Distributed

Deep Learning
(part 1)

Joseph E. Gonzalez
Co-director of the RISE Lab

jegonzal@cs.berkeley.edu

What is the Problem Being Solvede

» Training models is time consuming
» Convergence can be slow
» Training is computationally intensive

» Not all models fit in single machine or GPU memory

» Less of a problem: big data

» Problem for data preparation / management
» Not a problem for training ... whye

On Dataset Size and Learning

» Datais a aresourcel! (e.qg., like processors and memory)
> |Is having lots of processors a problem?

» You don't have to use all the datal
» Though using more data can often help

» More data offen* dominates models and algorithms

EXPERT OPINION
ttttttt ditor: Brian Brannon, bbrannon@computer.org *More dOTO C”SO engbles

The Unreasonable more sophisticated.
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

What are the Metrics of Successe

» Marketing Team: Maximize number of GPUs/CPUs used
» A bad metric ... why?¢

» Machine Learning: Minimize passes through the fraining data
» Easy to measure, but not informative ... whye

» Systems: minimize time to complete a pass through the
training data

» Easy to measure, but not informative ... whye

ldeal Metric of Success

/‘

=

.)
"Learning”

Second
_/

How do we measure

Learningz?

4 .)
"Learning”

Record
_ _/

Convergence

Machine Learning

Property

/‘

Record

'\

-

Second

Throughput
System
Property

_/

Training and Validation

This is the thing we

want fo minimize
A

This is what our
training algorithm
tries o minimize.

Error

Time

*If you are making modeling decisions based on this then it should be called validation error.

Metrics of Success

» Minimize fraining time to “best model”
> Best model measured in terms of test error

» Other Concernse

» Complexity: Does the approach infroduce addifional fraining
complexity (e.q., hyper-parameters)

» Stability: How consistently does the system train the model¢

Two papers

NIPS 2012 (Same Year as AlexNet)

2018 (Unpublished on Arxiv)

Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google.com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep network train-
ing. We have successfully used our system to train a deep network 30x larger than
previously reported in the literature, and achieves state-of-the-art performance on
ImageNet, a visual object recognition task with 16 million images and 21k cate-
gories. We show that these same techniques dramatically accelerate the training
of a more modestly- sized deep network for a commercial speech recognition ser-
vice. Although we focus on and report performance of these methods as applied
to training large neural networks, the underlying algorithms are applicable to any
gradient-based machine learning algorithm.

1 Introduction

Deep learning and unsupervised feature learning have shown great promise in many practical ap-
plications. State-of-the-art performance has been reported in several domains, ranging from speech
recognition [1, 2], visual object recognition [3, 4], to text processing [5, 6].

It has also been observed that increasing the scale of deep learning, with respect to the number
of trainine examvples. the number of model parameters. or both. can drasticallv improve ultimate

1706.02677v2 [cs.CV] 30 Apr 2018

X1V

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar

Ross Girshick Pieter Noordhuis

Lukasz Wesolowski ~ Aapo Kyrola Andrew Tulloch Yangging Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ~90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

IS
o

w
o

w
S

N
a

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

ImageNet top-1 validation error

n
S}

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ~90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield

Large Scale
Distributed
Deep Networks

Described the system for the 2012 ICML Paper

Building High-level Features
Using Large Scale Unsupervised Learning

Quoc V. Le

_ Discovers Cat Features
Marc’Aurelio Ranzato -

Rajat Monga

Matthieu Devin . B
Kai Chen

Greg S. Corrado
Jeff Dean

Andrew Y. Ng

Abstrad

We consider the problem
level, class-specific featu
only unlabeled data. F¢
possible to learn a face d
unlabeled images using t
To answer this, we train ¢
connected sparse autoenc
and local contrast normall
dataset of images (the 8 o L2 —=— O - . —
lion connections, the dataset has 10 million bilitv that some neurons in the temporal cortex are

NIPS 2012 (Same Year as AlexNet)

Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google .com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep netwos
ing. We have successfully used our system to train a deep netwo
previously reported in the literature, and achieves state-g
ImageNet, a visual object recognition task with L&
gories. We show that these same technia
of a more modestly- sized deep ne
vice. Although we focus.g

to training large neura
gradient-based machine

1 Introduction

recognition [1, 2], visual object recogn:

ate of deep learning, with respect to the number
of training examples, the number of mot€l parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes

N1 o~ T -

Building High-Level Features Using
Large Scale Unsupervised Learning

ICML 2012

Input to another layer above
(image with 8 channels)

Number of output
channels = 8

Building High-level Features
Using Large Scale Unsupervised Learning

9x "‘deep”

One layer

Image Size = 200

30x bigger than
other deep nets.

Pre-Convolutional*
Architecture

Each Neuron has
separate weights

sparse
connectivity

Number

channels =3

~1 billion
parameters!

*This pre-dates AlexNet but is two decades after LeNet.

Quoc V. Le
Marc’Aurelio Ranzato
Rajat Monga
Matthieu Devin

Kai Chen

Greg S. Corrado

Jeff Dean

Andrew Y. Ng

Abstract

‘We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it
possible to learn a face detector using only
unlabeled images using unlabeled images?
To answer this, we train a 9-layered locally
connected sparse autoencoder with pooling
and local contrast normalization on a large
dataset of images (the model has 1 bil-
lion connections, the dataset has 10 million
200x200 pixel images downloaded from the
Internet). We train this network using model
parallelism and asynchronous SGD on a clus-
ter with 1,000 machines (16,000 cores) for
three days. Contrary to what appears to be
a widely-held intuition, our experimental re-
sults reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 20,000 object categories

Frorrr TrraanN ot o lace ~fF 7007 valotice v

QUOCLE@CS, STANFORD.EDU
RANZATOQGOOGLE.COM
RAJATMONGAQGOOGLE.COM
MDEVINQGOOGLE.COM
KAICHENQGOOGLE.COM
GCORRADOQGOOGLE.COM
JEFF@QGOOGLE.COM
ANG@CS.STANFORD.EDU

1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from wunlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive

More Context (ML circa 2012)

» Focus of existing distributed ML research
» Convex Optimization (e.g., SVMs, Lasso)
» Matrix Factorization
» Graphical Models

> Key systems at the fime

» Map Reduce - not great for iterative computation (whye)
» Spark really wasn't visible to ML community

» GraphLab = A fruly wonderful system?*

» we worked with Quoc/Andrew to get their model running on GraphlLab
but wasn’'t as performant.

*Developed by the speaker.

Key Problems Addressed in
DistBelief Paper

Main Problem

» Speedup fraining for large models

Sub Problems

» How to partition models and data
» Variance in worker performance - Stragglers

» Failures in workers = Fault-Tolerance

Crash Course
_on Stochastic
radien’r Descent

The Gradient Descent Algorithm

9% + initial model parameters (random, warm start)

For T from 1 to convergence:

1 n
H(t—l—l) 6)(15) o - I i - 9 (E]voluo’red
A Tt nzzzlve (yvf(xv)) f

0=0(t)

Learning Rate

Average Gradient of

Over Training Dataset

How do we distribute this
computation?

9(®) + initial model parameters (random, warm start)

For T from 1 to convergence:

1
OUFD) 00—y | =N VoL(ys, f(xi30))]
n-— 9—=0(t)

Learning Rate

Average Gradient of

How do we distribute this
computation?

Data parallelism: divide data across machines, compute local
gradient sums and then aggregate across machines. repeat.

Over Training Dataset

Issues? Repeatedly scanning the data... what if we cache ite

Logistic Regression Performance

4500
- 4000 127 s/ iteration
& 3500 -
g 3000 /

= 2500 “ Hadoop

e 2000 -
‘c “ Spark
€ 1500 W
& 1000 \
™ 500 l first iteration 174 s
5 10 20 30

0 further iterations 6 s
1

Number of Iterations

also substantially improved the programming APl over Hadoop.

The Gradient Descent Algorithm

9% + initial model parameters (random, warm start)

B Caon we use statistics to
For t from 1 to convergence: eeve s cleerthme

1 n
H(t—l—l) 6)(15) o - I i - 9 (E]voluo’red
A Tt nzzzlve (yvf(xv)) f

0=0(t)

Learning Rate

Average Gradient of

Over Training Dataset

The empirical gradient is an approximation of what | really want:

L
E Z VHL(y’IH f(gj?/? 9)) ~ 43(m,y)ND [VQL(?J, f($7 (9))]
1=1

Law of large numbers > more data provides a better
approximation (variance in the estimator decreases linearly)

Do | really need to use all the datae

The empiricol gradient is an approximation of what | really want:

— ZWL Vir f(2:50)) = By gy [VoL(y, f(z;0))]

1=

Law of large numbers > more data provides a beftter
approximation (variance in the estimator decreases linearly)

— VHL wa(xzv ~ |B‘ ZVQL Yi, (mﬂe))
— 1eB

Small B: fast but less accurate

1=

Random subset of

the data

Large B: slower but more accurate

Gradient Descent

Stochastic Gradient Descent

0% «_ initial vector (random, zeros ...)

For t from 1 to convergence:

1
0D 00—y | =N VoL(yi, f(xi;6
Tt n & Vo (y ,f(ili‘ ;))

0—=0(t)

99« initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices

glt+1) . p(t) _ ny (B ZV@L Yi, f(xi;0))

1€B

suUOI}oUN $SOT 8|gpsodwooa BUllNSSyY

Qe(t))

@

Stochastic Gradient —
Descent T

Stochastic Gradient Descent

How do you distribute SGD?e

90+ initial vector (random, zeros ..

y

For t from O to convergence:

Model Parallelism
Speed up Gradient.

B ~ Random subset of indices Depends on Model

AU 9 _p, (\B > VoL(yi, f(wi;0))

€8

99(75))

Data Speed up Sum.
Parallelism Depends on size of B

(End digression ... for now)

Key Innovations in

Large Scale
Distributed
Deep Networks

NIPS 2012 (Same Year as AlexNet)

Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@google .com

Google Inc., Mountain View, CA

Abstract

Recent work in unsupervised feature learning and deep learning has shown that be-
ing able to train large models can dramatically improve performance. In this paper,
we consider the problem of training a deep network with billions of parameters
using tens of thousands of CPU cores. We have developed a software framework
called DistBelief that can utilize computing clusters with thousands of machines to
train large models. Within this framework, we have developed two algorithms for
large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic
gradient descent procedure supporting a large number of model replicas, and (ii)
Sandblaster, a framework that supports a variety of distributed batch optimization
procedures, including a distributed implementation of L-BFGS. Downpour SGD
and Sandblaster L-BFGS both increase the scale and speed of deep netwos
ing. We have successfully used our system to train a deep netwo
previously reported in the literature, and achieves state-
ImageNet, a visual object recognition task with 14
gories. We show that these same technig
of a more modestly- sized deep ne
vice. Although we focus g

to training large neura
gradient-based machine

1 Introduction

recognition [1, 2], visual object recogn:

It has also been observed that increasi ate of deep learning, with respect to the number
of training examples, the number of mote€l parameters, or both, can drastically improve ultimate
classification accuracy [3, 4, 7]. These results have led to a surge of interest in scaling up the
training and inference algorithms used for these models [8] and in improving applicable optimization
procedures [7, 9]. The use of GPUs [1, 2, 3, 8] is a significant advance in recent years that makes

N1 o~ T -

Combine Model and Data Parallelism

Model Parallelism

Data Parallelism
rameter Server W = W - AW

— =

- 2

£ 5

o ®

Z. N

. | .ph I]
£ al “‘““DD

: 3

Z » Shurds [_

This appears in earlier work on graph systems ... Downpour SGD

g duiydely

p BuIydEl

Combine Model and Data Parallelism

Shards

Parameter Server

Data Parallelism

w=w r/Au

4d / Aw

]

\\

o

Asynchronous
ICJC]J 105]

=

=

)

R

]

Downpour SGD

Cc-uv,‘ﬁc',-ﬂ

Parameter Server

O/ I \\
Model [: Synchronous -
Rephcas 1 I L

o

Sandblaster L-BFGS

Sandblaster L-BFGS ... kot M
L[000000

> L-BFGS / / l \\
» Commonly used for convex .

opt. problems (Gt
> Requires repeated scans of ~ Medel :; Synchronous | — :
all data Rephcas | |
> Robust, minimal tuning = === —
» Naturally fits map-reduce pattern \31/
Data]
» Innovations: e

» accumulate gradients and store outputs in a sharded key value
store (parameter server)

> Tiny tasks + backup tasks to mitigate stragglers

g duiydely

p BuIydEl

Combine Model and Data Parallelism

Parameter Server

Data Parallelism

w=w r/Au

|

4d / Aw

|

\\

Model
Replcas

" | Asynchronous

Dana
Shards

e

B & B

sspus

00 IC]C]J O

R

Downpour SGD

\'_.(-o ‘ P

ST LT 2 tyges)

C=.-.£. #

Paramezer Server

Ale \\

Model
Rephcas

Synchronous e

_;lekt.

-7

Sandblaster L-BFGS

Downpour SGD
Parameter Server Ww=w- ’/A“

Claimed Innovations lJL_]_JULLL,I

> Parameter Server // \] \\
Aw

» Combine model and datfa
parallelism in an async. Model |\ Asynchronous ,)
execution. Repicas I)L)1 (O (][)
» Adagrad stabilization Data [-’_-} [-’—] [:3:]
Shards

» Warmstarting

Parameter Server 'Y W - ’l"'*\“

U000
/ # | 4 \ X
» Essentially a sharded key-value store
» support for put, get, add

Parameter Servers

» |dea appears in earlier papers:

“An Architecture for Parallel Topic “Scalable Inference in Latent Variable Models”,
Models”, Smola and Narayanamruthy. Ahmed, Aly, Gonzalez, Narayanamruthy, and
(VLDB'10) Smola. (WSDM'12)
Star Model Star Model Split Over 3 Machines
sampler sampler sampler sampler /?\

O

Machine 1 Machine 2 Machine 3

(memcached] memcached] (memcached] (memcached

DistBelief was probably the first paper to call a sharded key-value store a Parameter Server.

Downpour SGD

F‘Jrrnc ter SA ver W =w ’/A“
Claimed Innovations [_H

> Parameter Server //_\n l I \\

> Combine model and data
parallelism in an async. Medel |__J\ Asynchronous
execution. Repicas |))1 (OO [|L_J‘
oL e S e
» Adagrad stabilization Data foa —_ -
o Smrjs [__,' [] []

» Warmstarfing

Adagrad Stabilization

» Address large variability in magnifudes of gradients
» Rescale the gradients by an estimate of the diagonal variance
» More recently superseded by Adam

» Stability is needed here to support asynchronous
gradient updates

Stochastic Gradient Descent

Warmstarting

Starting closer to @

solution can help!

> Recall

90« initial vector (random, zeros'
For t from O to convergence:

B ~ Random subset of indices

AU 9 _p, (B > VoL(yi, f(wi;0))

€8

ee(t))

TN solution path for stochastic gradient on @ 2d logistic regression problem.

e J‘/@%

- O%o,« I
®

%O” gradient is smoother. . [—

me hitp://www. . fal7/assets/notebooks/26-lec/Logistic_Regression_Part_2.html

Key Results

Model Parallelism

>

Measured speedup to
compute a single mini-batch
> Is this a good metric?

Results are not that strong...

Training speed-up

15

—8— Speech: 42M parameters

- €@ - Images: 80M parameters
Images: 330M parameters

—e— |Images: 1.7B parameters

—_k
(@)

=
-

1 16 32 64
Machines per model instance

Key Results: Training and Test Error

Weird 20K Which would
Sl 2 you use?
Error Metric
Accuracy on Training Set Accuracy on Test Set
T T T 25 T T T

))
E 201 R E'\-/ 201 b
> >
(@] O o/
© E Ak
>] -
< < _
() o 4
= . . =
= 10 Looks like learning IR IRTIS. j]
® rate reset o |/ —A—SGD [1]
(@) (o))] |
© © [F ---GPU[1]
O sl —A—SGD [1] i 2 s —©— DownpourSGD [20] L
< —©— DownpourSGD [20] < ' —— DownpourSGD [20] w/Adagrad

—8— DownpourSGD [200] w/Adagrad , —B— DownpourSGD [200] w/Adagrad

—&— Sandblaster L-BFGS [2000] : —&— Sandblaster L-BFGS [2000]

OO 20 40) 60 80 100 120 O 20 40) 60 80 100 120
Time (hours) Time (hours)

Wall clock

time is good.

Why are they In the NY Times

» Trained a 1.7 billion parameter model (30x larger than
state-of-the-art) (was it necessary?)

» Using 16,000 cores (efficientlye)

» Achieves 15.8 accuracy on ImageNet 20K (70%
Improvement over state of the CII’T)

> Non-standard benchmark

» Qualitatively interesting
results

Figure 6. Visualization of the cat face neuron (left) and
human body neuron (right).

Long-tferm Impact

» The parameter server appears in many later machine
learning systems

» Downpour (Asynchronous) SGD has been largely
replaced by synchronous systems for supervised training

» Asynchrony is still popular in RL research
> Whye

» Model parallelism is still used for large language models
» Predated this work

> The neural network architectures studied here have
been largely replaced by convolutional networks

Second Paper

» Generated a lot of press
» Recently (Aug) surpassed by

Fast.ai: “Now anyone can train
ImageNet in 18 minutes for $40.’
blog post

» Popularized linear
learning rate scaling

1706.02677v2 [cs.CV] 30 Apr 2018

arxXiv

2018 (Unpublished on Arxiv)

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar Ross Girshick Pieter Noordhuis
Lukasz Wesolowski ~ Aapo Kyrola ~ Andrew Tulloch Yangqing Jia Kaiming He
Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ~90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in Al
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

IS
S

£}
@

w
S

n
o

ImageNet top-1 validation error

20
64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus rwo standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ~90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

Conftrasting to the first paper

» Synchronous SGD
» Much of the recent work has focused on synchronous setting
» Easier to reason about

» Focus exclusively on data parallelism: batch-size scaling

» Focuses on the generalization gap problem

Stochastic Gradient Descent

How do you distribute SGD?e

90+ initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices

AU 9 _p, (B > VoL(yi, f(wi;0))

€8

ee(t))

Data Slow? (~150ms)
Parallelism Depending on size of B

Batch Size Scaling

» Increase the batch size by adding machines

99(15))

» Each server processes a fixed batch size (e.g., n=32)

k
1 1
pl+1) gt _ (k § Bl E VoL(y;, f(x;;0))
j=1 771,

J ’LEBJ'

» As more servers are added (k) the effective overall
batch size increases linearly

» Why do these additional servers help?

Bigger isn’'t Always Better

» Motivation for larger batch sizes
» More opportunities for parallelism - but is it useful?
» Recall (1/n variance reduction):

1
EZVQL(yZ7f(xZ7 ‘B‘ ZVQL yl? x276))
1=1 1eB
> |s a variance reduction helpful?

> Only if it let’'s you take bigger steps (move faster)
» Doesn't affect the final answer...

Generalization Gap Problem

TN
o
]

w
6))
T

Larger batch sizes harm
generalization performance.

W
o
T

N
6))
T

,
f
l-
¢
#
%

ImageNet top-1 validation error

04 128 256 512 1k 2k 4K 8k 16k 32k 64k
mini-batch size

N
o

Rough “Intuition”

Small batch gradient descent acts as a regularizer

Loss

Sharp Mini
Hypothesis

Parameter values along some direction

Key problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size

%
N
(t+1) (1) V1= 1
0 — 0\ —n —E —E VoL(y;, f(x;;0))
k— |B;| _o(t)

» Addresses generalization performance by taking larger
steps (also improves training convergence)

» Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs

» Doesn't help for very large k...

Other Details

> Independent Batch Norm: Batch norm calculation applies
only to local batch size (n).

> All-Reduce: Recursive halving and doubling algorithm
» Used instead of popular ring reduction (fewer rounds)

» Gloo a library for efficient collective communications

> Big Basin GPU Servers: Designed for deep learning workloads
» Analysis of communication requirements 2 latency bound

> No discussion on siraggler or fault-tolerance
> Why?!

Key Results

Training vs Validation

100
’ kn=256, 1n=0.1 [train]
AR kn=256, n=0.1 [val]
: kn=8%k, n=3.2 [train]
o : n=3.2 [All curves closely
5 60! | match using the linear
G scaling rule.
07 Note learning rate
schedule drops.
20O 20 40 60 80

error %

Key Results

100 .
80 B o
60 2
40
20 1 1 1 I
0 20 40 60 80
epochs

-

Machine Learning

“Learning”

Epoch

/

time per iteration (secs)

o

o

o

o

N

N
T

o
w

N
oo
\

N
(o))
\

N
N
\

o
\o}

256

1k 2k

512 4k
mini-batch size
a)
Epoch
Second
= _/

System

8k 11

116

0.5
K

time per epoch (mins)

Key Results

> Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
» 90% scaling efficiency

» Fairly careful study of the linear scaling rule

» Observed limits to linear scaling do not depend on dataset size
» Cannot scale parallelism with dataset size

Long-tferm Impact

> Still early (this paper is not yet published)

» |deas that will appear in other papers
» Linearrate scaling
» Independent batch norm

» Paper points to limits of Synchronous SGD 2 need new
methods to accelerate training
» Eg.: Fast.ai = curriculum learning though scale variation

Questions for Discussion

» Distributed model training is not very common. Why?e

» Should we return to asynchrony?
» Whatis needed to address issues with asynchronous traininge

» How will changes in hardware affect distributed training

» E.qg., faster GPUs - larger batches, faster networks - smaller
batches ...

» How will the emergence of “dynamic models” and large
“mixture of expert models™” affect distributed training?

