Learned Cardinalities: Estimating Correlated Joins with Deep Learning

Cardinality estimation problem what it is + why is it hard

Key ideas

Discussion

CS294 AI-Sys Presented by: Zongheng Yang zongheng@berkeley.edu

Single-table

SELECT * FROM sal
WHERE sal.position = 'Manager I'
AND sal.salary >100,000

emp_id	position	country
1	Manager II	USA
2	Engineer I	CAN
3	Engineer II	USA
4		

sal_id	position	salary
1	Manager I	120000.00
2	Manager II	150000.00
3	Engineer I	78000.00
4	Engineer II	91000.00

tax_id	country	rate
1	USA	0.32
2	CAN	0.45
3	CHN	0.17
4		

Single-table

SELECT * FROM sal
WHERE sal.position = 'Manager I'
AND sal.salary >100,000

Likely! (correlation)

emp_id	position	country
1	Manager II	USA
2	Engineer I	CAN
3	Engineer II	USA
4		

sal_id	position	salary
1	Manager I	120000.00
2	Manager II	150000.00
3	Engineer I	78000.00
4	Engineer II	91000.00

tax_id	country	rate
1	USA	0.32
2	CAN	0.45
3	CHN	0.17
4		

Single-table

SELECT * FROM sal
WHERE sal.position = 'Manager I'
AND sal.salary >100,000

SELECT * FROM twitter_graph
WHERE following = 'Michael Jordan'

SELECT * FROM cars
WHERE make = 'Honda'
AND model = 'Jetta'

Likely!	(correlation)
Most!	(uniformity)

Anti-correlation!

emp_id	position	country
1	Manager II	USA
2	Engineer I	CAN
3	Engineer II	USA
4		

sal_id	position	salary
1	Manager I	120000.00
2	Manager II	150000.00
3	Engineer I	78000.00
4	Engineer II	91000.00

tax_id	country	rate
1	USA	0.32
2	CAN	0.45
3	CHN	0.17
4		

Single-table

		emp_id	position	country
SELECT * FROM sal		1	Manager II	USA
WHERE sal.position = 'Manager I'	Likely! (correlation)	2	Engineer I	CAN
AND sal.salary >100,000		3	Engineer II	USA
		4		
SELECT * FROM twitter_graph WHERE following = 'Michael Jordan'	Most! (uniformity)	sal_id	position	salary
		1	Manager I	120000.00
SELECT * FROM cars		2	Manager II	150000.00
WHERE make = 'Honda'	Anti-correlation!	3	Engineer I	78000.00
AND model = 'Jetta'		4	Engineer II	91000.00
		<pre>tax_id</pre>	country	rate
		1	USA	0.32
		2	CAN	0.45
Reduction(query) = $R(pred 1)$	* R(pred 2)	3	CHN	0.17

•••

Reduction(col=val) = 1 / num_distinct(col)

Joins

SELECT	* FROM emp, sal	
WHERE	<pre>emp.position = 'Manager I</pre>	'
AND	sal.salary >100,000	

emp_id	position	country		
1	Manager II	USA		
2	Engineer I	CAN		
3	Engineer II	USA		
4				

sal_id	position	salary		
1	Manager I	120000.00		
2	Manager II	150000.00		
3	Engineer I	78000.00		
4	Engineer II	91000.00		

tax_id	country	rate		
1	USA	0.32		
2	CAN	0.45		
3	CHN	0.17		
4				

Joins

SELEC	* FROM emp, sal	
WHERE	<pre>emp.position = 'Manager I</pre>	'
AND	sal.salary >100,000	

"correlated joins"

emp_id	position	country		
1	Manager II	USA		
2	Engineer I	CAN		
3	Engineer II	USA		
4				

sal_id	position	salary
1	Manager I	120000.00
2	Manager II	150000.00
3	Engineer I	78000.00
4	Engineer II	91000.00

tax_id	country	rate
1	USA	0.32
2	CAN	0.45
3	CHN	0.17
4		

Joins

}

	emp_ra	posicion	country
SELECT * FROM emp, sal	1	Manager II	USA
WHERE emp.position = 'Manager I' "Correlated joins"	2	Engineer I	CAN
AND sal.salary >100,000	3	Engineer II	USA
	4		
	sal_id	position	salary
	sal_id 1	position Manager I	salary 120000.00
<pre>Reduction(join) = 1 / max {</pre>	sal_id 1 2		
<pre>Reduction(join) = 1 / max { Cardinality("emp where emp.pos = Mgr1"),</pre>	sal_id 1 2 3	Manager I	120000.00

tax_id	country	rate
1	USA	0.32
2	CAN	0.45
3	CHN	0.17
4		

Cardinality("sal where sal.sal > 100K")

How bad is it?

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

VLDB'15, Leis et al., How Good Are Query Optimizers, Really?

How bad is it?

VLDB'15, Leis et al., How Good Are Query Optimizers, Really?

• Recall: uniformity & independence assumptions are bad

- Recall: uniformity & independence assumptions are bad
- What if we give a model:

Features	Labels (cardinality)
following = Jordan	1 million (likely)
following = Nadorj	10 (unlikely)
age < 20 && salary > 100K	1K (unlikely)
age > 30 && salary > 100K	100K (likely)

- Recall: uniformity & independence assumptions are bad
- What if we give a model:

Features	Labels (cardinality)
following = Jordan	1 million (likely)
following = Nadorj	10 (unlikely)
age < 20 && salary > 100K	1K (unlikely)
age > 30 && salary > 100K	100K (likely)

• It should then learn to fix unif./indep. assumptions!

• This is exactly what they did!

• This is exactly what they did!

 SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5

 Table set {[0101...0], [0010...1]}
 Join set {[0010]}
 Predicate set {[10000100...2], [00010010010010010010014]}

 table id
 samples
 join id
 column id
 value
 operator id

Figure 2: Query featurization as sets of feature vectors.

• This is exactly what they did!

"Our query generator first **uniformly draws the number of joins** $|Jq| (0 \le |Jq| \le 2)$ and then uniformly selects a table that is referenced by at least one table. For |Jq| > 0, it then **uniformly selects a new table** that can join with the current set of tables (initially only one), adds the corresponding join edge to the query and (overall) repeats this process |Jq| times. For each base table t in the query, it then **uniformly draws the number of predicates** $|P t q| (0 \le |P t q| \le num non-key columns)$. For each predicate, it **uniformly draws the predicate type** (=, <, or >) and **selects a literal (an actual value) from the corresponding column.**"

Figure 2: Query featurization as sets of feature vectors.

Assumptions

Assumptions

Figure 2: Query featurization as sets of feature vectors.

Assumptions

Figure 2: Query featurization as sets of feature vectors.

- Assume
 - Static column range (2010 -> 0.72); no appends
 - Static DB schema (same set of tables, cols)
 - Training data MUST cover well desired queries
 - Quality depends on ACTUAL execution on a small sample from each table, at query time

Results

	median	90th	95th	99th	max	mean
PostgreSQL	7.93	164	1104	2912	3477	174
Random Samp.	11.5	198	4073	22748	23992	1046
IB Join Samp.	1.59	150	3198	14309	15775	590
MSCN	3.82	78.4	362	927	1110	57.9

 Table 4: Estimation errors on the JOB-light workload.

Results

	median	90th	95th	99th	max	mean
PostgreSQL	7.93	164	1104	2912	3477	174
Random Samp.	11.5	198	4073	22748	23992	1046
IB Join Samp.	1.59	150	3198	14309	15775	590
MSCN	3.82	78.4	362	927	1110	57.9

Table 4: Estimation errors on the JOB-light workload.

Up to 4 joins (5 tables):

3x better than Postgres @max and @mean

What is actually learned?

What is actually learned?

Reduction(join) = 1 / max {

}

Cardinality("emp where emp.pos = Mgr1"),

Cardinality("sal where sal.sal > 100K")

What is actually learned?

```
Reduction(join) = 1 / max {
    Cardinality("emp where emp.pos = Mgr1"),
    Cardinality("sal where sal.sal > 100K")
}
```

- My interpretation
 - It learns a *dampened* version of this formula per column/predicate combination
 - This "solves" correlation
 - Deep nets are great at capturing patterns

Discussion

• Vision and Control - is it useful to have "vision" in understanding databases' data?

Levine et al., Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

- Tree/graph neural nets needed (or even helpful) here?
- Do learning solutions have a place for "easy" cases? (How to afford data/training/operational costs?)