
Deep Learning Compilers

Simon Mo
AI-Sys Seminar

- Hardware and Software Challenges for DL inference
- Halide the precursor of DL compilers
- Deep Learning Compilers

- TVM
- Tensor Comprehensions

Note

- This talk is focus on

inference stage of deep

learning workload

- But* these DL

compilers should also

applied to training

Hardware for Deep Learning

- Heterogenous hardware:

- Need to optimize workload for

different hardware.

- Layered Memory Hierarchy:

- Complex scheduling space

- Parallel Compute Primitives

- SIMD

- SIMT

- Intrinsics

Software for Deep Learning

Declarative DAG of
High-Level Operators

Early-Binding to Compute

volta_scudnn_winograd_1
28x128_ldg1_ldg4_relu_til
e148t_nt_v1

Mixed Memory
& Compute Requirement

Software for Deep Learning

Declarative DAG Early-Binding to Compute

volta_scudnn_winograd_1
28x128_ldg1_ldg4_relu_til
e148t_nt_v1

Mixed Memory
& Compute Requirement

Reality -> Problem Statement

Reality

(1) Everyone knows how
Convolution works. Few can
implement fast convolution in
CUDA.

(2) DL Framework depends on hand-
tuned kernel implementation for
specific hardware, by experts.

(3) Researcher can’t create efficient
new operators. Whiteboard -\->
Physical Operator.

Problem Statement

(1) For a given operator, express it in a
simple language that abstract away
the complexity of hardware.

(2) For a given operator, we want to
automatically optimize it for
different hardware.

(3) For any new operator, we want to
easily find an efficient
implementation without thinking
about hardware at all.

Problem Statement

(1) Abstract away the complexity of
hardware.

(2) Automatically optimize for
different hardware.

(3) New operator without thinking
about hardware at all.

Halide

TVM

Tensor
Comprehension (TC)

System Proposed

Resnet(
Conv2D…
BatchNorm…

)

DAG Optimization:
- Operator Fusion
- No-op Elimination

Operator Optimization:
Transform loop

nested program to high
performance code

Problem Statement

(1) Abstract away the complexity of
hardware.

(2) Automatically optimize for
different hardware.

(3) New operator without thinking
about hardware at all.

Halide

TVM

Tensor
Comprehension (TC)

System Proposed

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- So we can express operator in a simple language

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm, and optionally the schedule.

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- User only needs to provide the algorithm

Auto-tuner can select the optimal “schedule”
- How to split the axis?
- How to vectorize?

Halide DSL

- Functional Language
- Embed in C++
- Much Simpler than writing

threaded or CUDA program
- Downside:

- Still requires domain experts
to tune it

- Not built for Deep Learning
- TC: Assume infinite input

range, cannot be
optimized for fixed ops.

- TVM: No special memory
scope; no custom
hardware intrinsics

Problem Statement

(1) Abstract away the complexity of
hardware.

(2) Automatically optimize for
different hardware.

(3) New operator without thinking
about hardware at all.

TVM

Halide

Tensor
Comprehension (TC)

System Proposed

TVM: An automated End-to-End Optimizing
Compiler for Deep Learning

TVM DSL

Very similar to Halide
- Specify the algorithm
- Specify the schdule

TVM DSL

Use tile, split, reduce, etc to transform the
loop nested program into a complex
schedules. To
- Optimize data locality
- Minimize memory conflict
- Optimize for device cache
- Optimize for latency hiding

TVM DSL

- Note that Halide
doesn’t have these

(1) TVM allows read
and write to
special memory
scope

(2) TVM can hook into
hardware
instructions

(3) TVM can optimize
for pipeline
parallelism via
reordering

TVM’s DSL + Autotuner enables it to target
many devices

In TVM, you can templatize your schedule
and let autotuner find the optimal
configuration for a group of devices

TVM produces high performance operators
for different hardware

GPU

TVM produces high performance operators
for different hardware

Embedded CPU

TVM produces high performance operators
for different hardware

FPGA

TVM’s Auto-tuner uses ML techniques

- Parametrized the AST
- Use Gradient Boost Tree

(GBT) to optimize a “rank
loss” to predict the relative
order of program runtime

TVM’s Auto-tuner uses ML techniques

TVM: Summary
- What is the problem that is being solved?

- Optimize operator for many different devices
- What are the metrics of success?

- Performance improvement
- What are the key innovations over prior work?

- Versatile DSL
- Powerful Auto-tuner

- What are the key results?
- Significant speedup across different devices

- What are some of the limitations and how might this work be improved?
- Auto-tuning take forever, cannot be JIT compiled
- Extremely large scheduling space, maybe RL based, learned cost model?

- How might this work have long term impact?
- In production use.

Problem Statement

(1) Abstract away the complexity of
hardware.

(2) Automatically optimize for
different hardware.

(3) New operator without thinking
about hardware at all.

Tensor
Comprehension (TC)

Halide

TVM

System Proposed

TC: From whiteboard to machine code

TC’s DSL is extremely simple. Algorithm only. TC resembles the whiteboard
mathematical model of a deep
neural network and makes it easy to
reason about, communicate, and to
manually alter the computations and
storage/computation tradeoffs.

TC: Targeted Audience
- Rapid prototyping new operators for researchers
- Provide comparable performance than manual tuning
- It’s embedded inside PyTorch, Caffe2

TC: Polyhedral Optimization Replaces User
Defined Schedule

Algorithm

Schedule

Halide, TVM Device Code

TC: Polyhedral Optimization Replaces User
Defined Schedule

Algorithm Schedule TC Device Code

Polyhedral scheduling, optimizes for (outer) loop parallelism
and locality + hand tuned affine scheduling heuristic

TC: Polyhedral Transformation + Mapping

- Given a program in loop nested
form, automatically, by formulating
the problem as integer linear
program, optimize for outer loop
parallelism and data locality.

Original Program Transformed Program

TC: Polyhedral Transformation + Mapping

Map GPU compute and memory resources to the newly transformed program

TC: Mapping requires hyperparameters

TC: Use Genetic Algorithm to Find Best Config

1. three parents are selected
probabilistically based on
their fitness, the higher
the fitness the higher the
selection chance;

2. each “gene”, which
corresponds to one tuning
parameter, of the new
candidate is randomly
selected from the parents.

TC: Performance

TC: Summary
1. What is the problem that is being solved?

1. Create optimized operator from simple tensor operation

2. What are the metrics of success?

1. Speedup and ease of use

3. What are the key innovations over prior work?

1. Use Polyhedral optimization techniques to automatically come up with the schedule

4. What are the key results?

1. Up to 4x speedup in certain kernel

5. What are some of the limitations and how might this work be improved?

1. Only for tensor operation, one tensor operation per kernel.

2. E.g. We can’t express Winograd convolution

6. How might this work have long term impact?

1. Shown the potential of polyhedral optimization

Discussion

Architecture:
- “GPU is too slow for deep neural nets, we should build FPGA”
- Is TPU a step in the right direction? Considering low utilization, low

memory throughput, etc.
Machine Learning:
- TVM only considered very basic ML techniques, any chance for RL?
- Do you think these kind of problem (intractable scheduling space) is

well suited for machine learning?
Your Questions…

Backup Slides

Quick Background on GPU
- SM: Streaming Multi-processors
- Each Block is assigned to a SM
- Each SM executes a group of 32 threads (warp) in lock steps
- Free context switch within SM among warps -> latency hiding

Future Research Direction

- Compilers are great at Ahead of Time
scheduling, what about Just-In-Time
scheduling?

- Any way we can share GPU in predictable
way and maximize utilization for DNN
inference?

- Can we optimize for “fitness” of the
kernel when it’s executed along with
other kernels instead of its latency?

Performance Comparison: TVM vs TC

