Model Compression

Joseph E. Gonzalez Co-director of the RISE Lab jegonzal@cs.berkeley.edu

What is the Problem Being Solved?

- Large neural networks are costly to deploy
 Gigaflops of computation, hundreds of MB of storage
- > Why are they costly?
 - Added computation requirements adversely affect
 - throughput/latency/energy
 - Added memory requirements adversely affect
 - download/storage of model parameters (OTA)
 - throughput and latency through caching
 - > Energy! (5pJ for SRAM cache read, 640pj for DRAM vs 0.9pJ for a FLOP)

Approaches to "Compressing" Models

Architectural Compression

- ➤ Layer Design → Typically using factorization techniques to reduce storage and computation
- Pruning → Eliminating weights, layers, or channels to reduce storage and computation from large pre-trained models

Weight Compression

- ➤ Low Bit Precision Arithmetic → Weights and activations are stored and computed using low bit precision
- ➢ Quantized Weight Encoding → Weights are quantized and stored using dictionary encodings.

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (2017)

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

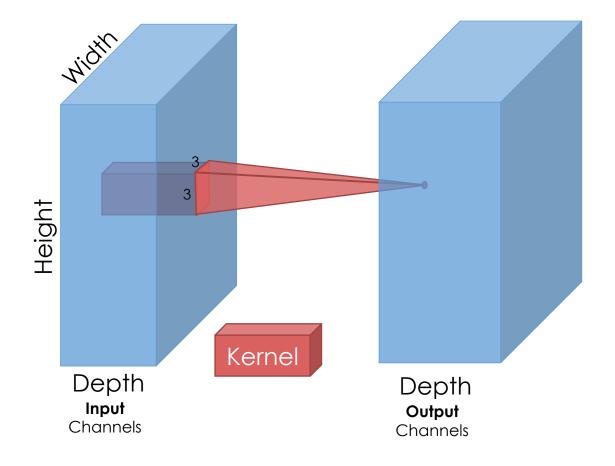
Megvii Inc. (Face++)

Related work (at the time)

- SqueezeNet (2016) Aggressively leverage 1x1 (pointwise) convolution to reduce inputs to 3x3 convolutions.
 - > 57.5% Acc (comparable to AlexNet)
 - > 1.2M Parameters \rightarrow compressed down to 0.47MB
- MobileNetV1 (2017) Aggressively leverage depth-wise separable convolutions to achieve
 - > 70.6 acc on ImageNet
 - ➤ 569M Mult-Adds
 - ➤ 4.2M -- Parameters

Background

Regular Convolution



Computation (for 3x3 kernel)

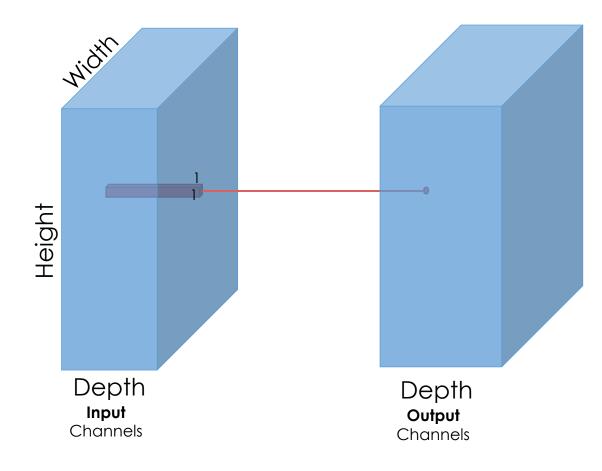
$$Y_{w_o,h_o,c_o} = \sum_{c_i,u,v} K_{c_i,u,v} * X_{w_o+u-1,h_o+v-1,c_i}$$

Computational Complexity: width, height, channel out, channel in, filter size

$$(w*h*c_o)*(c_i*3*3)$$

Combines information **across space** and **across channels**.

1x1 Convolution (Point Convolution)



Computation

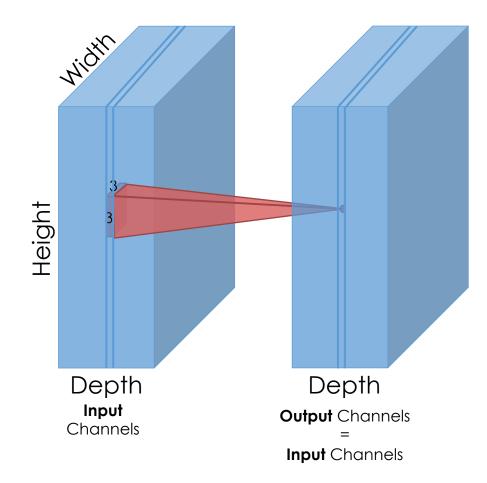
$$Y_{w_o,h_o,c_o} = \sum_{c_i} K_{c_i} * X_{w_o,h_o,c_i}$$

Computational Complexity:

$$(w * h * c_o) * c_i$$

Combines information **across channels** only.

Depthwise Convolution



Computation (for 3x3 kernel)

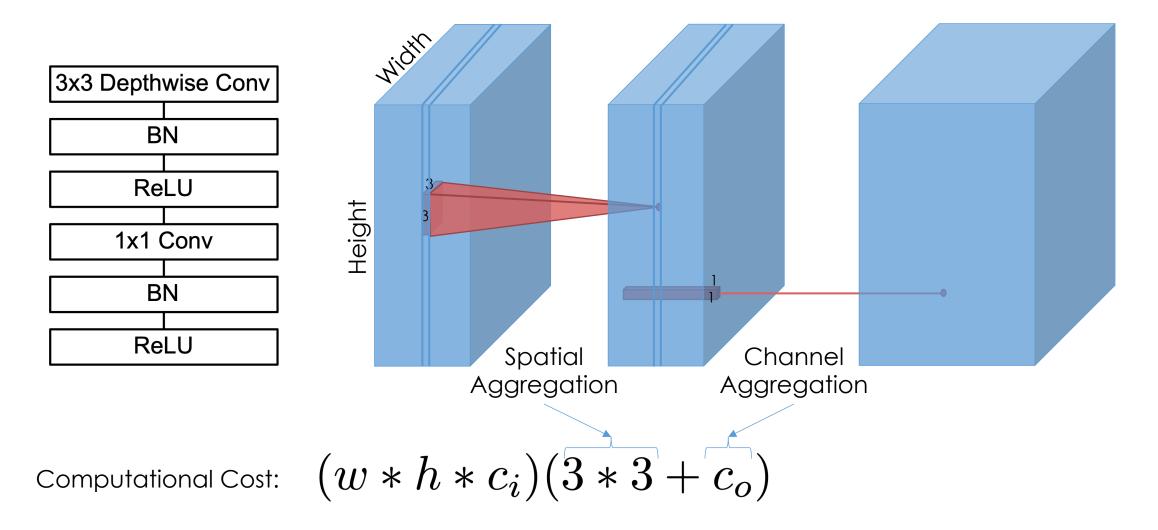
$$Y_{w_o,h_o,c_o} = \sum_{u,v} K_{c_o,u,v} * X_{w_o+u-1,h_o+v-1,c_o}$$

Computational Complexity:

$$(w * h * c_i) * (3 * 3)$$

Combines information across space only

MobileNet Layer Architecture



Observation from MobileNet Paper

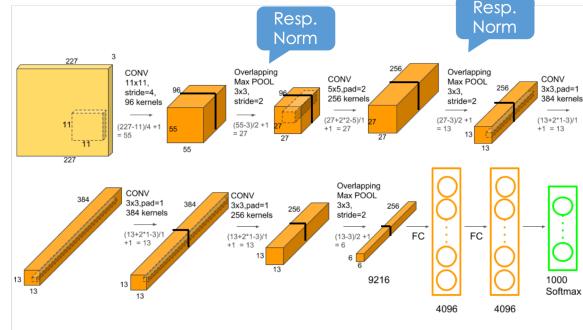
"MobileNet spends 95% of it's computation time in 1x1 convolutions which also has 75% of the parameters as can be seen in Table 2."

- Idea, eliminate the 1x1 conv but still achieve mixing of channel information?
 - > Pointwise (1x1) **Group** Convolution
 - Channel Shuffle

Group Convolution

groups Nidth 3 Height Depth Depth Input Output Channels Channels

Used in AlexNet to partition model across machines.



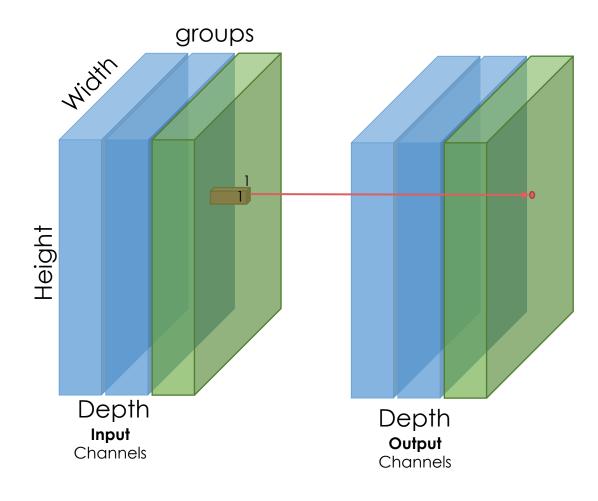
Computational Complexity:

$$(w*h*c_o)(c_i/g*3*3)$$

Combines **some** information **across space** and **across channels**.

Can we apply to 1x1 (pointwise) convolution?

Pointwise (1x1) Group Convolution



Computational Complexity:

 $(w * h * c_o) * c_i/g$

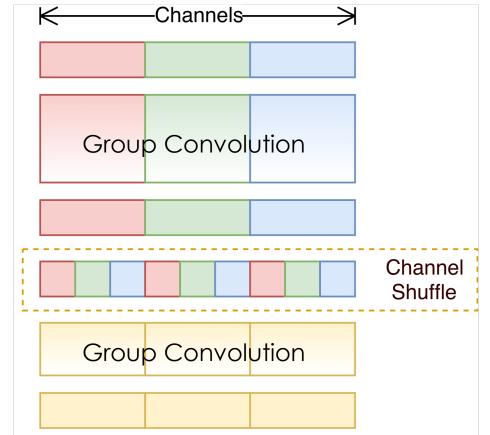
Combines **some** information **across channels.**

Issue: If applied repeatedly channel remain independent.

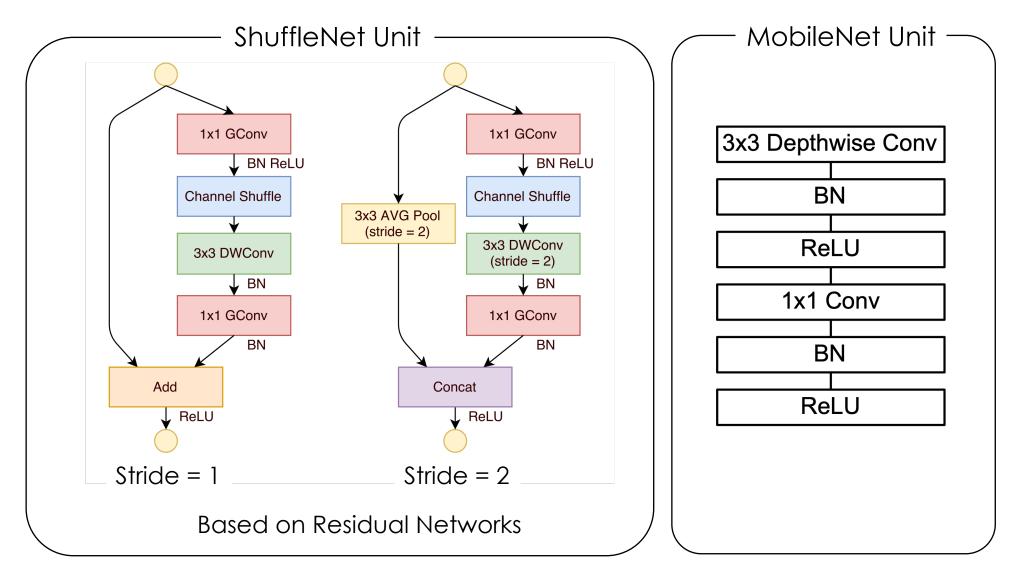
	← Channels >				
Input					
GConv1					
Feature					
GConv2					
Output					

Channel Shuffle

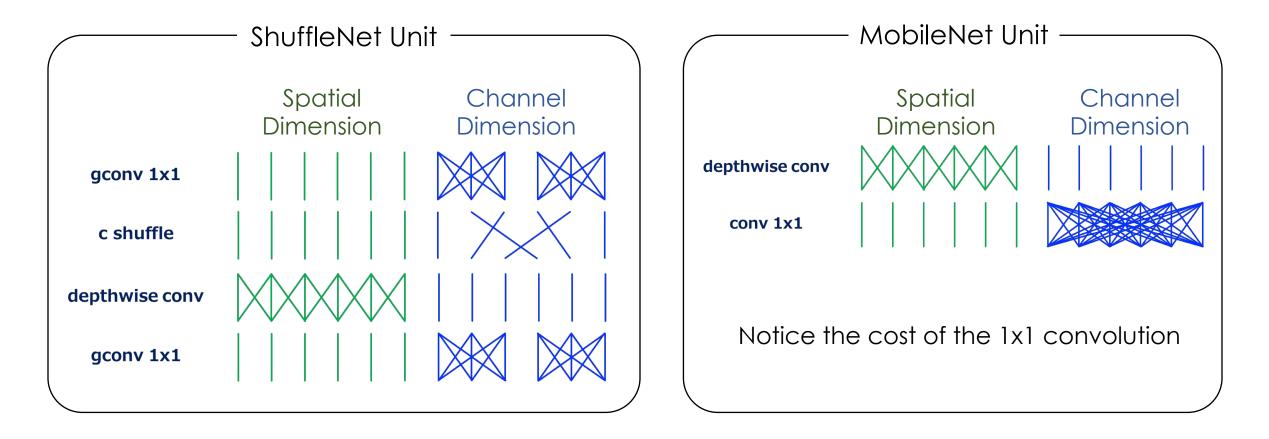
- Permute channels between group convolution stages
 - Each group should get a channel from each of the previous groups.
- No arithmetic operations but does require data movement
 - Good or bad for hardware?



ShuffleNet Architecture



Alternative Visualization



Images from https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d

ShuffleNet Architecture

Layer	Output size	KSize	Stride	Repeat	Output channels (g groups)				
					g = 1	g=2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1	112×112	3×3	2	1	24	24	24	24	24
MaxPool	56 imes 56	3×3	2						
Stage2	28×28		2	1	144	200	240	272	384
	28 imes 28		1	3	144	200	240	272	384
Stage3	14×14		2	1	288	400	480	544	768
	14×14		1	7	288	400	480	544	768
Stage4	7×7		2	1	576	800	960	1088	1536
	7×7		1	3	576	800	960	1088	1536
GlobalPool	1×1	7×7							
FC					1000	1000	1000	1000	1000
Complexity					143M	140M	137M	133M	137M

Increased width when increasing number of groups \rightarrow Constant FLOPs

Observation:

Shallow networks need more channels (width) to maintain accuracy.

What are the Metrics of Success?

- Reduction in network size (parameters)
- \succ Reduction in computation (FLOPS)
- > Accuracy
- > Runtime (Latency)

Comparisons to Other Architectures

Less computation and more accurate than MobileNet

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with <i>SE</i> [13], $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	-
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet 0.5× (shallow, $g = 3$)	40	42.8	6.6

Can be configured to match accuracy of other models while using less compute.

Model	Cls err. (%)	Complexity (MFLOPs)
VGG-16 [30]	28.5	15300
ShuffleNet $2 \times (g = 3)$	26.3	524
GoogleNet [33]*	31.3	1500
ShuffleNet $1 \times (g = 8)$	32.4	140
AlexNet [21]	42.8	720
SqueezeNet [14]	42.5	833
ShuffleNet $0.5 \times (g = 4)$	41.6	38

Runtime Performance on a Mobile Processor (Qualcomm Snapdragon 820)

Model	Cls err. (%)	FLOPs	224×224	480×640	720×1280
ShuffleNet $0.5 \times (g = 3)$	43.2	38M	15.2ms	87.4ms	260.1ms
ShuffleNet $1 \times (g = 3)$	32.6	140M	37.8ms	222.2ms	684.5ms
ShuffleNet $2 \times (g = 3)$	26.3	524M	108.8ms	617.0ms	1857.6ms
AlexNet [21]	42.8	720M	184.0ms	1156.7ms	3633.9ms
1.0 MobileNet-224 [12]	29.4	569M	110.0ms	612.0ms	1879.2ms

Faster and more accurate than MobileNet

- > Caveats
 - Evaluated using single thread
 - Unclear how this would perform on a GPU ... no numbers reported

Model Size

- ➤ They don't report memory footprint of model
 ➤ Onnx implementation is 5.6MB → ~1.4M parameters
- MobileNet reports model size
 - → 4.2M Parameters → ~16MB
- Generally relatively small

Limitations and Future Impact

➤ Limitations

- Decreases arithmetic intensity
- They disable Pointwise Group Convolution on smaller input layers due to "performance issues"
- > Future Impact
 - Not yet a widely used as MobileNet
- > Discussion:
 - Could potentially benefit from hardware optimization?