Optimus: An Efficient Dynamic Resource Scheduler for Deep
Learning Clusters

Yanghua Peng Yixin Bao Yangrui Chen
The University of Hong Kong The University of Hong Kong The University of Hong Kong
yhpeng@cs.hku.hk yxbao@cs.hku.hk yrchen@cs.hku.hk

Chuan Wu Chuanxiong Guo
The University of Hong Kong Bytedance Inc.
cwu@cs.hku.hk guochuanxiong@bytedance.com

Presenter: Silvery Fu


Silvery
Typewritten Text
Presenter: Silvery Fu


What is the problem?

e \What is the optimal resource allocation strategy for deep learning workloads?



What is the problem?

e \What is the optimal resource allocation strategy for deep learning workloads?

e Why? Improve training completion time and resource efficiency.
o specifically, avg. job completion time and makespan - across multiple jobs



What is the problem?
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e Why? Improve training completion time and resource efficiency.
o specifically, avg. job completion time and makespan - across multiple jobs

e How? Leverage more application-level semantics.



Application semantics: DL
e \What semantics? Igradients mtﬂ

o DL's job-task model: parameter server tasks and worker tasks
. . ki k ki
o JCT correlates w/ convergence, iterative, ... —— —— ——

e——

Data




Application semantics: DL

se serer
e \What semantics? Igradients mtﬂ

o DL's job-task model: parameter server tasks and worker tasks
. . ki k ki
o JCT correlates w/ convergence, iterative, ... —— —— ——

e How to capture these semantics?
o Performance modeling



Application semantics: DL
PP

e \What semantics? Igradients mtﬂ

o DL's job-task model: parameter server tasks and worker tasks
. . ki k ki
o JCT correlates w/ convergence, iterative, ... —— —— ——

Data

e How to capture these semantics?
o Performance modeling 508 \r—\ ,
-15

fo R e
%0-4 —e— speed \q\ 5 i
%0 2 === # of ps
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o Tune knobs: num_worker and num_parameter_server (a) 20 ps and workers

o ..minimize makespan and average job completion time
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graybox vs.
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Performance modeling

Curve 1: convergence curve
loss-based training convergence
f: completed epochs — training loss

(@)

(@)

R
Bo -k + B

B2

learned
online

—— ResNext-110 —— RNN-LSTM — DS2
—— CNN-rand —— Seq2Seq ResNet-50
—— DSSM KAGGLE —— Inception

N
\

0 20 40 60 80 100
Progress (%)

S

=
o
o

Norm. Train. Los
o o o
N v ~
(9,1 = 19,1

o
o
S

Figure 5: Training loss curves for different DL jobs

11



Performance modeling

e Curve 1: convergence curve

learned
o loss-based training convergence online
o f: completed epochs — training loss
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learned
e Curve 2: resource-learning speed curve  "offline”,
o f: resource configuration — learning speed sgﬁr?;ed
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Performance modeling

e Curve 1: convergence curve

learned
o loss-based training convergence online
o f: completed epochs — training loss
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e Curve 2: resource-learning speed curve  "offline”,
o f: resource configuration — learning speed igﬁﬁ;ed
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e Given the two curves:

o Optimus decides the numbers of parameter servers and
workers for each job
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Performance modeling = == =

e Curve 1: convergence curve learned go E

o
~
w

n. Train. Lo
o
v
o

minimize Z t; Minimize job completion time 0
JEJ remaining steps predicted by the convergence model  tbrjobs
. Q; .
subject to: t; = ' Vj€g] job remaining time
C f(pj,w;)
¢ training speed estimated by the speed function
Z(Wj : Of +p; N ) =<C Vr €R capacity constraint
JEJ |
S p; €Z%,w; € Z* Vji€e] .
| =6
e C p;: number of parameter servers of job j w;: number of workers of job j :i; .

S Optimus decides the numbers of parameter servers and 0.4 , ] |
4 8 12 16

workers for each job P S




Task placement

e Given the number of workers and the number parameter servers, decide
where to place them at each scheduling iteration.
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Task placement

e Given the number of workers and the number parameter servers, decide
where to place them at each scheduling iteration.

The paper has a
_ L proof for this
e Optimal placement should minimize the data transfer
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Put together:
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Key results: cpu utilization
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Prediction Accuracy vs. Performance
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Prediction Accuracy vs. Performance
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how much accuracy do we need?
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Prediction Accuracy vs. Performance
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Prediction Accuracy vs. Performance

how "cheap" is accuracy?
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What are the metrics of success?

e Resource efficiency
o makespan

e Training time
o average job completion time

e Others:

o scalability: scheduling overhead, scaling overhead
o easy adoption
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System ML

Long-term impact ~_

Deep Learning

* Increasing deep learning workloads in production clusters

= Speech recognition
= Object classification &( Google
Translate

= Machine translation

* Many machine learning frameworks

®» TensorFlow

. MXNet T IMESEED 44 paddiepaddie
= PaddlePaddle

TensorF
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Discussion

e "..Optimus has a relatively small configuration space (i.e., the number of
tasks) and 5-10 sample runs are enough for fitting the performance model

quite accurately."
o s this a useful assumption in practice? (each container fixed resources, horizontal scaling)
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e Graybox vs. blackbox RIS G St o5 S8 H i

o can we extract the "formula" from offline profiling for a given type of application?
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