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oin Optimization

Calculate Total Tax Owed
For ‘'Manager I' Employees

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

(((0

emp_id position country

1 Manager II USA
p) Engineer I CAN
3 Engineer II USA
4

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country




Join Sequence

Calculate Total Tax Owed
For ‘Manager I' Employees

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

. ’01

100 / 2C020

Find the sequence of joins with minimal cumulative cost



“Imagine yourself standing in front of an exquisite
buffet filled with numerous delicacies. Your goal is to
try them all out, but you need to decide in what
order. What exchange of tastes will maximize the
overall pleasure of your palate?

...That is the type of problem that query optimizers
are called to solve.”

— Yannis loannidis



Dynamic Programming

SELECT SUM(sal.salary*tax.rate)

FROM emp, sal, tax

WHERE emp.position = sal.position AND
tax.country = sal.country AND
emp.position = ‘Manager I’

Table subset Best plan Cost

{E} Index on “position” <cost estimate>
{S} File scan
{T} File scan

{E,S} Min{ NestedLoopJoin, <increasingly inaccurate

SortMeraeJoin } estimate>
{E,T}
{5,T}

{E,S, T}
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Key ldeas

This work: DQ, a learned join optimizer

1. Observe a native optimizer
2. Train deep Q-learning model
3. Allows fine-tuning on real execution

Generalize to unseen queries

Adapt to workload/hardware
Efficient planning (by 10x—10,000x)




Outline

DQ: Deep Q-learning for join optimization



Markov Decision Process

States: Query graph
Actions: a valid join
Reward: Negative cost of the join

Policy m: Given a graph, select a join.

IT*(s) = arg max q(s,a)



Q-network



Q-network

g_approx(s,a) = gq(s,a)
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Q-network

g_approx(s,a) = gq(s,a)

Join Sequences Function Approximator Estimate Long Term Cost

(ES,T(ES),5.14)  —

(ST, (ST)E,10.96) NN 8.—’ g_approx(s,a)
(SE,(SE)T,1.45)  —

Input Hidden Output

Layer Layers Layer

“(Approximately) How valuable is it to make join a,

over unjoined relations s?”
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Collecting Data

ashJoin » “Decision I;jeXJo\in is optimal for eventually
/. X“ T1E T joining T1...T4 with cost V*”
HashJoin | :i14: 0 eeiie

Z__ M\

IndexJoin ET-3§ HashJoin

/ \ ' ; - 2\ ., is optimal for eventually
=== .oy Decision IndexJoin | T3, L. ) Y
'T1: ‘T2 —~ N~ joining T1...T4 with cost V*
T1 T2

DP emits best plan

with optimal

HashJoin
cumulative cost V* Decision Z_ \.. is optimal for eventually
» Hfhh{ 11 joining T1...T4 with cost V*”
IndexJoin ;Tgi




Collecting Data

ey W i Y R e P
IndexJo Key Insight
n/ In QO, we have an oracle — venwal
N lots of optimal decisions to learn from!
with c (unlike most RL tasks)
cumulati ventually

O g ... 14with cost V*”
2\ ..
IndexJoin | T3,




Incorporating Feedback

Cost Model

SELECT *
FROM ..

e s LogicalPlan
h = .Stats

Costs




Incorporating Feedback

Cost Model Real Execution
SELECT * SELECT *
T - @ @
— .~' LogicalPlan — t !
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Incorporating Feedback

Cost Model Real Execution
SELECT * SELECT *
T ) @
# s LogicalPlan #
h |~ .stats h

Runtimes

Expensive to gather

Inexpensive simulator (~1ms)

Inaccurate More accurate

iJoined, NextJoin, Cost i iJoined, NextJoin, Runtime i
(ES, T(ES), 1e7) | '(ES, T(ES), 1000ms)

E(ET, (ET)S, 2e7) i E(ET, (ET)S, 500ms)

______________________________________________________________

Train on costs, optionally fine-tune on runtimes
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The Case for Learned Index Structures B-tree hash table
1 1
Tim Kraska® Alex Beutel Ed H. Chi Jeffrey Dean  Neoklis Polyzotis :
MIT Google, Inc. Google, Inc. Google, Inc. Google, Inc. b | oom fl |te rs
kraska@mit.edu  abeutel@google.com edchi@google.com jeff@google.com  npoly@google.com (S | G M O D 1 1 8)

Automatic Database Management System Tuning Through

Large-scale Machine Learnin :
arge-scaie nac e Lea g DB tunlng
!
Dana Van Aken Andrew Pavlo Geoffrey J. Gordon Bohan Zhang (S | G M O D 1 7)
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Peking University

dvanaken@cs.cmu.edu  pavio@cs.cmu.edu  ggordon@cs.cmu.edu bohan@pku.edu.cn

Join optimization

Learning to Optimize Join Queries With Deep Reinforcement Learning _ T
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" Cardinality estimation
cardinality cost ﬁEQ\ Learned Cardinalities: Estimating Correlated Joins with Deep Learning
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Figure 1: Traditional query optimizer architecture SageDB, CIDR"19

Towards a Hands-Free Query Optimizer through Deep Learning
(position paper) CIDR 19
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Discussion

* |n DB context, possible/how to explore?
(disastrous plans exist)

» Breaking free from taulty cost model

* Generalizing query optimization to program
optimization



