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Problem

“collaboratively train machine learning models on combined
datasets for a common benefit”

“organizations cannot share their sensitive data in plaintext
due to privacy policies and regulations or due to business
competition”
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Background on Coopetitive Learning

e Coopetitive -> cooperative and competitive participant 2

e Secure multi-party computation (MPC)

o inefficient
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o unrealistic threat models

o limited to two parties @

Fig. 1: The setting of coopetitive learning.




Threat Model

e malicious setting - only trust yourself!
e all other parties can misbehave/be malicious during protocol
e all parties agree on a functionality to compute

e confidentiality of final model not protected



Background on Crypto Building Blocks

e threshold partially homomorphic encryption
o partially homomorphic
m ex. Paillier -> Enc(X) * Enc(Y) = Enc(X+Y)
o threshold
m need enough shares of secret key to decrypt
e zero knowledge proofs
o prove that a certain statement is true without revealing the prover’s secret
e secure multi party computation
o jointly compute a function over inputs while keeping inputs private

o SPDZ chosen over garbled circuits because matrix operations are more efficient
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Overview of Helen

e platform for maliciously secure coopetitive learning
e supports regularized linear models
o paper notes that these types of models are widely used

e few organizations, lots of data, smaller number of features



Key Features of Helen

e Overarching goal: Make expensive cryptographic computation independent of number
of training samples

e Make all parties commit to input dataset and prove it

e Use ADMM (Alternating Direction Method of Multipliers)/LASSO

e use partially homomorphic encryption to encrypt global weights such that each party
can compute in a decentralized manner

e 5phases

Agreement Phase

Initialization Phase

Input Preparation Phase

Model Compute Phase

Model Release Phase

o O O O O



Input Preparation Phase

e Goal: broadcast encrypted summaries of data and commit
e Why? Malicious parties could use inconsistent data during protocol
e How? Encrypt data and attach various proofs of knowledge
e Naive method: commit on input dataset
o crypto computation scales linearly

o requires complex matrix inversions in MPC
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Input Preparation Phase

e Goal: broadcast encrypted summaries of data and commit
e Why? Malicious parties could use inconsistent data during protocol
e How? Encrypt data and attach various proofs of knowledge
e Better method: Decompose A and b via SVD
o all of these matrices are dimension d, no longer n

o Each party broadcasts encrypted A, b, y*, V, X, © along with proofs of knowledge
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Input Preparation Phase

e End of input preparation phase
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Model Compute Phase

e Goal: run ADMM algorithm iteratively and update encrypted global weights
e Why ADMM?

o efficient for linear models

o converges in few iterations (10)

o supports decentralized computation

o reduces number of expensive MPC syncs

o thus, efficient for cryptographic training



Model Compute Phase

e Goal: run ADMM iteratively to update encrypted global weights

e 1. Local optimization
o Each party calculates Enc(w /")
o also generate a proof of this
e 2. Coordination using MPC
o Parties use input summaries to
verify Enc(w ")
o Convert weights to MPC
o Compute softmax via MPC
o Convert z back into encrypted
form

The coopetitive learning task for LASSO
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Model Release Phase

e Goal: jointly decrypt and release model parameters (z)
o ciphertext to MPC conversion
o verify this conversion

o jointly decrypt model parameters (z)
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Results

Samples per party 2000 4000 6000 8000 10K 40K 100K 200K 400K 800K IM
8937.01 | 8928.32 | 8933.64 | 8932.97 | 8929.10 | 8974.15 | 8981.24 | 8984.64 | 8982.88 | 8981.11 | 8980.35
8904.11 | 8900.37

sklearn L2 error
Helen L2 error 8841.33

sklearn MAE 57.89 58.07
Helen MAE 57.23 57.44 57.46

TABLE II: Select errors for gas sensor (due to space), comparing Helen with a baseline that uses sklearn to train on all plaintext
data. L2 error is the squared norm; MAE is the mean average error. Errors are calculated after post-processing.
8000 | 10K [ 20K | 40K [ 60K [ 80K [ 100K

90.63 | 90.57 | 90.55 | 90.56 | 90.55
90.54 | 90.57 | 90.55

8839.96 | 8828.18 | 8839.56 | 8837.59 | 8844.31 | 8876.00 | 8901.84 | 8907.38
58.04 58.10 58.05 58.34 58.48 58.55 58.58 58.56 58.57
57.44 57.47 57.63 58.25 58.38 58.36 58.37 58.40

Samples per party 1000 2000 | 4000 6000
91.67 | 9098 | 90.9 | 90.76 | 90.72

sklearn L2 error 92.43
9091 90.72 | 90.73 | 90.67 | 90.57

Helen L2 error 93.68 91.8 91.01
sklearn MAE 6.86 6.81 6.77 6.78 6.79 6.81 6.80 6.79 6.79 6.80 6.80
Helen MAE 6.92 6.82 6.77 6.78 6.79 6.81 6.80 6.79 6.80 6.80 6.80

TABLE III: Errors for song prediction, comparing Helen with a baseline that uses sklearn to train on all plaintext data. L2 error
is the squared norm; MAE is the mean average error. Errors are calculated after post-processing.
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Discussion

e Is there a need to extend to other types of models? Consequences of this?

e Trusted hardware (enclaves) is another popular approach to computing on sensitive
data. Is it more viable?

e What happens when more parties get involved? Comparison vs. federated learning?

e (Questions?



