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Design Constraint:
Performance

Sensing

>

Self Driving Uber sensor suite

T Cameras Cuastom comnpute and data storage
1 Laser 360° radar coverage
hertial Measurement Jnits

<+ Sensors generate 1-2GB of data per second.
<+ Autonomous vehicle system should provide:
< High Throughput
< Low Latency




Design Constraint:
Predictability
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Design Constraint:
Storage

41 TB!

4TB of logging data generated
by a car each day.

10



Design Constraint:
Thermal and Power
SELE-DRIVING CARS USE CRAZY

AMOUNTS OF POWER. AND IT'S
BECOMING A PROBLEM “Datacenter on wheels.”

Power requirements of up to 3kW.
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ASICs

Exploit different accelerator platforms to achieve predictability
and performance while reducing the power requirements.
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Implementation
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Metrics of Success
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Discussion

Are DNNs the major computational part of the perception pipeline?
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Figure 7. Cycle breakdown of the object detection (DET),
object tracking (TRA) and localization (LOC) engines. The 20 A
Deep Neural Networks (DNNs) portion in DET and TRA, '
and the Feature Extraction (FE) portion in LOC account for 10 1 x XX X x x :;
. , , e
more than 94% of the execution in aggregation, which makes , : . , . .
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them ideal candidates for acceleration.
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Latency (ms)

Discussion

What is the reason for zero variability in both ASICs and FPGAs?
What is the source of runtime variability for the GPU?
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Discussion

What about the cost of inter-component communication across the devices?
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