A Generalized Framework for Population Based Training

Andrew Tan | CS 294 | Feb 20, 2019
Background

Hyperparameter Optimization

Google Vizier

Population Based Training (PBT)
Hyperparameter Optimization

Success of neural networks often depends on choice of hyperparameters

Variety of algorithms for automatic hyperparameter tuning:
 ● Grid search
 ● Random search
 ● Bandits (Hyperband)
 ● Evolutionary algorithms

Goals:
1. Find better search algorithms
2. Create a framework to reduce overhead
Google Vizier
Vizier: Problem & Solution

A service for black box optimization

Easy to use Scalable State of the Art Available Flexible
Vizier: Key Innovations

Easy to use
- Minimal configurations
- Simple client workflow

Scalable
- Thousands of parallel evaluations / study
- Millions of trials / study

State of the Art
- Suggestion algorithms are modular
Vizier: Takeaways & Limitations

- Reduce the effort required for setting up a hyperparameter tuning experiment
- High flexibility in the setup of the training procedure in the client side
- Performance is limited by the algorithm used
Population Based Training
PBT: Problem & Solution

Hyperparameter tuning prior to PBT:
- Experience
- Random search
- Computationally intensive search processes

Solution: method that trains and optimizes a series of networks with low overhead
- Hybrid of random search and hand-tuning
- Shares inspiration from evolutionary methods
Random Search & Hand Tuning

Random Search
- Trained independently in parallel
- Highest performing model selected after convergence
- Wastes lots of resources

Hand Tuning
- Repeatedly select params, train, and evaluate
- Serial process, time consuming
PBT: Key Innovations

- Start with many networks trained in parallel
- Subsequent trials use information from rest of population
 - Refine hyperparameters
 - Direct computational resources
- Continuously explore and exploit
- Adaptive model, automatic learning
- Warm starts instead of waiting for convergence
PBT: Limitations

- Changes made to the computation graph can be complicated
- Gracefully handling the case of a worker job being preempted by another worker job
- Not extendable to advanced evolution or mutation decisions
Black-box PBT Framework
Problem

1. Find better search algorithms
 - Population Based Training
2. Create a framework to reduce overhead
 - Google Vizier
 - Black-box PBT Framework
Metrics of Success

Train a state-of-the-art WaveNet generative model for human voice synthesis and compare:

- Accuracy
- Sensitivity
- Convergence time

The same outline can be applied to any deep learning application

- Neural machine translation, GANs, reinforcement learning
Key Innovations

- Stateless service
- Black-box, jointly optimize model weights and hyperparameters
- Decision making done by central controller, each trial is small number of steps
- Main Advantages:
 - No need to define hyperparameters in computation graph
 - Allows both differentiable and non-differentiable objectives
 - Allows hyperparameters to be dynamic over time
 - Sufficient scalability and flexibility for low priority workers
 - Flexible: works with most ML model training frameworks
PBT Service Framework

● Trial: continuous training session, configuration defined using protobuf
● Parameters: supports integer, floats, discrete, and categorical values
● Controller: population controller similar to Vizier
 ○ GetNewSuggestion(trials, k): return list of k new trials given existing trials
 ○ GetEarlyStoppingTrials(trials): return list of trials that need to be stopped early given existing trials
● Initiator Based Evolution: simple explore/exploit framework, can be extended
 ○ Fitness representation, reproduction strategy, opponent selection, parent
● Worker: entire training process composed of a trainer and evaluator
 ○ Parent checkpoint, warm start, continuous evaluation of checkpoints
● Training Replay: large population size, many snapshots
● Training Recovery: stateless, recovery of paused or faulty procedures
Key Results

WaveNet Case Study
- Application of PBT on speech synthesis using WaveNet
- Check for accuracy and performance of PBT system
Key Results

Figure 5: Continue training on a single worker after 200000 resources exhausted, starting with the best checkpoint and its corresponding hyperparameters. Lower objective values are better.

Figure 6: Objective Value vs. Training Step: PBT with 20 population size outperforms all other methods. PBT with 5 population size performs in the second place, which shows that bigger population benefits the model accuracy. Lower values of the objective are better.
Figure 7: Learning rate schedules found by different approaches.

Figure 8: Time cost breakdown for different methods.

Figure 9: The average time (seconds) per step varies when the number of steps per trial increases. PBT is slightly more expensive than GP-Bandit at the same number of steps (+0.023s @ 1K and +0.028s @10K), probably due to the extra warm-starting. The shaded area represents the 95% confidence interval.
Conclusion

- General, black-box PBT framework
- Minimal infrastructure and overhead
- No assumptions about architectures or training
- Central controller coordinates asynchronous trials across workers
- Supports dynamic hyperparameter schedules
- Feasible for large scale deep learning
- Scalable and extendable
Future Implications & Research Areas

More than just hyperparameter tuning

Future Research Areas
- Connection with neural architecture search regarding evolutionary methods
- Applying the idea of warm start in other domains
- AutoML - making ML available for non-experts

Discussion
- What other domains can this framework be extended to?
- With the increase in AutoML, what new research problems (opportunities) will that create?