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What is the Problem Being Solved?

Ø Neural network computation increasing rapidly

Ø Larger networks are needed for peak accuracy

Ø Big Ideas:
Ø Adaptively scale computation for a given task
Ø Select only the parts of the network needed for a given input



Early Work: Prediction Cascades

Ø Viola-Jones Object Detection Framework (2001):
Ø “Rapid Object Detection using a Boosted Cascade of Simple 

Features” CVPR’01
Ø Face detection on 384x288 at 15 fps (700MHz Pentium III)
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Figure 4: Schematic depiction of a the detection cascade.
A series of classifiers are applied to every sub-window. The
initial classifier eliminates a large number of negative exam-
ples with very little processing. Subsequent layers eliminate
additional negatives but require additional computation. Af-
ter several stages of processing the number of sub-windows
have been reduced radically. Further processing can take
any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

tion rates and higher false positive rates.

For example an excellent first stage classifier can be con-
structed from a two-feature strong classifier by reducing the
threshold to minimize false negatives. Measured against a
validation training set, the threshold can be adjusted to de-
tect 100% of the faces with a false positive rate of 40%. See
Figure 3 for a description of the two features used in this
classifier.

Computation of the two feature classifier amounts to
about 60 microprocessor instructions. It seems hard to
imagine that any simpler filter could achieve higher rejec-
tion rates. By comparison, scanning a simple image tem-
plate, or a single layer perceptron, would require at least 20
times as many operations per sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of sub-
windows are negative. As such, the cascade attempts to re-
ject as many negatives as possible at the earliest stage pos-
sible. While a positive instance will trigger the evaluation
of every classifier in the cascade, this is an exceedingly rare
event.

Much like a decision tree, subsequent classifiers are
trained using those examples which pass through all the
previous stages. As a result, the second classifier faces a
more difficult task than the first. The examples which make
it through the first stage are “harder” than typical exam-
ples. The more difficult examples faced by deeper classi-
fiers push the entire receiver operating characteristic (ROC)
curve downward. At a given detection rate, deeper classi-
fiers have correspondingly higher false positive rates.

4.1. Training a Cascade of Classifiers
The cascade training process involves two types of trade-
offs. In most cases classifiers with more features will
achieve higher detection rates and lower false positive rates.
At the same time classifiers with more features require more
time to compute. In principle one could define an optimiza-
tion framework in which: i) the number of classifier stages,
ii) the number of features in each stage, and iii) the thresh-
old of each stage, are traded off in order to minimize the
expected number of evaluated features. Unfortunately find-
ing this optimum is a tremendously difficult problem.
In practice a very simple framework is used to produce

an effective classifier which is highly efficient. Each stage
in the cascade reduces the false positive rate and decreases
the detection rate. A target is selected for the minimum
reduction in false positives and the maximum decrease in
detection. Each stage is trained by adding features until the
target detection and false positives rates are met ( these rates
are determined by testing the detector on a validation set).
Stages are added until the overall target for false positive
and detection rate is met.

4.2. Detector Cascade Discussion
The complete face detection cascade has 38 stages with over
6000 features. Nevertheless the cascade structure results in
fast average detection times. On a difficult dataset, con-
taining 507 faces and 75 million sub-windows, faces are
detected using an average of 10 feature evaluations per sub-
window. In comparison, this system is about 15 times faster
than an implementation of the detection system constructed
by Rowley et al.3 [12]
A notion similar to the cascade appears in the face de-

tection system described by Rowley et al. in which two de-
tection networks are used [12]. Rowley et al. used a faster
yet less accurate network to prescreen the image in order to
find candidate regions for a slower more accurate network.
Though it is difficult to determine exactly, it appears that
Rowley et al.’s two network face system is the fastest exist-
ing face detector.4
The structure of the cascaded detection process is es-

sentially that of a degenerate decision tree, and as such is
related to the work of Amit and Geman [1]. Unlike tech-
niques which use a fixed detector, Amit and Geman propose
an alternative point of view where unusual co-occurrences
of simple image features are used to trigger the evaluation
of a more complex detection process. In this way the full
detection process need not be evaluated at many of the po-
tential image locations and scales. While this basic insight

3Henry Rowley very graciously supplied us with implementations of
his detection system for direct comparison. Reported results are against
his fastest system. It is difficult to determine from the published literature,
but the Rowley-Baluja-Kanade detector is widely considered the fastest
detection system and has been heavily tested on real-world problems.

4Other published detectors have either neglected to discuss perfor-
mance in detail, or have never published detection and false positive rates
on a large and difficult training set.

5

Most parts of the image 
don’t contain a face.

Reject those regions 
quickly.



for fast and accurate inference
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SkipNet: dynamic execution within a model [ECCV’18]

IDK Cascades: Using the fastest model possible [UAI’18]
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More accurate and 
efficient than existing
dynamic pruning 
networks

Task Aware Feature Embeddings
[CVPR’19]



Task Aware Feature Embeddings
[CVPR’19]
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Neural Modular Networks

Jacob Andreas et al., “Deep Compositional Question 
Answering with Neural Module Networks”

Deep Compositional Question Answering with Neural Module Networks
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Trends Today

Ø Multi-task Learning to solve many problems 
Ø Zero-shot learning

Ø Adjust network architecture for a given query
Ø Neural Modular Networks
Ø Capsule Networks

Ø Language models … more on this in future lectures
Ø Why are these dynamic? How does computation change with 

input?



Dynamic Networks à Systems Issues

Ø Reduce computation but do they reduce runtime?
Ø Limitations in existing evaluations?

Ø Implications on hardware executions?

Ø Challenges in expressing dynamic computation graphs…

Ø Likely to be the future of network design?
Ø Modularity …


