
Learning to Optimize Join
Queries with Deep RL

Join Optimization

DQ: Deep Q-learning for join optimization

Discussion

CS294 AI-Sys
Presented by: Zongheng Yang

zongheng@berkeley.edu

Join Optimization

Calculate Total Tax Owed
For ‘Manager I’ Employees

SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
 tax.country = sal.country AND
 emp.position = ‘Manager I’

emp_id position country

1 Manager II USA

2 Engineer I CAN

3 Engineer II USA

4 … ..

sal_id position salary

1 Manager I 120000.00

2 Manager II 150000.00

3 Engineer I 78000.00

4 Engineer II 91000.00

tax_id country rate

1 USA 0.32

2 CAN 0.45

3 CHN 0.17

4 … …

Join Sequence
Calculate Total Tax Owed

For ‘Manager I’ Employees

SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
 tax.country = sal.country AND
 emp.position = ‘Manager I’

{S,E,T}

E S

T

{S,E}

T

c1
100

c2
200

Find the sequence of joins with minimal cumulative cost

“Imagine yourself standing in front of an exquisite
buffet filled with numerous delicacies. Your goal is to

try them all out, but you need to decide in what
order. What exchange of tastes will maximize the

overall pleasure of your palate?

…That is the type of problem that query optimizers
are called to solve.”

— Yannis Ioannidis

Dynamic Programming
SELECT SUM(sal.salary*tax.rate)
FROM emp, sal, tax
WHERE emp.position = sal.position AND
 tax.country = sal.country AND
 emp.position = ‘Manager I’

Table subset Best plan Cost

{E} Index on “position” <cost estimate>

{S} File scan …

{T} File scan …

{E,S} Min{ NestedLoopJoin,
SortMergeJoin }

<increasingly inaccurate
estimate>

{E,T} … …

{S,T} … …

{E,S,T} … …

Key Ideas
This work: DQ, a learned join optimizer

Key Ideas
This work: DQ, a learned join optimizer
1. Observe a native optimizer
2. Train deep Q-learning model
3. Allows fine-tuning on real execution

Key Ideas
This work: DQ, a learned join optimizer
1. Observe a native optimizer
2. Train deep Q-learning model
3. Allows fine-tuning on real execution

Generalize to unseen queries
Adapt to workload/hardware

Efficient planning (by 10x—10,000x)

Outline
Join Optimization

DQ: Deep Q-learning for join optimization

Discussion

Markov Decision Process
• States: Query graph

• Actions: a valid join

• Reward: Negative cost of the join

• Policy 𝜋: Given a graph, select a join.

𝜋*(s) = arg max q(s,a)

Q-network

Q-network
q_approx(s,a) ≈ q(s,a)

Q-network
q_approx(s,a) ≈ q(s,a)

 q_approx(s,a)

Join Sequences Estimate Long Term CostFunction Approximator

Input
Layer

Hidden
Layers

Output
Layer

Q-network
q_approx(s,a) ≈ q(s,a)

“(Approximately) How valuable is it to make join a,

over unjoined relations s?”

 q_approx(s,a)

Join Sequences Estimate Long Term CostFunction Approximator

Input
Layer

Hidden
Layers

Output
Layer

Collecting Data

HashJoin

IndexJoin

HashJoin

T1 T2

T3

T4

DP emits best plan  
with optimal

cumulative cost V*

Collecting Data

HashJoin

IndexJoin

HashJoin

T1 T2

T3

T4

DP emits best plan  
with optimal

cumulative cost V*

IndexJoin

T1 T2
“Decision is optimal for eventually

joining T1…T4 with cost V*”

Collecting Data

HashJoin

IndexJoin

HashJoin

T1 T2

T3

T4

DP emits best plan  
with optimal

cumulative cost V*

IndexJoin

T1 T2
“Decision is optimal for eventually

joining T1…T4 with cost V*”

“Decision is optimal for eventually
joining T1…T4 with cost V*”

HashJoin

T3IndexJoin

T1 T2

“Decision is optimal for eventually
joining T1…T4 with cost V*”HashJoin

T3IndexJoin

T1 T2

HashJoin

T4

Collecting Data

HashJoin

IndexJoin

HashJoin

T1 T2

T3

T4

DP emits best plan  
with optimal

cumulative cost V*

IndexJoin

T1 T2
“Decision is optimal for eventually

joining T1…T4 with cost V*”

“Decision is optimal for eventually
joining T1…T4 with cost V*”

HashJoin

T3IndexJoin

T1 T2

“Decision is optimal for eventually
joining T1…T4 with cost V*”HashJoin

T3IndexJoin

T1 T2

HashJoin

T4

Key Insight
In QO, we have an oracle ——

lots of optimal decisions to learn from!
(unlike most RL tasks)

Cost Model

LogicalPlan
 .stats

Incorporating Feedback

SELECT *
FROM …

Costs

Real ExecutionCost Model

LogicalPlan
 .stats

Incorporating Feedback

SELECT *
FROM …

Runtimes

SELECT *
FROM …

Costs

Real ExecutionCost Model

LogicalPlan
 .stats

Incorporating Feedback

SELECT *
FROM …

Runtimes

SELECT *
FROM …

Costs

Inexpensive simulator (~1ms)
Inaccurate

Expensive to gather
More accurate

Real ExecutionCost Model

LogicalPlan
 .stats

Incorporating Feedback

SELECT *
FROM …

Runtimes

SELECT *
FROM …

Costs

Inexpensive simulator (~1ms)
Inaccurate

Expensive to gather
More accurate

Joined, NextJoin, Cost

(ES, T(ES), 1e7)
(ET, (ET)S, 2e7)
...

Joined, NextJoin, Runtime

(ES, T(ES), 1000ms)
(ET, (ET)S, 500ms)
...

Train on costs, optionally fine-tune on runtimes

Outline
Join Optimization

DQ: Deep Q-learning for join optimization

Discussion

Learning in Databases
B-tree, hash table,

bloom filters
(SIGMOD ’18)

Join optimization
(our work; in submission)

Cardinality estimation
Learned Cardinalities: Estimating Correlated Joins with Deep Learning
CIDR ’19

Plan enumeration
This work; Marcus et al., 2018; Ortiz et al., 2019;

End-to-end
SageDB, CIDR ’19
Towards a Hands-Free Query Optimizer through Deep Learning
(position paper) CIDR ‘19

DB tuning
(SIGMOD ’17)

Learning in Databases
B-tree, hash table,

bloom filters
(SIGMOD ’18; Brain)

Join optimization
(our work; in submission)

Cardinality estimation
Learned Cardinalities: Estimating Correlated Joins with Deep Learning
CIDR ’19 (to appear)

Plan enumeration
This work; Marcus et al., Arxiv 2018; …

End-to-end
Towards a Hands-Free Query Optimizer through Deep Learning
(position paper) CIDR ‘19

DB tuning
(SIGMOD ’17; CMU)Can ML replace 40+ years of programmed heuristics

with data-driven heuristics?

Discussion
• In DB context, possible/how to explore?

(disastrous plans exist)

• Breaking free from faulty cost model

• Generalizing query optimization to program
optimization

