
AI Applications in Network 
Congestion Control

Nathan Pemberton



Problem Statement

Bottleneck
Flows

(don’t directly 
coordinate, only infer 

from loss or RTT)

Send Rate (c)
(independent variable)

Loss
(dependent variable)

Round Trip Time (RTT)
(dependent variable)

Main Objective:
Maximize send 
rate, minimize 
Loss and RTT



Congestion Control Other Desiderata

● Fairness: All flows should converge to the same properties

● Heterogeneity: Should work even when other flows use different algorithm (especially TCP) 
or different goals (e.g. centrally controlled BW caps)

● Regret-Free: Adaptive schemes should be strictly better than a fixed policy
● Optimality: Each metric should be maximized at steady state (e.g. fair

throughput should occur at min RTT)
● Random Loss Tolerance: Not all packet loss is due to send rate, algorithms 

must tolerate random packet loss as well
● Dynamics: Algorithms must react quickly to changes in NW, both short term 

(noise) and long term (new flows, mobile, etc.)



Background PCC Vivace

Send Rate Latency
Gradient

Packet
Loss

Maximize Minimize

Online Gradient
Ascent

(adaptive learning rate)



Vivace Strengths and Limitations

Strengths
• Provable Properties:

• Formal bounds on parameters give
proof of all desiderata (not all
mutually achievable)

• Excellent Performance

• Rapidly adapts to many situations

• Best-in-class or better in most
metrics, but much more stable and 
less fiddly (especially vs TCP)

• Easily tuned (parameters mean
something, and have associated
proofs)

Limitations
● Slow adaptation in extreme

environments (e.g. mobile)
● Random loss tolerance => 

higher congestion loss

○ Paper claims this is fundamental
● Conflicts with TCP: fundamental

tradeoff between loss-based and
latency-based algorithms



General E2E RL Approach
Actions: Change Sending Rate

State: Past N time windows (rate, latency, loss)

Rewards:

(Didn’t use Allegro or Vivace utility for some reason?)

Model: Deep NN for policy

Training: Simple network simulator with single flow, vary only in latency and 
capacity



Results - RL Approach
“Our evaluation showed that Custard was fairly robust with respect to link 
capacity, latency and buffer size”

“Our model may be resilient to changes in link parameters, but it can suffer 
significantly from even minor changes in the environment”

“our model achieves near-capacity throughput with low self-inflicted latency”

“Improving our agent’s robustness to multiflow competition is an interesting 
avenue for future work”



Results - RL Approach

Bad training data Regularization? Somebody grab
the champagne!

Capacity vs Throughput Latency vs Throughput Queue Size vs Throughput



Results - RL Approach on dynamic links

Slightly better, but
could some 

Vivace tuning fix 
that?



Discussion
● Why were the RL results so mediocre?

● Better uses for ML techniques here?

○ Vivace is very good, has lots of parameters. Can we try to learn these parameters, maybe 
online?

● How significant are the different metrics (throughput, latency, loss)? What is the 
impact of these numbers?


