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What is the Problem Being Solvede

» Large neural networks are costly fo deploy
» Gigaflops of computation, hundreds of MB of storage

» Why are they costlye

» Added computation requirements adversely affect
» throughput/latency/energy

» Added memory requirements adversely affect
» download/storage of model parameters (OTA)

» throughput and latency through caching
» Energy! (5pJ for SRAM cache read, 640pj for DRAM vs 0.9pJ for a FLOP)



Approaches to “Compressing” Models

» Architectural Compression

> Layer Design - Typically using factorization techniques 1o
reduce storage and computation

» Pruning - Eliminating weights, layers, or channels to reduce
storage and computation from large pre-trained models

> Weight Compression
> Low Bit Precision Arithmetic > Weights and acftivations are
stored and computed using low bit precision

» Quantized Weight Encoding - Weights are quantized and
stored using dictionary encodings.



ShuffleNet:

An Extremely Efficient Convolutional

Neural Network for Mobile Devices
(2017)

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

Megvii Inc. (Face++)



Related work (at the time)

> SqueezeNet (2016) — Aggressively leverage 1x1 (point-
wise) convolution to reduce inputs to 3x3 convolutions.
» 57.5% Acc (comparable to AlexNet)
> 1.2M Parameters 2 compressed down to 0.47MB

> MobileNetV1 (2017) — Aggressively leverage depth-wise
separable convolutions to achieve
» /0.6 acc on ImageNet
» 569M — Mult-Adds
» 4.2M -- Parameters
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Regular Convolution

Computation (for 3x3 kernel)
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Computational Complexity:
width, height, channel out, channel in, filter size

Height

(w* h*cy)*(c; *3%3)

Combines information across space and
across channels.
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1x1 Convolution (Point Convolution)

Computation

Yw07ho,co — z :KC’L * Xw07hoyc'i

C4

Computational Complexity:

Height

(w * h * cy) * ¢

Combines information across channels
only.

Depth Depth
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Depthwise Convolution

Computation (for 3x3 kernel)
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u,v

Computational Complexity:

(w* h*c;) * (3% 3)

Height

Depth Depth Combines information across space only
Input Output Channels
Channels =

Input Channels



MobileNet Layer Architecture
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Observation from MobileNet Paper

“MobileNet spends 95% of it's computation time in 1x1
convolutions which also has 75% of the parameters as can
be seen in Table 2.”

» |ldeaq, eliminate the 1x1 conv but still achieve mixing of
channel information?
» Pointwise (1x1) Group Convolution
» Channel Shuffle



Used in AlexNet to partition model
across machines.

Group Convolution

CONV Overlapping Overlapping
1x11, Max POOL CONV Max POOL CONV
g ro U pS stride=4, 3x3, 5x5,pad=2 3x3, 256 3x3,pad=1
96 kernels stride=2 256 kernels stride=2 384 kernels
- 27+2°2-5)/1 7 1-3)0
(227-11)/4 +1 (553),2 1 (1 2z J (_2 ;‘3)/2 1 (13_2 33)1
=55 13
13

Overlapping O O
CONV Max POOL
3x3,pad=1 3x3, 256 ( )
384 kernels 256 kernels stride=2
(‘3 21133)” (13 2 1 -3)1 (13-3)/2 +1 FC . FC . .
e . .
: ol 10| [©
6
9216 O O 1000
13 Softmax
4096 4096

Computational Complexity:
(w* h*co)(ci/g*3x*3)

Combines some information across

Depth Depth
Input Output space and across channels.
Channels Channels

Can we apply to 1x1 (pointwise) convolution?



Pointwise (1x1) Group Convolution

Depth
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Channels

groups

Depth
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Channels

Computational Complexity:

(w = h*cy)*ci/g

Combines some information across

channels.

Issue: If applied
repeatedly channel
remain independent.
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Channel Shuffle

N

Channels >

» Permute channels between
group convolution stages

» Each group should get a channel
from each of the previous groups. Group Convolution

» No arithmetic operations but does
require data movement s Croms
» Good or bad for hardware? — — — Shuffle

Group Convolution



ShuffleNet Architecture
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Alternative Visualization
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Images from https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048069618d



https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d

ShuffleNet Architecture

Layer Output size | KSize | Stride | Repeat Output channels (g groups)
g=1 g=2 g=3 g=4 g=38
Image 224 x 224 3 3 3 3 3
Convl 112 x 112 | 3 x 3 2 1 24 24 24 24 24
MaxPool 56 x 56 3x3 2
Stage2 28 x 28 2 1 144 200 240 272 384
28 x 28 1 3 144 200 240 272 384
Stage3 14 x 14 2 1 288 400 480 544 768
14 x 14 1 7 288 400 480 544 768
Stage4 Tx7 2 1 576 800 960 1088 1536
Tx7 1 3 576 800 960 1088 1536
GlobalPool 1x1 7Tx 7
FC 1000 1000 1000 1000 1000
Complexity | | 143M  140M 137M 133M 137M

Increased width when
INncreasing number of
groups 2> Constant FLOPs

Observation:

Shallow networks need
more channels (width) to
maintain accuracy.



What are the Metrics of Successe

» Reduction in network size (parameters)

» Reduction in computation (FLOPS)
» Accuracy

» Runtime (Latency)



Comparisons to Other Architectures

Model Complexity (MFLOPs) | Cls err. (%) | A err. (%)
, 1.0 MobileNet-224 569 29.4 i
> Less Compu’rghon ShuffleNet 2 (g = 3) 524 26.3 3.1
ShuffleNet 2 (with SE[13], g = 3) 527 24.7 4.7
ANd More AcCUrate  —zswobinecna 5 K :
than MobileNet ShuffleNet 1.5x (g = 3) 292 28.5 3.1
0.5 MobileNet-224 149 36.3 .
ShuffleNet 1x (g = 8) 140 32.4 3.9
0.25 MobileNet-224 41 49.4 .
ShuffleNet 0.5% (g = 4) 38 41.6 7.8
ShuffleNet 0.5 (shallow, g = 3) 40 42.8 6.6
. Model Cls err. (%) | Complexity (MFLOPs)
» Can be conflgured VGG-16 [30] 285 15300
to maich accura cy ShuffleNet 2x (g = 3) 26.3 524
GoogleNet [33]* 31.3 1500
of (.)Thel'. models ShuffleNet 1x (g = 8) 32.4 140
while using AlexNet [21] 42.8 720
SqueezeNet [14] 42.5 833
less compufe. ShuffleNet 0.5 (g = 4) 41.6 38




Runtime Performance on a Mobile Processor
(Qualcomm Snapdragon 820)

Model Clserr. (%) | FLOPs | 224 x 224 | 480 x 640 | 720 x 1280
ShuffleNet 0.5x (g = 3) 43.2 38M 15.2ms 87.4ms 260.1ms
ShuffleNet 1 x (g = 3) 32.6 140M 37.8ms 222.2ms 684.5ms
ShuffleNet 2x (g = 3) 524M | 108.8ms | 617.0ms | (1857.6ms )
AlexNet [21] 42.8 720M 184.0ms 1156.7ms 3633.9ms
1.0 MobileNet-224 [12] 569M 110.0ms 612.0ms | [ 1879.2ms |

> Faster and more accurate than MobileNet

» Caveats

» Evaluated using single thread
» Unclear how this would perform on a GPU ... no numbers reported



Model Size

» They don't report memory footprint of model
» Onnx implementation is 5.6MB 2 ~1.4M parameters

» MobileNet reports model size
» 4.2M Parameters > ~16MB

» Generally relatively small



Limitations and Fufure Impact

» Limitations
» Decreases arithmetic intensity

» They disable Pointwise Group Convolution on smaller input
layers due 1o “performance issues”

» Future Impact
» Not yet a widely used as MobileNet

» Discussion:
» Could potentially benefit from hardware opftimization?



