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Abstract
Supervised machine learning models boast re-
markable predictive capabilities. But can you
trust your model? Will it work in deployment?
What else can it tell you about the world? We
want models to be not only good, but inter-
pretable. And yet the task of interpretation ap-
pears underspecified. Papers provide diverse and
sometimes non-overlapping motivations for in-
terpretability, and offer myriad notions of what
attributes render models interpretable. Despite
this ambiguity, many papers proclaim inter-
pretability axiomatically, absent further explana-
tion. In this paper, we seek to refine the dis-
course on interpretability. First, we examine the
motivations underlying interest in interpretabil-
ity, finding them to be diverse and occasionally
discordant. Then, we address model properties
and techniques thought to confer interpretability,
identifying transparency to humans and post-hoc
explanations as competing notions. Throughout,
we discuss the feasibility and desirability of dif-
ferent notions, and question the oft-made asser-
tions that linear models are interpretable and that
deep neural networks are not.

1. Introduction
As machine learning models penetrate critical areas like
medicine, the criminal justice system, and financial mar-
kets, the inability of humans to understand these mod-
els seems problematic (Caruana et al., 2015; Kim, 2015).
Some suggest model interpretability as a remedy, but few
articulate precisely what interpretability means or why it is
important. Despite the absence of a definition, papers fre-
quently make claims about the interpretability of various
models. From this, we might conclude that either: (i) the
definition of interpretability is universally agreed upon, but
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no one has managed to set it in writing, or (ii) the term in-
terpretability is ill-defined, and thus claims regarding inter-
pretability of various models may exhibit a quasi-scientific
character. Our investigation of the literature suggests the
latter to be the case. Both the motives for interpretability
and the technical descriptions of interpretable models are
diverse and occasionally discordant, suggesting that inter-
pretability refers to more than one concept. In this paper,
we seek to clarify both, suggesting that interpretability is
not a monolithic concept, but in fact reflects several dis-
tinct ideas. We hope, through this critical analysis, to bring
focus to the dialogue.

Here, we mainly consider supervised learning and not other
machine learning paradigms, such as reinforcement learn-
ing and interactive learning. This scope derives from our
original interest in the oft-made claim that linear models
are preferable to deep neural networks on account of their
interpretability (Lou et al., 2012). To gain conceptual clar-
ity, we ask the refining questions: What is interpretability

and why is it important? Broadening the scope of discus-
sion seems counterproductive with respect to our aims. For
research investigating interpretability in the context of rein-
forcement learning, we point to (Dragan et al., 2013) which
studies the human interpretability of robot actions. By the
same reasoning, we do not delve as much as other papers
might into Bayesian methods, however try to draw these
connections where appropriate.

To ground any discussion of what might constitute inter-
pretability, we first consider the various desiderata put forth
in work addressing the topic (expanded in §2). Many pa-
pers propose interpretability as a means to engender trust
(Kim, 2015; Ridgeway et al., 1998). But what is trust?
Does it refer to faith in a model’s performance (Ribeiro
et al., 2016), robustness, or to some other property of the
decisions it makes? Does interpretability simply mean a
low-level mechanistic understanding of our models? If
so does it apply to the features, parameters, models, or
training algorithms? Other papers suggest a connection
between an interpretable model and one which uncovers
causal structure in data (Athey & Imbens, 2015). The legal
notion of a right to explanation offers yet another lens on
interpretability.

Often, our machine learning problem formulations are im-
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ABSTRACT
Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining di↵erent models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

1. INTRODUCTION
Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to di↵erentiate between
two di↵erent (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
su�ciently to take some action based on it, and (2) trusting
a model, i.e. whether the user trusts a model to behave in
reasonable ways if deployed. Both are directly impacted by
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how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data is often significantly di↵erent, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows.

• LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

• SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization.

• Comprehensive evaluation with simulated and human sub-
jects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

2. THE CASE FOR EXPLANATIONS
By“explaining a prediction”, we mean presenting textual or

visual artifacts that provide qualitative understanding of the
relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We
argue that explaining predictions is an important aspect in
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Widely cited early example of general 
exploitability.

A good critique on the state of 
explainable AI research.



Need for Explainability (The Problem)
Ø Don’t trust black box models 

Ø confidence in the model
Ø convince a user of a prediction

Ø Don’t understand the data
Ø Reveal relationships in data (science)

Ø Don’t agree with the model

Ø Regulatory and legal reasons
Ø GDPR  — Right to an Explanation
Ø US Equal Credit Opportunity Act. — Statement of Specific 

Reasons (for adverse actions)



Classic Notion of “Interpretability”

Ø Model’s form and parameters have meaning
Ø Physical laws (F = G m1 m2/d2), growth models (p=eat)

Ø Learning = Estimating parameters è insight about the 
underlying phenomenon (and ability to make 
predictions)

Ø These models are often “simple” guided by 
“first principles”



Classic “interpretable models”

Ø Linear models

Ø Decision trees (not random forrest’s)

Ø Bayesian models

Ø Nearest neighbor models



Black Box (Less Interpretable) Models

Ø Deep Neural Networks

Ø Random Forests (ensembles in general …)

Ø Linear models with complex features



Post-hoc Explainability

Ø Provide justification for a prediction after it is made

Ø May rely on training data as well as internal model 
calculations

Ø Like human explanations …

Ø Examples:
Ø LIME, GradCam, RISE, Attentive Explanations, …



Example Explanations
LIME

12 L.A. Hendricks, R. Hu, T. Darrell, Z. Akata

This bird is a Crested Auklet because 
this is a black bird with a  small orange 
beak and it is not a Red Faced 
Cormorant because it does not have a 
long flat bill.

This bird is a Parakeet Auklet because 
this is a black bird with a  white belly 
and small feet and it is not a Horned 
Grebe because it does not have red 
eyes.

This bird is a White Pelican because 
this is a large white bird with a long 
orange beak and it is not a Laysan 
Albatross because it does not have a 
curved bill.

This bird is a Cardinal because this is a 
red bird with a  black face and it is not a 
Scarlet Tanager because it does not 
have a black wings.

This bird is a Least Auklet because this 
is a black and white spotted bird with a 
small beak and it is not a Belted 
Kingfisher because it does not have a 
long pointy bill.

This bird is a Yellow Headed 
Blackbird because this is a small black 
bird with a yellow breast and head and it 
is not a Prothonotary Warbler because 
it does not have a gray wing.

Fig. 5: Our phrase-critic is able to generate factual and counterfactual explanations. Fac-
tual explanations mention the characteristic properties of the correct class (left image)
and counterfactual explanations mention the properties that are not visible in the image,
i.e. non-groundable properties, for the negative class (right image).

To illustrate, we present our results in Figure 5. Note that the figures show two
images for each result where the first image is the query image. The second image
is the counterfactual image, i.e. the most similar image to the query image from the
counterfactual class, that we show only for reference purposes. The counterfactual ex-
planation is generated for this image just for determining the most class-specific noun
phrase. Once a list of counterfactual noun phrases is determined, those noun phrases
are grounded in the query image and the noun phrase that gets the lowest score is deter-
mined as the counterfactual evidence. To illustrate, let us consider an image of a Crested

Auklet and a nearest neighbor image from another class, e.g., Red Faced Cormorant.
The attributes “black bird” and “long flat bill” are possible counterfactual attributes for
the original crested auklet image. We use our phrase-critic to select the attribute which
produces the lowest score for the Crested Auklet image.

Figure 5 shows our final counterfactual explanation for why the Crested Auklet im-
age is not a Red Faced Cormorant (it does not have a long flat bill). On the other
hand, when the query image is a Parakeet Auklet, the factual explanation talks about
“red eyes” which are present for Horned Grebe but not for Parakeet Auklet. Similarly, a
Least Auklet is correctly determined to be a “black and white spotted bird” with a “small
beak” while a Belted Kingfisher is a has a “long pointy bill” which is the counterfac-
tual attribute for Least Auklet. On the other hand, a Cardinal is classified as a cardinal
because of the “red bird” and “black face” attributes while not as a Scarlet Tanager

because of the lack of “black wings”. These results show that our counterfactual ex-
planations do not always generate the same phrases for the counterfactual classes. Our
counterfactual explanations talk about properties of the counterfactual class that are not
relevant to the particular query image, whose evidence is clearly visible in both the
counterfactual and the query images.

In conclusion, counterfactual explanations go one step further in language-based
explanation generation. Contrasting a class with another closely related class helps the
user build a more coherent cognitive representation of a particular object of interest.

Grounding Visual Explanations

Dataset #imgs #classes Desc. (#w) Expl. (#w) #att maps
CUB [35, 28] 11k 200 58k (17) 0 0
MSCOCO [21],VQA [3] 123k � 3000 616k (10.6) 0 0
VQA-X (ours) 20k 3000 0 30k (8.1) 1500

MHP [2, 27, 29] 25k 410 75k (15) 0 0
ACT-X (ours) 18k 397 0 54k (13) 1500

Table 1: Statistics of datasets. Desc.=Descriptions, Expl.=Explanations, #w=average number of words, #att maps=number
of attention map annotations.

A man on a snowboard is on 
a ramp.

Description

Q: What is the person doing?
A: Snowboarding

Explanation

Because... they are on a 
snowboard in snowboarding 
outfit.

A gang of biker police riding 
their bikes in formation down 
a street.

Q: Can these people arrest 
someone?
A: Yes
Because... they are 
Vancouver police.

Figure 3: In comparison to the descriptions, our explana-
tions focus on the visual evidence that pertains to the ques-
tion and answer instead of generally describing objects in
the scene.

Figure 4: Our ACT-X dataset contains images from
MHP [2] dataset and our activity explanations. For MHP,
[29] collected one-sentence descriptions. Our explanations
are task specific whereas descriptions are more generic.

answer triplet. Examples for both descriptions, i.e. from
MSCOCO dataset, and our explanations are presented in
Figure 3.

Action Explanation Dataset (ACT-X). The MPI Human
Pose (MHP) dataset [2] contains 25K images extracted from
videos downloaded from Youtube. From the MHP dataset,
we selected all images that pertain to 397 activities, result-
ing in 18, 030 images total (3 splits with training set hav-
ing 12,607 images, the validation set with 1,802 images,

and finally the test set with 3,621 images). For each im-
age we collected 3 explanations. During data annotation,
we asked the annotators to complete the sentence “I can tell
the person is doing (action) because..” where the action is
the ground truth activity label. We also asked them to use
at least 10 words and avoid mentioning the activity class in
the sentence. MHP dataset also comes with 3 sentence de-
scriptions provided by [29]. Some examples of descriptions
and explanations can be seen in Figure 4.

Ground truth for pointing. In addition to textual justi-
fication, we collect attention maps from humans for both
VQA-X and ACT-X datasets in order to evaluate if the at-
tention of our model corresponds to where humans think
the evidence for the answer is. Human-annotated attention
maps are collected via Amazon Mechanical Turk where we
use the segmentation UI interface from the OpenSurfaces
Project [6]. Annotators are provided with an image and an
answer (question and answer pair for VQA-X, class label
for ACT-X). They are asked to segment objects and/or re-
gions that most prominently justify the answer. For each
dataset we randomly sample 500 images from the test split,
and for each image we collect 3 attention maps. The col-
lected annotations are used for computing the Earth Mover’s
Distance to evaluate attention maps of our model against
several baselines. Some examples can be seen in Figure 5.

5. Experiments
In this section, after detailing the experimental setup, we

present our model for visual question answering, our results
for textual justification and visual pointing tasks. Finally,
we provide and analyze qualitative results for both tasks.

5.1. Experimental Setup
Here, we detail our experimental setup in terms of model

training, hyperparameter setting and evaluation metrics.

Model training and hyperparameters. For VQA, our
model is pre-trained on the VQA training set [3] to achieve
state-of-the-art performance on predicting answers, but we
either freeze or finetune the weights of the prediction model

Attentive Explanations

Your Credit Score Is: 705
32: Balances on bankcard or revolving accounts too high 
compared to credit limits
16: The total of all balances on your open accounts is too high
85: You have too many inquiries on your credit report
13: Your most recently opened account is too new

FICO Score Reason Codes



Are these good/useful/helpful?
LIME

Dataset #imgs #classes Desc. (#w) Expl. (#w) #att maps
CUB [35, 28] 11k 200 58k (17) 0 0
MSCOCO [21],VQA [3] 123k � 3000 616k (10.6) 0 0
VQA-X (ours) 20k 3000 0 30k (8.1) 1500

MHP [2, 27, 29] 25k 410 75k (15) 0 0
ACT-X (ours) 18k 397 0 54k (13) 1500

Table 1: Statistics of datasets. Desc.=Descriptions, Expl.=Explanations, #w=average number of words, #att maps=number
of attention map annotations.

A man on a snowboard is on 
a ramp.

Description

Q: What is the person doing?
A: Snowboarding

Explanation

Because... they are on a 
snowboard in snowboarding 
outfit.

A gang of biker police riding 
their bikes in formation down 
a street.

Q: Can these people arrest 
someone?
A: Yes
Because... they are 
Vancouver police.

Figure 3: In comparison to the descriptions, our explana-
tions focus on the visual evidence that pertains to the ques-
tion and answer instead of generally describing objects in
the scene.

Figure 4: Our ACT-X dataset contains images from
MHP [2] dataset and our activity explanations. For MHP,
[29] collected one-sentence descriptions. Our explanations
are task specific whereas descriptions are more generic.

answer triplet. Examples for both descriptions, i.e. from
MSCOCO dataset, and our explanations are presented in
Figure 3.

Action Explanation Dataset (ACT-X). The MPI Human
Pose (MHP) dataset [2] contains 25K images extracted from
videos downloaded from Youtube. From the MHP dataset,
we selected all images that pertain to 397 activities, result-
ing in 18, 030 images total (3 splits with training set hav-
ing 12,607 images, the validation set with 1,802 images,

and finally the test set with 3,621 images). For each im-
age we collected 3 explanations. During data annotation,
we asked the annotators to complete the sentence “I can tell
the person is doing (action) because..” where the action is
the ground truth activity label. We also asked them to use
at least 10 words and avoid mentioning the activity class in
the sentence. MHP dataset also comes with 3 sentence de-
scriptions provided by [29]. Some examples of descriptions
and explanations can be seen in Figure 4.

Ground truth for pointing. In addition to textual justi-
fication, we collect attention maps from humans for both
VQA-X and ACT-X datasets in order to evaluate if the at-
tention of our model corresponds to where humans think
the evidence for the answer is. Human-annotated attention
maps are collected via Amazon Mechanical Turk where we
use the segmentation UI interface from the OpenSurfaces
Project [6]. Annotators are provided with an image and an
answer (question and answer pair for VQA-X, class label
for ACT-X). They are asked to segment objects and/or re-
gions that most prominently justify the answer. For each
dataset we randomly sample 500 images from the test split,
and for each image we collect 3 attention maps. The col-
lected annotations are used for computing the Earth Mover’s
Distance to evaluate attention maps of our model against
several baselines. Some examples can be seen in Figure 5.

5. Experiments
In this section, after detailing the experimental setup, we

present our model for visual question answering, our results
for textual justification and visual pointing tasks. Finally,
we provide and analyze qualitative results for both tasks.

5.1. Experimental Setup
Here, we detail our experimental setup in terms of model

training, hyperparameter setting and evaluation metrics.

Model training and hyperparameters. For VQA, our
model is pre-trained on the VQA training set [3] to achieve
state-of-the-art performance on predicting answers, but we
either freeze or finetune the weights of the prediction model

Attentive Explanations
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This bird is a Crested Auklet because 
this is a black bird with a  small orange 
beak and it is not a Red Faced 
Cormorant because it does not have a 
long flat bill.

This bird is a Parakeet Auklet because 
this is a black bird with a  white belly 
and small feet and it is not a Horned 
Grebe because it does not have red 
eyes.

This bird is a White Pelican because 
this is a large white bird with a long 
orange beak and it is not a Laysan 
Albatross because it does not have a 
curved bill.

This bird is a Cardinal because this is a 
red bird with a  black face and it is not a 
Scarlet Tanager because it does not 
have a black wings.

This bird is a Least Auklet because this 
is a black and white spotted bird with a 
small beak and it is not a Belted 
Kingfisher because it does not have a 
long pointy bill.

This bird is a Yellow Headed 
Blackbird because this is a small black 
bird with a yellow breast and head and it 
is not a Prothonotary Warbler because 
it does not have a gray wing.

Fig. 5: Our phrase-critic is able to generate factual and counterfactual explanations. Fac-
tual explanations mention the characteristic properties of the correct class (left image)
and counterfactual explanations mention the properties that are not visible in the image,
i.e. non-groundable properties, for the negative class (right image).

To illustrate, we present our results in Figure 5. Note that the figures show two
images for each result where the first image is the query image. The second image
is the counterfactual image, i.e. the most similar image to the query image from the
counterfactual class, that we show only for reference purposes. The counterfactual ex-
planation is generated for this image just for determining the most class-specific noun
phrase. Once a list of counterfactual noun phrases is determined, those noun phrases
are grounded in the query image and the noun phrase that gets the lowest score is deter-
mined as the counterfactual evidence. To illustrate, let us consider an image of a Crested

Auklet and a nearest neighbor image from another class, e.g., Red Faced Cormorant.
The attributes “black bird” and “long flat bill” are possible counterfactual attributes for
the original crested auklet image. We use our phrase-critic to select the attribute which
produces the lowest score for the Crested Auklet image.

Figure 5 shows our final counterfactual explanation for why the Crested Auklet im-
age is not a Red Faced Cormorant (it does not have a long flat bill). On the other
hand, when the query image is a Parakeet Auklet, the factual explanation talks about
“red eyes” which are present for Horned Grebe but not for Parakeet Auklet. Similarly, a
Least Auklet is correctly determined to be a “black and white spotted bird” with a “small
beak” while a Belted Kingfisher is a has a “long pointy bill” which is the counterfac-
tual attribute for Least Auklet. On the other hand, a Cardinal is classified as a cardinal
because of the “red bird” and “black face” attributes while not as a Scarlet Tanager

because of the lack of “black wings”. These results show that our counterfactual ex-
planations do not always generate the same phrases for the counterfactual classes. Our
counterfactual explanations talk about properties of the counterfactual class that are not
relevant to the particular query image, whose evidence is clearly visible in both the
counterfactual and the query images.

In conclusion, counterfactual explanations go one step further in language-based
explanation generation. Contrasting a class with another closely related class helps the
user build a more coherent cognitive representation of a particular object of interest.

Grounding Visual Explanations
Your Credit Score Is: 705
32: Balances on bankcard or revolving accounts too high 
compared to credit limits
16: The total of all balances on your open accounts is too high
85: You have too many inquiries on your credit report
13: Your most recently opened account is too new

FICO Score Reason Codes



Metrics of Success?

Ø Can they persuade a user (user studies)

Ø Are the explanations consistent

Ø Are the explanations falsifiable

Ø Are the explanations teachable (improve learning)



Systems Role in Explainability

Ø Maintaining Provenance
Ø What code, data, people involved in developing and training 

models?

Ø Attesting/Verifying Provenance
Ø Proving that model à decision follows the described 

provenance 

Ø Providing mechanisms for users to falsify explanations
Ø “You will like ’Blue Planet’ because we think you like ‘BBC 

Documentaries about Nature’[x].”
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Abstract
Supervised machine learning models boast re-
markable predictive capabilities. But can you
trust your model? Will it work in deployment?
What else can it tell you about the world? We
want models to be not only good, but inter-
pretable. And yet the task of interpretation ap-
pears underspecified. Papers provide diverse and
sometimes non-overlapping motivations for in-
terpretability, and offer myriad notions of what
attributes render models interpretable. Despite
this ambiguity, many papers proclaim inter-
pretability axiomatically, absent further explana-
tion. In this paper, we seek to refine the dis-
course on interpretability. First, we examine the
motivations underlying interest in interpretabil-
ity, finding them to be diverse and occasionally
discordant. Then, we address model properties
and techniques thought to confer interpretability,
identifying transparency to humans and post-hoc
explanations as competing notions. Throughout,
we discuss the feasibility and desirability of dif-
ferent notions, and question the oft-made asser-
tions that linear models are interpretable and that
deep neural networks are not.

1. Introduction
As machine learning models penetrate critical areas like
medicine, the criminal justice system, and financial mar-
kets, the inability of humans to understand these mod-
els seems problematic (Caruana et al., 2015; Kim, 2015).
Some suggest model interpretability as a remedy, but few
articulate precisely what interpretability means or why it is
important. Despite the absence of a definition, papers fre-
quently make claims about the interpretability of various
models. From this, we might conclude that either: (i) the
definition of interpretability is universally agreed upon, but
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2016 ICML Workshop on Human Interpretability in Machine
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author(s).

no one has managed to set it in writing, or (ii) the term in-
terpretability is ill-defined, and thus claims regarding inter-
pretability of various models may exhibit a quasi-scientific
character. Our investigation of the literature suggests the
latter to be the case. Both the motives for interpretability
and the technical descriptions of interpretable models are
diverse and occasionally discordant, suggesting that inter-
pretability refers to more than one concept. In this paper,
we seek to clarify both, suggesting that interpretability is
not a monolithic concept, but in fact reflects several dis-
tinct ideas. We hope, through this critical analysis, to bring
focus to the dialogue.

Here, we mainly consider supervised learning and not other
machine learning paradigms, such as reinforcement learn-
ing and interactive learning. This scope derives from our
original interest in the oft-made claim that linear models
are preferable to deep neural networks on account of their
interpretability (Lou et al., 2012). To gain conceptual clar-
ity, we ask the refining questions: What is interpretability

and why is it important? Broadening the scope of discus-
sion seems counterproductive with respect to our aims. For
research investigating interpretability in the context of rein-
forcement learning, we point to (Dragan et al., 2013) which
studies the human interpretability of robot actions. By the
same reasoning, we do not delve as much as other papers
might into Bayesian methods, however try to draw these
connections where appropriate.

To ground any discussion of what might constitute inter-
pretability, we first consider the various desiderata put forth
in work addressing the topic (expanded in §2). Many pa-
pers propose interpretability as a means to engender trust
(Kim, 2015; Ridgeway et al., 1998). But what is trust?
Does it refer to faith in a model’s performance (Ribeiro
et al., 2016), robustness, or to some other property of the
decisions it makes? Does interpretability simply mean a
low-level mechanistic understanding of our models? If
so does it apply to the features, parameters, models, or
training algorithms? Other papers suggest a connection
between an interpretable model and one which uncovers
causal structure in data (Athey & Imbens, 2015). The legal
notion of a right to explanation offers yet another lens on
interpretability.

Often, our machine learning problem formulations are im-
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ABSTRACT
Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining di↵erent models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

1. INTRODUCTION
Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to di↵erentiate between
two di↵erent (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
su�ciently to take some action based on it, and (2) trusting
a model, i.e. whether the user trusts a model to behave in
reasonable ways if deployed. Both are directly impacted by
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how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data is often significantly di↵erent, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows.

• LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

• SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization.

• Comprehensive evaluation with simulated and human sub-
jects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

2. THE CASE FOR EXPLANATIONS
By“explaining a prediction”, we mean presenting textual or

visual artifacts that provide qualitative understanding of the
relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We
argue that explaining predictions is an important aspect in
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