Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters

Yanghua Peng The University of Hong Kong yhpeng@cs.hku.hk Yixin Bao The University of Hong Kong yxbao@cs.hku.hk Yangrui Chen The University of Hong Kong yrchen@cs.hku.hk

Chuan Wu The University of Hong Kong cwu@cs.hku.hk Chuanxiong Guo Bytedance Inc. guochuanxiong@bytedance.com

Presenter: Silvery Fu

What is the problem?

• What is the optimal resource allocation strategy for deep learning workloads?

What is the problem?

• What is the optimal resource allocation strategy for deep learning workloads?

- Why? Improve training completion time and resource efficiency.
 - specifically, avg. job completion time and makespan across multiple jobs

What is the problem?

• What is the optimal resource allocation strategy for deep learning workloads?

- Why? Improve training completion **time** and resource **efficiency**.
 - specifically, avg. job completion time and makespan across multiple jobs

• How? Leverage more application-level semantics.

Application semantics: DL

- What semantics?
 - DL's job-task model: parameter server tasks and worker tasks
 - JCT correlates w/ convergence, iterative, ...

Application semantics: DL

- What semantics?
 - DL's job-task model: parameter server tasks and worker tasks
 - JCT correlates w/ convergence, iterative, ...

- How to capture these semantics?
 - Performance modeling

Application semantics: DL

- What semantics?
 - DL's job-task model: parameter server tasks and worker tasks
 - JCT correlates w/ convergence, iterative, ...

- How to capture these semantics?
 - Performance modeling

- How to use these semantics?
 - Tune knobs: num_worker and num_parameter_server
 - ...minimize makespan and average job completion time

- Goal: predict the JCT for each DL training job
 - ...given the knobs: num_worker and num_parameter_server
 - o JCT = F(num_worker, num_parameter_server)

- Goal: predict the JCT for each DL training job
 - ...given the knobs: num_worker and num_parameter_server
 - o JCT = F(num_worker, num_parameter_server)

- Hypothesis about **F?** Use application semantics, e.g.,
 - JCT is the sum of the time to complete each training step (process one minibatch)
 - How many training steps remaining? Estimate how far away from convergence.
 - The duration of each training step breaks down to:
 - forward/back propagation time
 - data transfer time
 - ...
 - Express these JCT breakdowns in terms of num_worker and num_parameter_server

- Goal: predict the JCT for each DL training job
 - ...given the knobs: num_worker and num_parameter_server
 - o JCT = F(num_worker, num_parameter_server)

graybox vs. blackbox?

- Hypothesis about **F?** Use application semantics, e.g.,
 - JCT is the sum of the time to complete each training step (process one minibatch)
 - How many training steps remaining? Estimate how far away from convergence.
 - The duration of each training step breaks down to:
 - forward/back propagation time
 - data transfer time
 - ...
 - Express these JCT breakdowns in terms of num_worker and num_parameter_server

- Curve 1: convergence curve
 - loss-based training convergence
 - $\circ \quad \ \ f: completed epochs \rightarrow training loss$

$$l = \frac{1}{\beta_0 \cdot k + \beta_1} + \beta_2$$

- Curve 1: convergence curve
 - loss-based training convergence
 - $\circ \quad \ \ f: \text{ completed epochs} \to \text{training loss}$

 $l = \frac{1}{\beta_0 \cdot k + \beta_1} + \beta_2$

• Curve 2: resource-learning speed curve

• f: resource configuration \rightarrow learning speed

$$f(p, w) = (\theta_0 \cdot \frac{M}{w} + \theta_1 + \theta_2 \cdot \frac{w}{p} + \theta_3 \cdot w + \theta_4 \cdot p)^{-1}$$

ResNext-110 RNN-LST DS2 **CNN-rand** Seq2Seq ResNet-50 DSSM KAGGLE Inception Loss .00 0.75 Norm 0.22 0.00 80 100 20 Progress (%) Figure 5: Training loss curves for different DL jobs

learned

online

- Curve 1: convergence curve
 - loss-based training convergence
 - $\circ \quad \ \ f: completed epochs \rightarrow training loss$

 $l = \frac{1}{\beta_0 \cdot k + \beta_1} + \beta_2$

- Curve 2: resource-learning speed curve
 - f: resource configuration \rightarrow learning speed

$$f(p, w) = (\theta_0 \cdot \frac{M}{w} + \theta_1 + \theta_2 \cdot \frac{w}{p} + \theta_3 \cdot w + \theta_4 \cdot p)^{-1}$$

- Given the two curves:
 - Optimus decides the numbers of parameter servers and workers for *each* job

learned

online

DS2

Inception

KAGGLE

Task placement

• Given the number of workers and the number parameter servers, decide where to place them at each scheduling iteration.

Task placement

• Given the number of workers and the number parameter servers, decide where to place them at each scheduling iteration.

• Optimal placement should minimize the data transfer

The paper has a

proof for this

Put together:

Key results: avg. JCT and Makespan

Key results: cpu utilization

how much accuracy do we need?

how much accuracy do we need?

how "cheap" is accuracy?

how much accuracy do we need?

What are the metrics of success?

- Resource efficiency
 - makespan
- Training time
 - average job completion time

- Others:
 - scalability: scheduling overhead, scaling overhead
 - \circ easy adoption

Long-term impact

Deep Learning

- Increasing deep learning workloads in production clusters
 - Speech recognition
 - Object classification
 - Machine translation

- Many machine learning frameworks
 - TensorFlow
 - MXNet
 - PaddlePaddle

Discussion

- "..Optimus has a relatively **small configuration space** (i.e., the number of tasks) and **5-10 sample** runs are enough for fitting the performance model quite accurately."
 - is this a useful assumption in practice? (each container fixed resources, horizontal scaling)

Discussion

- "..Optimus has a relatively **small configuration space** (i.e., the number of tasks) and **5-10 sample** runs are enough for fitting the performance model quite accurately."
 - is this a useful assumption in practice? (each container fixed resources, horizontal scaling)

- Who will use this? Who will run this?
 - Application user? Cluster operators?

Discussion

- "..Optimus has a relatively **small configuration space** (i.e., the number of tasks) and **5-10 sample** runs are enough for fitting the performance model quite accurately."
 - is this a useful assumption in practice? (each container fixed resources, horizontal scaling)

- Who will use this? Who will run this?
 - Application user? Cluster operators?

• Graybox vs. blackbox

$$f(p, w) = (\theta_0 \cdot \frac{M}{w} + \theta_1 + \theta_2 \cdot \frac{w}{p} + \theta_3 \cdot w + \theta_4 \cdot p)^{-1}$$

• can we extract the "formula" from offline profiling for a given type of application?