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- Hardware and Software Challenges for DL inference
- Halide the precursor of DL compilers
- Deep Learning Compilers

- TVM
- Tensor Comprehensions



Note

- This talk is focus on 

inference stage of deep 

learning workload

- But* these DL 

compilers should also

applied to training



Hardware for Deep Learning

- Heterogenous hardware:

- Need to optimize workload for 

different hardware.

- Layered Memory Hierarchy:

- Complex scheduling space

- Parallel Compute Primitives

- SIMD

- SIMT

- Intrinsics



Software for Deep Learning

Declarative DAG of 
High-Level Operators

Early-Binding to Compute

volta_scudnn_winograd_1
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e148t_nt_v1

Mixed Memory 
& Compute Requirement
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Reality -> Problem Statement

Reality

(1) Everyone knows how 
Convolution works. Few can 
implement fast convolution in 
CUDA. 

(2) DL Framework depends on hand-
tuned kernel implementation for 
specific hardware, by experts.

(3) Researcher can’t create efficient 
new operators. Whiteboard -\-> 
Physical Operator. 

Problem Statement

(1) For a given operator, express it in a 
simple language that abstract away 
the complexity of hardware.  

(2) For a given operator, we want to 
automatically optimize it for 
different hardware.

(3) For any new operator, we want to 
easily find an efficient 
implementation without thinking 
about hardware at all. 
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Resnet(
Conv2D…
BatchNorm…

)

DAG Optimization:
- Operator Fusion
- No-op Elimination

Operator Optimization:
Transform loop 

nested program to high 
performance code
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Halide: Compiling Image Processing Pipelines
Key Innovation:
- Decouples algorithm from the compute
- So we can express operator in a simple language
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Halide DSL

- Functional Language
- Embed in C++
- Much Simpler than writing 

threaded or CUDA program
- Downside:

- Still requires domain experts 
to tune it

- Not built for Deep Learning
- TC: Assume infinite input

range, cannot be
optimized for fixed ops.

- TVM: No special memory
scope; no custom 
hardware intrinsics



Problem Statement

(1) Abstract away the complexity of 
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TVM: An automated End-to-End Optimizing 
Compiler for Deep Learning



TVM DSL

Very similar to Halide
- Specify the algorithm
- Specify the schdule



TVM DSL

Use tile, split, reduce, etc to transform the 
loop nested program into a complex 
schedules. To
- Optimize data locality
- Minimize memory conflict 
- Optimize for device cache
- Optimize for latency hiding



TVM DSL 

- Note that Halide 
doesn’t have these

(1) TVM allows read
and write to
special memory
scope

(2) TVM can hook into 
hardware 
instructions

(3) TVM can optimize 
for pipeline 
parallelism via
reordering



TVM’s DSL + Autotuner enables it to target
many devices

In TVM, you can templatize your schedule 
and let autotuner find the optimal 
configuration for a group of devices



TVM produces high performance operators 
for different hardware

GPU



TVM produces high performance operators 
for different hardware

Embedded CPU



TVM produces high performance operators 
for different hardware

FPGA



TVM’s Auto-tuner uses ML techniques

- Parametrized the AST
- Use Gradient Boost Tree

(GBT) to optimize a “rank 
loss” to predict the relative 
order of program runtime



TVM’s Auto-tuner uses ML techniques



TVM: Summary
- What is the problem that is being solved?

- Optimize operator for many different devices
- What are the metrics of success?

- Performance improvement
- What are the key innovations over prior work?

- Versatile DSL 
- Powerful Auto-tuner

- What are the key results?
- Significant speedup across different devices

- What are some of the limitations and how might this work be improved?
- Auto-tuning take forever, cannot be JIT compiled
- Extremely large scheduling space, maybe RL based, learned cost model?

- How might this work have long term impact?
- In production use.



Problem Statement

(1) Abstract away the complexity of 
hardware.  

(2) Automatically optimize for 
different hardware.

(3) New operator without thinking 
about hardware at all. 

Tensor 
Comprehension (TC)
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System Proposed



TC: From whiteboard to machine code

TC’s DSL is extremely simple. Algorithm only. TC resembles the whiteboard 
mathematical model of a deep 
neural network and makes it easy to 
reason about, communicate, and to 
manually alter the computations and 
storage/computation tradeoffs.



TC: Targeted Audience
- Rapid prototyping new operators for researchers
- Provide comparable performance than manual tuning
- It’s embedded inside PyTorch, Caffe2



TC: Polyhedral Optimization Replaces User 
Defined Schedule

Algorithm

Schedule

Halide, TVM Device Code



TC: Polyhedral Optimization Replaces User 
Defined Schedule

Algorithm Schedule TC Device Code

Polyhedral scheduling, optimizes for (outer) loop parallelism 
and locality + hand tuned affine scheduling heuristic



TC: Polyhedral Transformation + Mapping

- Given a program in loop nested 
form, automatically, by formulating 
the problem as integer linear 
program, optimize for outer loop 
parallelism and data locality. 

Original Program Transformed Program



TC: Polyhedral Transformation + Mapping

Map GPU compute and memory resources to the newly transformed program



TC: Mapping requires hyperparameters



TC: Use Genetic Algorithm to Find Best Config

1. three parents are selected 
probabilistically based on 
their fitness, the higher 
the fitness the higher the 
selection chance; 

2. each “gene”, which 
corresponds to one tuning 
parameter, of the new 
candidate is randomly 
selected from the parents.



TC: Performance



TC: Summary
1. What is the problem that is being solved?

1. Create optimized operator from simple tensor operation

2. What are the metrics of success?

1. Speedup and ease of use

3. What are the key innovations over prior work?

1. Use Polyhedral optimization techniques to automatically come up with the schedule

4. What are the key results?

1. Up to 4x speedup in certain kernel

5. What are some of the limitations and how might this work be improved?

1. Only for tensor operation, one tensor operation per kernel. 

2. E.g. We can’t express Winograd convolution

6. How might this work have long term impact?

1. Shown the potential of polyhedral optimization



Discussion

Architecture:
- “GPU is too slow for deep neural nets, we should build FPGA”
- Is TPU a step in the right direction? Considering low utilization, low 

memory throughput, etc. 
Machine Learning:
- TVM only considered very basic ML techniques, any chance for RL?
- Do you think these kind of problem (intractable scheduling space) is 

well suited for machine learning? 
Your Questions…





Backup Slides



Quick Background on GPU
- SM: Streaming Multi-processors
- Each Block is assigned to a SM
- Each SM executes a group of 32 threads (warp) in lock steps
- Free context switch within SM among warps -> latency hiding



Future Research Direction

- Compilers are great at Ahead of Time 
scheduling, what about Just-In-Time
scheduling?

- Any way we can share GPU in predictable 
way and maximize utilization for DNN 
inference?

- Can we optimize for “fitness” of the 
kernel when it’s executed along with 
other kernels instead of its latency?



Performance Comparison: TVM vs TC


