*

Collecting Data

ashJoin # “Decision I;jeXJo\in is optimal for eventually
/. X“ T1E T joining T1...T4 with cost V*”
HashJoin | :i14: 0 eeiie
/_\...
IndexJoin| :T3:
T T

DP emits best plan
with optimal
cumulative cost V*

Collecting Data

ashJoin » “Decision I;jeXJo\in is optimal for eventually
/. X“ T1E T joining T1...T4 with cost V*”
HashJoin | :i14: 0 eeiie

Z__ M\

IndexJoin ET-3§ HashJoin

/ \ ' ; - 2\ ., is optimal for eventually
=== .oy Decision IndexJoin | T3, L.) Y
'T1: ‘T2 —~ N~ joining T1...T4 with cost V*
T1 T2

DP emits best plan

with optimal

HashJoin
cumulative cost V* Decision Z_ \.. is optimal for eventually
» Hfhh{ 11 joining T1...T4 with cost V*”
IndexJoin ;Tgi

Collecting Data

ey W i Y R e P
IndexJo Key Insight
n/ In QO, we have an oracle — venwal
N lots of optimal decisions to learn from!
with c (unlike most RL tasks)
cumulati ventually

O g ... 14with cost V*”
2\ ..
IndexJoin | T3,

Incorporating Feedback

Cost Model

SELECT *
FROM ..

e s LogicalPlan
h = .Stats

Costs

Incorporating Feedback

Cost Model Real Execution
SELECT * SELECT *
T - @ @
— .~' LogicalPlan — t !
o e | .Stats =g SRR Iy d
Costs Runtimes @ @ @

Incorporating Feedback

Cost Model Real Execution
SELECT * SELECT *
T)
s LogicalPlan
h |~ .stats h
Costs Runtimes

Inexpensive simulator (~1ms) Expensive to gather

Inaccurate More accurate

Incorporating Feedback

Cost Model Real Execution
SELECT * SELECT *
T) @
s LogicalPlan
h |~ .stats h

Runtimes

Expensive to gather

Inexpensive simulator (~1ms)

Inaccurate More accurate

iJoined, NextJoin, Cost i iJoined, NextJoin, Runtime i
(ES, T(ES), 1e7) | '(ES, T(ES), 1000ms)

E(ET, (ET)S, 2e7) i E(ET, (ET)S, 500ms)

__

Train on costs, optionally fine-tune on runtimes

Outline

Join Optimization
DQ: Deep Q-learning for join optimization

Discussion

L earning in Databases

The Case for Learned Index Structures B-tree hash table
1 1
Tim Kraska® Alex Beutel Ed H. Chi Jeffrey Dean Neoklis Polyzotis :
MIT Google, Inc. Google, Inc. Google, Inc. Google, Inc. b | oom fl |te rs
kraska@mit.edu abeutel@google.com edchi@google.com jeff@google.com npoly@google.com (S | G M O D 1 1 8)

Automatic Database Management System Tuning Through

Large-scale Machine Learnin :
arge-scaie nac e Lea g DB tunlng
!
Dana Van Aken Andrew Pavlo Geoffrey J. Gordon Bohan Zhang (S | G M O D 1 7)
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Peking University

dvanaken@cs.cmu.edu pavio@cs.cmu.edu ggordon@cs.cmu.edu bohan@pku.edu.cn

Join optimization

Learning to Optimize Join Queries With Deep Reinforcement Learning _ T
(our work; in submission)

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, lon Stoica
(Submitted on 9 Aug 2018)

" Cardinality estimation
cardinality cost ﬁEQ\ Learned Cardinalities: Estimating Correlated Joins with Deep Learning
SELECT ... estimation model /[X]\ T CIBR™
FROM R,S,T T S _
WHERE ... 1 R Plan enumeration
plan space
enumeration This work; Marcus et al., 2018; Ortiz et al., 2019;
End-to-end
Figure 1: Traditional query optimizer architecture SageDB, CIDR"19

Towards a Hands-Free Query Optimizer through Deep Learning
(position paper) CIDR 19

The Case for Learned Index Structures B-tree hash table

Tim Kraska Alex Beutel Ed H. Chi Jeffrey Dean Neoklis Polyzotis :
MIT Google, Inc. Google, Inc. Google, Inc. Google, Inc. b I oom fl |te IS
kraska@mit.edu abeutel@google.com edchi@google.com jeff@google.com npoly@google.com (S | G M O D 1 1 8 . B ra | n)
1

Automatic Database Management System Tuning Through

. Cardinality estimation

cardinalits cost /[X]\ Learned Cardinalities: Estimating Correlated Joins with Deep Learning
ardinality OSt INL ,
SELECT ... estimation model O T CIDR 19 (to appear)
FROM R,S,T N |
WHERE R Plan enumeration

- plan space N

N enumeration B This work; Marcus et al., Arxiv 2018; ...

End-to-end

Figure 1: Traditional query optimizer architecture Towards a Hands-Free Query Optimizer through Deep Learning

(position paper) CIDR 19

Discussion

* |n DB context, possible/how to explore?
(disastrous plans exist)

» Breaking free from taulty cost model

* Generalizing query optimization to program
optimization

