Learned Cardinalities: Estimating
Correlated Joins with Deep Learning

Cardinality estimation problem
what it is + why is it hard

Key ideas

Discussion

CS294 Al-Sys
Presented by: Zongheng Yang
zongheng@berkeley.edu

Cardinality Estimation

Single-table

SELECT * FROM sal
WHERE sal.position = ‘Manager I’
AND sal.salary >100,000

emp_id position country

1 Manager IT USA
p) Engineer I CAN
3 Engineer II USA
4

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country

Cardinality Estimation

Single-table

position country

SELECT * FROM sal Manager II USA
WHERE sal.position = ‘Manager I’ Likely! (correlation) Engineer I CAN
AND sal.salary >100,000 Engineer II USA

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country

Cardinality Estimation

Single-table

emp_id position country

SELECT * FROM sal 1 Manager II USA

WHERE sal.position = ‘Manager I’ Likely! (correlation)) Engineer I CAN

AND sal.salary >100,000 3 Engineer II USA
4

SELECT * FROM twitter graph
WHERE following = ‘Michael Jordan’

position

Manager T 120000 .00

Most! (uniformity)

SELECT * FROM cars Manager II 150000 .00
: > Engineer I 78000.00

WHERE make = ‘Honda’ = |
Antl Correlatlon Engineer II 91000 .00

AND model = ‘Jetta’

country

Cardinality Estimation

Single-table

position country

SELECT * FROM sal Manager II USA
WHERE sal.position = ‘Manager I’ Likely! (correlation) Engineer I CAN
AND sal.salary >100,000 Engineer II USA

SELECT * FROM twitter graph
WHERE following = ‘Michael Jordan’

position

Manager T 120000 .00

Most! (uniformity)

SELECT * FROM cars Manzjlger 1T 150000 .00
WHERE make = ‘Honda’ Aﬂti-CorrelatiOﬂ! Eng.lneer I 78000.00
AND model = ‘Jetta’ Engineer II 91000.00

country

Reduction(query) = R(pred 1) * R(pred 2)

Reduction(col=val) = 1 / num distinct(col)

Cardinality Estimation

Joins

SELECT * FROM emp, sal
WHERE emp.position = ‘Manager I’
AND sal.salary >100,000

emp_id position country

1 Manager IT USA
p) Engineer I CAN
3 Engineer 1T USA
4

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country

Cardinality Estimation

Joins

position country

SELECT * FROM emp, sal Manager II USA
WHERE emp.position = ‘Manager I’ “‘correlated joins” Engineer I CAN
AND sal.salary >100,000 Engineer II USA

position

Manager T 120000 .00

Manager II 150000 .00
Engineer I 78000.00
Engineer IT 91000.00

country

Cardinality Estimation

Joins

emp_id position country

SELECT * FROM emp, sal 1 Manager II USA

WHERE emp.position = ‘Manager I’ “‘correlated joins”) Engineer I CAN

AND sal.salary >100,000 3 Engineer II USA
4

position

Manager T 120000 .00

Reduction(join) = 1 / max {

Manager II 150000 .00
. . . ’ Engineer I 78000 .00
Cardinality(“emp where emp.pos = Mgrl”), oteon 1 51000, 06

Cardinality(“sal where sal.sal > 100K")

country

[log scale] overestimation —

« underestimation

How bad is it?

PostgreSQL DBMS A DBMS B DBMS C HyPer
s 1 1 : : 1 . 1 1 4 T H H . . H H
1e4 - — : —1 : !
[S N R T B i bl o
] t M s H i : + s I . : H
: i b A T - : Cot
te24 1 i - S I — ' [|
o : 1 1 S (I ' P !
H s T ' : T T <+ . i !
! T H - : " R ! - 1
e e =511 —EBH e
! B i = T i -+
: i
1e24 ' ¢ ‘ \ I T 1 e :
1+ J : I
. ' -]
' T : . PoT
e - T . T . i !
] T ! ' [! ' -
—_— :] T 1 ——
95th percentile : : + T
1€6 - 75th percentile
median : T -
25th percentile - 4 1 i e .
5th percentile [[!
198 || 1 1 | || 1 1 || 1 I | 1 | | 1 || || I | || | 1 || | || || 1

)
1 |
o 12 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6
number of joins

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

VLDB’15, Leis et al., How Good Are Query Optimizers, Really?
4

[log scale] overestimation —

« underestimation

How bad is it?

PostgreSQL DBMS A DBMS B DBMS C HyPer
: 1 0] : . 1 4 T . H . H
1e4 - S vood +—1 — !
R Lo AR i b
; f t ' i E H i E I s ;] : . :
1e24 P : ' cod Lo i P o
I ' i . | - P by " N .
L $ [} . ; : T n + i i
! E 3 . : i ! I - ! $
LT 1 ~+-=H g o B A —EH + T
: : i
1te24 ' 4 T - _ ; H
3 T - 1 l
: S T ; ‘ \
: j § | |_
1e4 - . i f T
T ' ! -
95th percentile [+ T
1 66 - 75th percentile .
median - :
25th percentile - _ : i .
5th percentile i [: E
1 88 1 1 1 1 1 1 1 I 1 1 1 I 1 1 I I I 1 ; : I 1 1 1 1 1
0 2 3 4 5 o 1 2 3 4 6 o 1 2 3 4 5 6 o 1 2 3 4 o 1 3 4 5 6

Figure 3: Quality
the error distribu

For 6-way joins: median 100x off, outliers up to 10/ 8x off

number of joins

plot summarizes

VLDB’15, Leis et al., How Good Are Query Optimizers, Really?

4

Key ldeas

* Recall: uniformity & independence
assumptions are bad

Key ldeas

* Recall: uniformity & independence
assumptions are bad

« What if we give a model:

Features Labels (cardinality)

following = Jordan 1 million (likely)

following = Nadorj 10 (unlikely)
age < 20 && salary > 100K 1K (unlikely)
age > 30 && salary > 100K 100K (likely)

Key ldeas

* Recall: uniformity & independence
assumptions are bad

« What if we give a model:

Features Labels (cardinality)

following = Jordan 1 million (likely)

following = Nadorj 10 (unlikely)
age < 20 && salary > 100K 1K (unlikely)
age > 30 && salary > 100K 100K (likely)

e |t should then learn to fix unif./indep. assumptions!

Key ldeas

* This is exactly what they did!

Key ldeas

* This is exactly what they did!

Cardinality prediction w,,;

4 N\
Sigmoid
Linear
RelLU
Average Linear Concatenate
L) output of each
over set
I __— set module
\ Concat
[
Avg. pool Avg. pool Avg. pool
J/ /I J/

rf 1’ I N ff ll L \\ f/ II I \\
(M| M| p

RelLU RelLU RelLU

Linear Linear Linear

RelLU RelLU RelLU

Linear) Linear) Linear)
g)) .)/ .)/

Table set Tq Join set Jq Predicate set Pq

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5
Predicateset {[100001000.72],[000100100.14]}
column id value operator id

Tableset {[0101...0],[0010...1]} Joinset {[0010]}
table id samples joinid

Figure 2: Query featurization as sets of feature vectors.

6

Key ldeas

* This is exactly what they did!

Cardinality prediction w,,;

()
SHEt "Our query generator first uniformly draws the number of
Linear joins |Jg | (0 < |Jg | < 2) and then uniformly selects a table that is
Rell referenced by at least one table. For |Jq | > 0, it then uniformly
Average Linear Concatenate o)
or o L) output of each selects a new table that can join with the current set of tables
I set module C . ..
\ Concat | — (initially only one), adds the corresponding join edge to the
Avg. podl v 'pool Avg. 500 query and (overall) repeats this process |Jq | times. For each base
R | S — | N . table tin the query, it then uniformly draws the number of
£ L N\ y- L N\ L L °
e W (TR | (T Ram \! predicates [Pt q| (0 < |Ptqg| < num non-key columns). For each
e = Cinoar predicate, it uniformly draws the predicate type (=, <, or >)
RoLU RoLU RoLU and selects a literal (an actual value) from the corresponding
Linear) Linear) Linear) column.”
\)) .)) N))
Table set 7, Join set J,, Predicate set P,

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5
Tableset {[0101...0],[0010...1]} Joinset {[0010]} Predicateset {[100001000.72],[]000100100.141}

table id samples join id column id value operator id

Figure 2: Query featurization as sets of feature vectors.

6

Assumptions

Assumptions

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5
Tableset {[0101...0],[0010...1]} Joinset {[00101]} Predicateset {[100001000.72],[]000100100.141}

table id samples join id column id value operator id

Figure 2: Query featurization as sets of feature vectors.

Assumptions

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5
Tableset {[0101...0],[0010...1]} Joinset {[0010]} Predicateset {[100001000.72],[]000100100.14]}

table id samples join id column id value operator id

Figure 2: Query featurization as sets of feature vectors.

e Assume
» Static column range (2010 -> 0.72); no appends
e Static DB schema (same set of tables, cols)
* Training data MUST cover well desired queries
e Quality depends on ACTUAL execution on a small
sample from each table, at query time

Results

median 90th 95th 99th max mean

PostgreSQL 7.93 164 1104 2912 3477 174
Random Samp. 11.5 198 4073 22748 23992 1046
IB Join Samp. 1.59 150 3198 14309 15775 590
MSCN 3.82 784 362 927 1110 57.9

Table 4: Estimation errors on the JOB-light workload.

Results

median 90th 95th 99th max mean

PostgreSQL 7.93 164 1104 2912 3477 174
Random Samp. 11.5 198 4073 22748 23992 1046
IB Join Samp. 1.59 150 3198 14309 15775 590
MSCN 3.82 784 362 927 1110 57.9

Table 4: Estimation errors on the JOB-light workload.

Up to 4 joins (5 tables):

3x better than Postgres @max and @mean

What is actually learned?

What is actually learneqd?

What is actually learned?

Reduction(join) = 1 / max {
Cardinality(“emp where emp.pos = Mgrl”),
Cardinality(“sal where sal.sal > 100K")

My interpretation
It learns a dampened version of this formula
per column/predicate combination

e This "solves” correlation
 Deep nets are great at capturing patterns

Discussion

 Vision and Control - is it useful to have “vision” in understanding
databases’ data?

|
=l
' conv 5
I}

00
! V\G‘ 1“‘ers><
i R fi
; .
)
¢ %
)
—_—

RelLU

|stride 2

Levine et al., Learning Hand-Eye Coordination for
Robotic Grasping with Deep Learning and Large-
Scale Data Collection

* Tree/graph neural nets needed (or even helpful) here?

» Do learning solutions have a place for “easy” cases? (How to
afford data/training/operational costs?)

10

