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What is the Problem Being Solved?

Ø Training models is time consuming
Ø Convergence can be slow
Ø Training is computationally intensive

Ø Not all models fit in single machine or GPU memory

Ø Less of a problem: big data
Ø Problem for data preparation / management
Ø Not a problem for training … why?



On Dataset Size and Learning
Ø Data is a a resource! (e.g., like processors and memory)

Ø Is having lots of processors a problem?

Ø You don’t have to use all the data!
Ø Though using more data can often help

Ø More data often* dominates models and algorithms
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such as f = ma or e = mc2. Meanwhile, sciences that 
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over 
their inability to neatly model human behavior. 
An informal, incomplete grammar of the English 
language runs over 1,700 pages.2 Perhaps when it 
comes to natural language processing and related 
fi elds, we’re doomed to complex theories that will 
never have the elegance of physics equations. But 
if that’s so, we should stop acting as if our goal is 
to author extremely elegant theories, and instead 
embrace complexity and make use of the best ally 
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to 
the Brown Corpus, containing one million English 
words.3 Since then, our fi eld has seen several notable 
corpora that are about 100 times larger, and in 2006, 
Google released a trillion-word corpus with frequency 
counts for all sequences up to fi ve words long.4 In 
some ways this corpus is a step backwards from the 
Brown Corpus: it’s taken from unfi ltered Web pages 
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected 
part-of-speech tags. But the fact that it’s a million 
times larger than the Brown Corpus outweighs these 
drawbacks. A trillion-word corpus—along with other 
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human 

behavior. So, this corpus could serve as the basis of 
a complete model for certain tasks—if only we knew 
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related 
machine learning have been statistical speech rec-
ognition and statistical machine translation. The 
reason for these successes is not that these tasks are 
easier than other tasks; they are in fact much harder 
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural 
task routinely done every day for a real human need 
(think of the operations of the European Union or 
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In 
other words, a large training set of the input-output 
behavior that we seek to automate is available to us 
in the wild. In contrast, traditional natural language 
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have 
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree 
on, being bedeviled by many of the diffi culties we 
discuss later in relation to the Semantic Web. The 
fi rst lesson of Web-scale learning is to use available 
large-scale data rather than hoping for annotated 
data that isn’t available. For instance, we fi nd that 
useful semantic relationships can be automatically 
learned from the statistics of search queries and the 
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually 
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be 

neatly explained with simple mathematical formulas
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What are the Metrics of Success?

Ø Marketing Team: Maximize number of GPUs/CPUs used
Ø A bad metric … why?

Ø Machine Learning: Minimize passes through the training data
Ø Easy to measure, but not informative … why?

Ø Systems: minimize time to complete a pass through the 
training data
Ø Easy to measure, but not informative … why?



Ideal Metric of Success

“Learning”
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How do we measure
Learning?



Training and Validation 

Time
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Training Error

Test* E
rror

*If you are making modeling decisions based on this then it should be called validation error.  

This is the thing we 
want to minimize

This is what our 
training algorithm 
tries to minimize.



Metrics of Success

Ø Minimize training time to “best model”
Ø Best model measured in terms of test error

Ø Other Concerns?
Ø Complexity: Does the approach introduce additional training 

complexity (e.g., hyper-parameters)
Ø Stability: How consistently does the system train the model?
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Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training
of a more modestly- sized deep network for a commercial speech recognition ser-
vice. Although we focus on and report performance of these methods as applied
to training large neural networks, the underlying algorithms are applicable to any
gradient-based machine learning algorithm.

1 Introduction

Deep learning and unsupervised feature learning have shown great promise in many practical ap-
plications. State-of-the-art performance has been reported in several domains, ranging from speech
recognition [1, 2], visual object recognition [3, 4], to text processing [5, 6].

It has also been observed that increasing the scale of deep learning, with respect to the number
of training examples, the number of model parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes
the training of modestly sized deep networks practical. A known limitation of the GPU approach is
that the training speed-up is small when the model does not fit in GPU memory (typically less than
6 gigabytes). To use a GPU effectively, researchers often reduce the size of the data or parameters
so that CPU-to-GPU transfers are not a significant bottleneck. While data and parameter reduction
work well for small problems (e.g. acoustic modeling for speech recognition), they are less attractive
for problems with a large number of examples and dimensions (e.g., high-resolution images).

In this paper, we describe an alternative approach: using large-scale clusters of machines to distribute
training and inference in deep networks. We have developed a software framework called DistBe-
lief that enables model parallelism within a machine (via multithreading) and across machines (via
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Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t 
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Abstract

We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it
possible to learn a face detector using only
unlabeled images using unlabeled images?
To answer this, we train a 9-layered locally
connected sparse autoencoder with pooling
and local contrast normalization on a large
dataset of images (the model has 1 bil-
lion connections, the dataset has 10 million
200x200 pixel images downloaded from the
Internet). We train this network using model
parallelism and asynchronous SGD on a clus-
ter with 1,000 machines (16,000 cores) for
three days. Contrary to what appears to be
a widely-held intuition, our experimental re-
sults reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 20,000 object categories
from ImageNet, a leap of 70% relative im-
provement over the previous state-of-the-art.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from unlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive
answer to this question will give rise to two significant
results. Practically, this provides an inexpensive way
to develop features from unlabeled data. But perhaps
more importantly, it answers an intriguing question as
to whether the specificity of the “grandmother neuron”
could possibly be learned from unlabeled data. Infor-
mally, this would suggest that it is at least in principle
possible that a baby learns to group faces into one class

Discovers Cat Features

DistB
eliefLabel
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level features from only unlabeled data. A positive
answer to this question will give rise to two significant
results. Practically, this provides an inexpensive way
to develop features from unlabeled data. But perhaps
more importantly, it answers an intriguing question as
to whether the specificity of the “grandmother neuron”
could possibly be learned from unlabeled data. Infor-
mally, this would suggest that it is at least in principle
possible that a baby learns to group faces into one class

Building high-level features using large-scale unsupervised learning

DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three im-
portant ingredients: local receptive fields, pooling
and local contrast normalization. First, to scale the
autoencoder to large images, we use a simple idea
known as local receptive fields (LeCun et al., 1998;
Raina et al., 2009; Lee et al., 2009; Le et al., 2010).
This biologically inspired idea proposes that each fea-
ture in the autoencoder can connect only to a small
region of the lower layer. Next, to achieve invari-
ance to local deformations, we employ local L2 pool-
ing (Hyvärinen et al., 2009; Le et al., 2010) and local
contrast normalization (Jarrett et al., 2009). L2 pool-
ing, in particular, allows the learning of invariant fea-
tures (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-
logical and computational models (Pinto et al., 2008;

Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sublayer and the second sub-
layer pools over 5x5 overlapping neighborhoods of fea-
tures (i.e., pooling size). The neurons in the first sub-
layer connect to pixels in all input channels (or maps)
whereas the neurons in the second sublayer connect
to pixels of only one channel (or map).3 While the
first sublayer outputs linear filter responses, the pool-
ing layer outputs the square root of the sum of the
squares of its inputs, and therefore, it is known as L2
pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.

9x “deep”
Pre-Convolutional* 

Architecture

Each Neuron has 
separate weights

sparse 
connectivity

~1 billion 
parameters!

*This pre-dates AlexNet but is two decades after LeNet.

30x bigger than 
other deep nets.



More Context (ML circa 2012)

Ø Focus of existing distributed ML research
Ø Convex Optimization (e.g., SVMs, Lasso)
Ø Matrix Factorization
Ø Graphical Models

Ø Key systems at the time
Ø Map Reduce à not great for iterative computation (why?)

Ø Spark really wasn’t visible to ML community 
Ø GraphLab à A truly wonderful system*

Ø we worked with Quoc/Andrew to get their model running on GraphLab
but wasn’t as performant.

*Developed by the speaker.



Key Problems Addressed in 
DistBelief Paper

Main Problem

Ø Speedup training for large models

Sub Problems

Ø How to partition models and data

Ø Variance in worker performance à Stragglers

Ø Failures in workers à Fault-Tolerance



Crash Course 
on Stochastic 
Gradient Descent
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Data parallelism: divide data across machines, compute local 
gradient sums and then aggregate across machines. repeat.

Issues? Repeatedly scanning the data… what if we cache it?



also substantially improved the programming API over Hadoop.
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The empirical gradient is an approximation of what I really want:

Law of large numbers à more data provides a better 
approximation (variance in the estimator decreases linearly)

Do I really need to use all the data?
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Large B: slower but more accurate

The empirical gradient is an approximation of what I really want:

Law of large numbers à more data provides a better 
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For t from 1 to convergence:
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For t from 0 to convergence:
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Gradient Descent 
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How do you distribute SGD?
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Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training
of a more modestly- sized deep network for a commercial speech recognition ser-
vice. Although we focus on and report performance of these methods as applied
to training large neural networks, the underlying algorithms are applicable to any
gradient-based machine learning algorithm.

1 Introduction

Deep learning and unsupervised feature learning have shown great promise in many practical ap-
plications. State-of-the-art performance has been reported in several domains, ranging from speech
recognition [1, 2], visual object recognition [3, 4], to text processing [5, 6].

It has also been observed that increasing the scale of deep learning, with respect to the number
of training examples, the number of model parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes
the training of modestly sized deep networks practical. A known limitation of the GPU approach is
that the training speed-up is small when the model does not fit in GPU memory (typically less than
6 gigabytes). To use a GPU effectively, researchers often reduce the size of the data or parameters
so that CPU-to-GPU transfers are not a significant bottleneck. While data and parameter reduction
work well for small problems (e.g. acoustic modeling for speech recognition), they are less attractive
for problems with a large number of examples and dimensions (e.g., high-resolution images).

In this paper, we describe an alternative approach: using large-scale clusters of machines to distribute
training and inference in deep networks. We have developed a software framework called DistBe-
lief that enables model parallelism within a machine (via multithreading) and across machines (via
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Model Parallelism Data Parallelism

Downpour SGDThis appears in earlier work on graph systems …



Combine Model and Data Parallelism

M
ac

hi
ne

 1

M
achine 2

M
ac

hi
ne

 3

M
achine 4

Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.
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Ø Essentially a sharded key-value store

Ø support for put, get, add

Ø Idea appears in earlier papers:
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“Scalable Inference in Latent Variable Models”, 
Ahmed, Aly, Gonzalez, Narayanamruthy, and 
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Algorithm 1 State Synchronization

Initialize n(t, w) = n
i(t, w) = n

i
old(t, w) for all i.

while sampling do
Lock n(t, w) globally for some w.
Lock ni(t, w) locally.
Update n(t, w) = n(t, w) +

⇥
n
i(t, w)� n

i
old(t, w)

⇤

Update n
i(t, w) = n

i
old(t, w) = n(t, w)

Update local ni(t).
Release ni(t, w) locally.
Release n(t, w) globally.

end while

is happening one word at a time the algorithm does not in-
duce deadlocks in the sampler. Moreover, the probability of
lock contention between di↵erent computers is minimal (we
have > 106 distinct words and typically 102 computers with
less than 10 synchronization threads per computer). Note
that the high number of synchronization threads (up to 10)
in practice is due to the high latency of memcached.

sampler sampler sampler sampler

memcached memcached memcached memcached

Figure 3: Each sampler keeps on processing the sub-
set of data associated with it. Simultaneously a syn-
chronization thread keeps on reconciling the local
and global state tables.

Note that this communications template could be used
in a considerably more general context: the blackboard ar-
chitecture supports any system where a common state is
shared between a large number of systems whose changes
a↵ect the global value of the state. For instance, we may
use it to synchronize parameters in a stochastic gradient de-
scent scenario by asynchronously averaging local and global
parameter values as is needed in dual decomposition meth-
ods. Likewise, the same architecture could be used to per-
form message passing [1] whenever the junction tree of a
graphical model has star topology. By keeping copies of the
old messages local (represented by n

i
old) on the nodes it is

possible to scale such methods to large numbers of clients
without exhausting memory on memcached.

4. IMPLEMENTATION

4.1 Basic Tools
We use Google’s protobuf3 with optimization set to favor

speed, since it provides disk-speed data serialization with
little overhead. Since protobuf cannot deal well with ar-
bitrary length messages (it tries loading them into memory
entirely before parsing) we treat each document separately
as a message to be parsed. To minimize write requirements
we store documents and their topic assignments separately.
3http://code.google.com/p/protobuf/

Data flow in terms of documents is entirely local. On
each machine it is handled by Intel’s Threading-Building-
Blocks4 library since it provides a convenient pipeline struc-
ture which automatically handles parallelization and schedul-
ing for multicore processors. Locking between samplers, up-
daters, and synchronizers is handled by a read-write lock
(spinlock) — the samplers impose a non-exclusive read lock
while the update thread imposes an exclusive write lock.

The asynchronous communication between a cluster of
computers is handled by memcached5 servers which run stan-
dalone on each of the computers and the libmemcached
client access library which is integrated into the LDA code-
base. The advantage of this design is that no dedicated
server code needs to be written. A downside is the high
latency of memcached, in particular, when client and server
are located on di↵erent racks in the server center. Given the
modularity of our design it would be easy to replace it by a
service with lower latency, such as RAMCloud once the latter
becomes available. In particular, a versioned write would be
highly preferable to the current pessimistic locking mecha-
nism that is implemented in Algorithm 1 — collisions are
far less likely than successful independent updates. Failed
writes due to versioned data, as they will be provided in
RAMCloud would address this problem.

4.2 Data Layout
To store the n(t, w) we use the same memory layout as

Mallet. That is, we maintain a list of (topic, count) pairs for
each word w sorting in order of decreasing counts. This al-
lows us to implement a sampler e�ciently (with high proba-
bility we do not reach the end of the list) since the most likely
topics occur first. Random access (which occurs rarely),
however, isO(k) where k is the number of topics with nonzero
count. Our code requires twice the memory footprint as that
of Mallet (64bit rather than 32bit per (topic, count) pair)
since for millions of documents the counters would overflow.

The updater thread receives a list of messages of the form
(word, old topic id, new topic id) from the sampler for every
document (see Figure 1). Whenever the changes in counts
do not result in a reordering of the list of (topic, count) pairs
and update is carried out without locking. This is possible
since on modern x86 architectures updates of 32bit integers
are atomic provided that the data is aligned with the bus
boundaries. Whenever changes necessitate a reordering we
acquire a write lock (any sampler using this word at the very
moment stalls at this point) before e↵ecting changes. Since
counts change only by 1 it is unlikely that (topic, count)
pairs move far within the list. This reduces lock time.

4.3 Initialization and Recovery for Multicore
At initialization time no useful topic assignment exists and

we want to assign topics at random to words of the docu-
ments. This can be accommodated by a random assignment
sampler as described in the diagram below:

tokens file 
combiner

build word-
topic table

output to
file topics

sampler
sampler

sampler
samplersampler:

randomly 
assigned

In particular, the file combiner and the output routine
are identical. Obviously this could be replaced with a more

4http://www.threadingbuildingblocks.org/
5http://www.danga.com/memcached/
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Adagrad Stabilization

Ø Address large variability in magnitudes of gradients
Ø Rescale the gradients by an estimate of the diagonal variance
Ø More recently superseded by Adam

Ø Stability is needed here to support asynchronous 
gradient updates
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Ø Recall
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Steep Gradient

See http://www.ds100.org/fa17/assets/notebooks/26-lec/Logistic_Regression_Part_2.html



Key Results

portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD, which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

5 Experiments

We evaluated our optimization algorithms by applying them to training models for two different deep
learning problems: object recognition in still images and acoustic processing for speech recognition.

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [27] for similar deep network configurations and training
procedures.

For visual object recognition we trained a larger neural network with locally-connected receptive
fields on the ImageNet data set of 16 million images, each of which we scaled to 100x100 pixels [28].
The network had three stages, each composed of filtering, pooling and local contrast normalization,
where each node in the filtering layer was connected to a 10x10 patch in the layer below. Our
infrastructure allows many nodes to connect to the same input patch, and we ran experiments varying
the number of identically connected nodes from 8 to 36. The output layer consisted of 21 thousand
one-vs-all logistic classifier nodes, one for each of the ImageNet object categories. See [29] for
similar deep network configurations and training procedures.

Model parallelism benchmarks: To explore the scaling behavior of DistBelief model parallelism
(Section 3), we measured the mean time to process a single mini-batch for simple SGD training as
a function of the number of partitions (machines) used in a single model instance. In Figure 3 we
quantify the impact of parallelizing across N machines by reporting the average training speed-up:
the ratio of the time taken using only a single machine to the time taken using N. Speedups for
inference steps in these models are similar and are not shown here.

The moderately sized speech model runs fastest on 8 machines, computing 2.2⇥ faster than using a
single machine. (Models were configured to use no more than 20 cores per machine.) Partitioning
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Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.
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Key Results: Training and Test Error

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
ve

ra
g
e
 F

ra
m

e
 A

cc
u
ra

cy
 (

%
)

Accuracy on Training Set

 

 

SGD [1]
DownpourSGD [20]
DownpourSGD [200] w/Adagrad
Sandblaster L−BFGS [2000]

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

A
ve

ra
g
e
 F

ra
m

e
 A

cc
u
ra

cy
 (

%
)

Accuracy on Test Set

 

 

SGD [1]
GPU [1]
DownpourSGD [20]
DownpourSGD [20] w/Adagrad
DownpourSGD [200] w/Adagrad
Sandblaster L−BFGS [2000]

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization meth-
ods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour
and Sandblaster experiments initialized using the same ⇠10 hour warmstart of simple SGD.

the model on more than 8 machines actually slows training, as network overhead starts to dominate
in the fully-connected network structure and there is less work for each machine to perform with
more partitions.

In contrast, the much larger, locally-connected image models can benefit from using many more
machines per model replica. The largest model, with 1.7 billion parameters benefits the most, giving
a speedup of more than 12⇥ using 81 machines. For these large models using more machines
continues to increase speed, but with diminishing returns.

Optimization method comparisons: To evaluate the proposed distributed optimization proce-
dures, we ran the speech model described above in a variety of configurations. We consider two
baseline optimization procedures: training a DistBelief model (on 8 partitions) using conventional
(single replica) SGD, and training the identical model on a GPU using CUDA [27]. The three dis-
tributed optimization methods we compare to these baseline methods are: Downpour SGD with a
fixed learning rate, Downpour SGD with Adagrad learning rates, and Sandblaster L-BFGS.

Figure 4 shows classification performance as a function of training time for each of these methods
on both the training and test sets. Our goal is to obtain the maximum test set accuracy in the
minimum amount of training time, regardless of resource requirements. Conventional single replica
SGD (black curves) is the slowest to train. Downpour SGD with 20 model replicas (blue curves)
shows a significant improvement. Downpour SGD with 20 replicas plus Adagrad (orange curve)
is modestly faster. Sandblaster L-BFGS using 2000 model replicas (green curves) is considerably
faster yet again. The fastest, however, is Downpour SGD plus Adagrad with 200 model replicas (red
curves). Given access to sufficient CPU resourses, both Sandblaster L-BFGS and Downpour SGD
with Adagrad can train models substantially faster than a high performance GPU.

Though we did not confine the above experiments to a fixed resource budget, it is interesting to
consider how the various methods trade off resource consumption for performance. We analyze
this by arbitrarily choosing a fixed test set accuracy (16%), and measuring the time each method
took to reach that accuracy as a function of machines and utilized CPU cores, Figure 5. One of the
four points on each traces corresponds to a training configuration shown in Figure 4, the other three
points are alternative configurations.

In this plot, points closer to the origin are preferable in that they take less time while using fewer re-
sources. In this regard Downpour SGD using Adagrad appears to be the best trade-off: For any fixed
budget of machines or cores, Downpour SGD with Adagrad takes less time to reach the accuracy
target than either Downpour SGD with a fixed learning rate or Sandblaster L-BFGS. For any allotted
training time to reach the accuracy target, Downpour SGD with Adagrad used few resources than
Sandblaster L-BFGS, and in many cases Downpour SGD with a fixed learning rate could not even
reach the target within the deadline. The Sandblaster L-BFGS system does show promise in terms
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Why are they in the NY Times

Ø Trained a 1.7 billion parameter model (30x larger than 
state-of-the-art) (was it necessary?)

Ø Using 16,000 cores  (efficiently?)

Ø Achieves 15.8 accuracy on ImageNet 20K (70% 
improvement over state of the art).
Ø Non-standard benchmark

Ø Qualitatively interesting 
results



Long-term Impact
Ø The parameter server appears in many later machine 

learning systems 

Ø Downpour (Asynchronous) SGD has been largely 
replaced by synchronous systems for supervised training
Ø Asynchrony is still popular in RL research

Ø Why?

Ø Model parallelism is still used for large language models
Ø Predated this work

Ø The neural network architectures studied here have 
been largely replaced by convolutional networks
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Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

1

ar
X

iv
:1

70
6.

02
67

7v
2 

 [c
s.C

V
]  

30
 A

pr
 2

01
8

2018 (Unpublished on Arxiv)



Contrasting to the first paper

Ø Synchronous SGD
Ø Much of the recent work has focused on synchronous setting
Ø Easier to reason about

Ø Focus exclusively on data parallelism: batch-size scaling

Ø Focuses on the generalization gap problem



How do you distribute SGD?

For t from 0 to convergence:
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Batch Size Scaling

Ø Increase the batch size by adding machines

Ø Each server processes a fixed batch size (e.g., n=32)

Ø As more servers are added (k) the effective overall 
batch size increases linearly 

Ø Why do these additional servers help?
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Bigger isn’t Always Better

Ø Motivation for larger batch sizes
Ø More opportunities for parallelism à but is it useful?
Ø Recall (1/n variance reduction):

Ø Is a variance reduction helpful?
Ø Only if it let’s you take bigger steps (move faster)
Ø Doesn’t affect the final answer…
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Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Rough “Intuition” 

Parameter values along some direction

Lo
ss

Sharp Minima 
Hypothesis

Small batch gradient descent acts as a regularizer

Key problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule
Ø Scale the learning rate linearly with the batch size

Ø Addresses generalization performance by taking larger 
steps (also improves training convergence)

Ø Sub-problem: Large learning rates can be destabilizing in 
the beginning. Why?
Ø Gradual warmup solution: increase learning rate scaling from 

constant to linear in first few epochs
Ø Doesn’t help for very large k…
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Other Details
Ø Independent Batch Norm: Batch norm calculation applies 

only to local batch size (n).

Ø All-Reduce: Recursive halving and doubling algorithm
Ø Used instead of popular ring reduction (fewer rounds)

Ø Gloo a library for efficient collective communications

Ø Big Basin GPU Servers: Designed for deep learning workloads
Ø Analysis of communication requirements à latency bound

Ø No discussion on straggler or fault-tolerance
Ø Why?!



Key Results

All curves closely 
match using the linear 
scaling rule.

Note learning rate 
schedule drops.
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Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.
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Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9
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Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.
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Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k
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Figure 7. Distributed synchronous SGD timing. Time per itera-
tion (seconds) and time per ImageNet epoch (minutes) for training
with different minibatch sizes. The baseline (kn = 256) uses 8
GPUs in a single server , while all other training runs distribute
training over (kn/256) server. With 352 GPUs (44 servers) our
implementation completes one pass over all ⇠1.28 million Ima-
geNet training images in about 30 seconds.

ing good features that transfer, or generalize well, to re-
lated tasks. A question of key importance is if the features
learned with large minibatches generalize as well as the fea-
tures learned with small minibatches?

To test this, we adopt the object detection and in-
stance segmentation tasks on COCO [27] as these advanced
perception tasks benefit substantially from ImageNet pre-
training [10]. We use the recently developed Mask R-CNN
[14] system that is capable of learning to detect and segment
object instances. We follow all of the hyper-parameter set-
tings used in [14] and only change the ResNet-50 model
used to initialize Mask R-CNN training. We train Mask R-
CNN on the COCO trainval35k split and report results
on the 5k image minival split used in [14].

It is interesting to note that the concept of minibatch
size in Mask R-CNN is different from the classification
setting. As an extension of the image-centric Fast/Faster
R-CNN [9, 31], Mask R-CNN exhibits different minibatch
sizes for different layers: the network backbone uses two
images (per GPU), but each image contributes 512 Regions-
of-Interest for computing classification (multinomial cross-
entropy), bounding-box regression (smooth-L1/Huber), and
pixel-wise mask (28 ⇥ 28 binomial cross-entropy) losses.
This diverse set of minibatch sizes and loss functions pro-
vides a good test case to the robustness of our approach.

Transfer learning from large minibatch pre-training.
To test how large minibatch pre-training effects Mask R-
CNN, we take ResNet-50 models trained on ImageNet-1k
with 256 to 16k minibatches and use them to initialize Mask
R-CNN training. For each minibatch size we pre-train 5
models and then train Mask R-CNN using all 5 models on
COCO (35 models total). We report the mean box and mask
APs, averaged over the 5 trials, in Table 3a. The results
show that as long as ImageNet validation error is kept low,
which is true up to 8k batch size, generalization to object de-
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Figure 8. Distributed synchronous SGD throughput. The small
overhead when moving from a single server with 8 GPUs to multi-
server distributed training (Figure 7, blue curve) results in linear
throughput scaling that is marginally below ideal scaling (⇠90%
efficiency). Most of the allreduce communication time is hid-
den by pipelining allreduce operations with gradient computation.
Moreover, this is achieved with commodity Ethernet hardware.

tection matches the AP of the small minibatch baseline. We
emphasize that we observed no generalization issues when
transferring across datasets (from ImageNet to COCO) and
across tasks (from classification to detection/segmentation)
using models trained with large minibatches.

Linear scaling rule applied to Mask R-CNN. We also
show evidence of the generality of the linear scaling rule us-
ing Mask R-CNN. In fact, this rule was already used with-
out explicit discussion in [16] and was applied effectively
as the default Mask R-CNN training scheme when using 8
GPUs. Table 3b provides experimental results showing that
when training with 1, 2, 4, or 8 GPUs the linear learning rate
rule results in constant box and mask AP. For these experi-
ments, we initialize Mask R-CNN from the released MSRA
ResNet-50 model, as was done in [14].

5.5. Run Time
Figure 7 shows two visualizations of the run time char-

acteristics of our system. The blue curve is the time per
iteration as minibatch size varies from 256 to 11264 (11k).
Notably this curve is relatively flat and the time per itera-
tion increases only 12% while scaling the minibatch size by
44⇥. Visualized another way, the orange curve shows the
approximately linear decrease in time per epoch from over
16 minutes to just 30 seconds. Run time performance can
also be viewed in terms of throughput (images / second), as
shown in Figure 8. Relative to a perfectly efficient extrapo-
lation of the 8 GPU baseline, our implementation achieves
⇠90% scaling efficiency.

Acknowledgements. We would like to thank Leon Bottou for
helpful discussions on theoretical background, Jerry Pan and
Christian Puhrsch for discussions on efficient data loading, An-
drew Dye for help with debugging distributed training, and Kevin
Lee, Brian Dodds, Jia Ning, Koh Yew Thoon, Micah Harris, and
John Volk for Big Basin and hardware support.

11

“Learning”

Epoch

Epoch

Second

Machine Learning System



Key Results

Ø Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
Ø 90% scaling efficiency

Ø Fairly careful study of the linear scaling rule
Ø Observed limits to linear scaling do not depend on dataset size
Ø Cannot scale parallelism with dataset size



Long-term Impact

Ø Still early (this paper is not yet published)

Ø Ideas that will appear in other papers
Ø Linear rate scaling
Ø Independent batch norm

Ø Paper points to limits of Synchronous SGD à need new 
methods to accelerate training
Ø Eg.: Fast.ai à curriculum learning though scale variation



Questions for Discussion

Ø Distributed model training is not very common. Why?

Ø Should we return to asynchrony?
Ø What is needed to address issues with asynchronous training?

Ø How will changes in hardware affect distributed training
Ø E.g., faster GPUs à larger batches, faster networks à smaller 

batches … 

Ø How will the emergence of “dynamic models” and large 
“mixture of expert models” affect distributed training?


