
Designing Neural Network Architectures 
Using Reinforcement Learning

Presented by: Andrew Low 
CS 294 | 2/23/2019



Outline
Problem

Background 

Reformulating the Problem

Key Results

Improvements and Limitations

Discussion and Impact

3

5

9

14

17

18



Context
Neural Networks are powerful and increasingly popular

Many different network architectures exist - without a clear winner

Architecture depends on the domain



Problem
Convolutional neural network architecture design today

- Large search space
- Most novel architectures are hand-designed, motivated by theoretical insights 

and experimental intuition of experts
- Slow and expensive!

How to efficiently find optimal neural net architectures?



Background - Reinforcement Learning Recap
State space S, action space U, and reward 
distribution R. 

Rewards may be delayed and/or sparse - require 
a sequence of correct actions

Goal: Find the optimal policy that maximizes our 
expected reward (Find optimal path on a MDP with 
a finite horizon)



Background - Q Learning
Difficult to know the actual value function, so we approximate the value function 
using Q values

Model free and Off-policy

As the agent explores the state and action spaces, it learns about its environment 
and retains that knowledge via Q values



Background - Exploration and Exploitation
Exploration: when an agent tries new actions and states to 
learn about its environment

Exploitation: when an agent utilizes what it knows to take the 
best path possible

Too much exploration -> slow convergence

Too much exploitation -> converge to local optima 

ε-learning: Higher ε means more exploration



Background - Experience Replay
Generating data for reinforcement learning can be costly - and many RL 
algorithms require lots of data

We store each (state, action, reward, new state) in a database

Can then ‘replay’ past experiences by randomly sampling from the database



Reformulating the Problem
The key innovation is to reformulate the network architecture search as a 
reinforcement learning task!

- State space: all possible neural net architectures
- Action space: choosing new layers (conv, FC, pool) to put in the network
- Reward function: the validation accuracy of the complete model



Reformulating the Problem
Key Assumption - a well-performing layer in one network will also perform well in a 
different network

State space - Neural net architectures that can be built using the following layer 
types: Convolution, Pooling, Fully Connected, Global Average Pooling, and ReLU 

Termination states are GAP and Softmax



Reformulating the Problem
Action Space - the set of possible layers we can put at the next level. 

The authors place restrictions on the action space for tractability

- Maximum network depth
- Representation size
- Layer order

- Consecutive Pooling layers
- Transitioning to FC layers

- Number of FC layers



Experimental Setup
Models were trained with the Adam optimizer

Top ten models were selected and fine tuned further 

3 Datasets: 

- MNIST
- CIFAR 10
- SVHN



Experimental Setup - Details
Each model trained with Adam optimizer

Q-learning rate alpha = 0.01

Epsilon transitions from 1 -> 0.1 

Utilizes experience replay to save time

β1 = 0.9, β2 = 0.999, ε = 10−8

Batch size: 128, Learning rate = 0.001



Key Results
MetaQNN models outperformed CNNs that only used the same layer types



MetaQNN models performed worse than but still at a ‘competitive’ level compared 
to than state-of-the-art models that utilize more complex layers and training 
methods. 

Key Results



Key Results
MetaQNN models outperformed other automated network design protocols

Error rates (%)

CIFAR-10 MNIST

MetaQNN 6.92 0.32

Bergstra 21.2

Verbancsics 7.9



Limitations and Improvements
Limitations

- Hyperparameter optimization
- Is CNN architecture the limiting factor in model accuracy? Or simply an 

optimization?

Improvements

- Complex layer types
- More fine-grained state-action space



Impact and Discussion
MetaQNN provides an automated solution for CNN architecture 

- Saves research time while pinpointing more optimal solutions
- Largely an optimization - future progress will likely come from different areas

Discussion

- How useful is this program today, given that state-of-the-art models all utilize 
complex layer types and specialized training techniques?

- As it exists, is MetaQNN useful to non-experts?
- Are there any other areas that can be reformulated as RL tasks?
- Would MetaQNN have been able to re-invent recent architecture 

breakthroughs?


