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What is the problem?
● What is the optimal resource allocation strategy for deep learning workloads?

● Why? Improve training completion time and resource efficiency.
○ specifically, avg. job completion time and makespan - across multiple jobs

● How? Leverage more application-level semantics.
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Application semantics: DL
● What semantics?

○ DL's job-task model: parameter server tasks and worker tasks
○ JCT correlates w/ convergence, iterative, ...

● How to capture these semantics?
○ Performance modeling

● What knobs to tune?
○ Resource configuration: num_worker and num_parameter_server
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Application semantics: DL
● What semantics?

○ DL's job-task model: parameter server tasks and worker tasks
○ JCT correlates w/ convergence, iterative, ...

● How to capture these semantics?
○ Performance modeling

● How to use these semantics?
○ Tune knobs: num_worker and num_parameter_server
○ ..minimize makespan and average job completion time
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Performance modeling
● Goal: predict the JCT for each DL training job

○ ..given the knobs: num_worker and num_parameter_server
○ JCT = F(num_worker, num_parameter_server)

● Hypothesis about F? Use application semantics, e.g.,
○ JCT is the sum of the time to complete each training step (process one minibatch)
○ The duration of each training step breaks down to:

■ forward/back propagation time
■ data transfer time 
■ ...

○ Express these JCT breakdowns in terms of num_worker and num_parameter_server
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Performance modeling
● Curve 1: convergence curve

○ loss-based training convergence
○ f: completed epochs → training loss

● Curve 2: resource-learning speed curve
○ f: resource configuration → learning speed

● Given the two curves:
○ Optimus decides the numbers of parameter servers and 

workers for each job
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Task placement
● Given the number of workers and the number parameter servers, decide 

where to place them at each scheduling iteration.

● Optimal placement should minimize the data transfer 
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The paper has a 
proof for this



Put together:
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Key results: avg. JCT and Makespan
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Key results: cpu utilization 
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Prediction Accuracy vs. Performance
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Prediction Accuracy vs. Performance
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Prediction Accuracy vs. Performance
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how much accuracy do we need?how "cheap" is accuracy?



What are the metrics of success?
● Resource efficiency

○ makespan

● Training time
○ average job completion time

● Others:
○ scalability: scheduling overhead, scaling overhead
○ easy adoption
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Long-term impact
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Discussion
● "..Optimus has a relatively small configuration space (i.e., the number of 

tasks) and 5-10 sample runs are enough for fitting the performance model 
quite accurately."

○ is this a useful assumption in practice? (each container fixed resources, horizontal scaling)

● Who will use this? Who will run this?
○ Application user? Cluster operators?

● Graybox vs. blackbox
○ can we extract the "formula" from offline profiling for a given type of application? 26
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