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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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What Problem is being solved?
Ø Problem Domain: Visual Question Answering

Ø “Visual Turing test”

how many different lights

in various different shapes

and sizes?

what is the color of the

horse?

what color is the vase? is the bus full of passen-

gers?

is there a red shape above

a circle?

measure[count](

attend[light])

classify[color](

attend[horse])

classify[color](

attend[vase])

measure[is](

combine[and](

attend[bus],

attend[full])

measure[is](

combine[and](

attend[red],

re-attend[above](

attend[circle])))

four (four) brown (brown) green (green) yes (yes) no (no)

what is stuffed with

toothbrushes wrapped in

plastic?

where does the tabby cat

watch a horse eating hay?

what material are the

boxes made of?

is this a clock? is a red shape blue?

classify[what](

attend[stuff])

classify[where](

attend[watch])

classify[material](

attend[box])

measure[is](

attend[clock])

measure[is](

combine[and](

attend[red],

attend[blue]))

container (cup) pen (barn) leather (cardboard) yes (no) yes (no)

Figure 3: Example output from our approach on different visual QA tasks. The top row shows correct answers, while the
bottom row shows mistakes (correct answers are given in parentheses).

swering, performing especially well on questions answered
by an object or an attribute. Additionally, we have in-
troduced a new dataset of highly compositional questions
about simple arrangements of shapes, and shown that our
approach substantially outperforms previous work.

So far we have maintained a strict separation between
predicting network structures and learning network param-
eters. It is easy to imagine that these two problems might
be solved jointly, with uncertainty maintained over network
structures throughout training and decoding. This might be
accomplished either with a monolithic network, by using
some higher-level mechanism to “attend” to relevant por-
tions of the computation, or else by integrating with existing

tools for learning semantic parsers [16].

The fact that our neural module networks can be
trained to produce predictable outputs—even when freely
composed—points toward a more general paradigm of
“programs” built from neural networks. In this paradigm,
network designers (human or automated) have access to a
standard kit of neural parts from which to construct mod-
els for performing complex reasoning tasks. While visual
question answering provides a natural testbed for this ap-
proach, its usefulness is potentially much broader, extend-
ing to queries about documents and structured knowledge
bases or more general signal processing and function ap-
proximation.



Prior State of the Art
Ø Semantic parsing and logic:

Ø Dependent on pre-trained computer vision models to populate 
database 

Environment d Know. Base �
mug(1)
mug(3)
blue(1)
table(4)
on-rel(1, 4)
on-rel(3, 4)
...

(a) Perception fper produces a logical knowl-
edge base � from the environment d using an
independent classifier for each category and
relation.

Language z

“blue mug on table”

Logical form `

�x.9y.blue(x) ^
mug(x) ^
on-rel(x, y) ^
table(y)

(b) Semantic parsing fprs
maps language z to a log-
ical form `.

Grounding: g = {(1, 4)}, Denotation: � = {1}

{1}

{1}

blue(x)

{1, 3}

mug(x)

{(1, 4), (3, 4)}

{(1, 4), (3, 4)}

on-rel(x, y)

{4}

table(y)

(c) Evaluation feval evaluates a logical form ` on a
logical knowledge base � to produce a grounding g
and denotation �.

Figure 2: Overview of Logical Semantics with Perception (LSP).

et al., 2010; Dzifcak et al., 2009; Cantrell et al.,
2010; Chen and Mooney, 2011). All of this work as-
sumes that the formal environment representation is
given, while LSP learns to produce this formal rep-
resentation from raw sensor input.

Most similar to LSP is work on simultaneously
understanding natural language and perceiving the
environment. This problem has been addressed in
the context of robot direction following (Kollar et
al., 2010; Tellex et al., 2011) and visual attribute
learning (Matuszek et al., 2012). However, this
work is less semantically expressive than LSP and
trained using more supervision. The G3 model (Kol-
lar et al., 2010; Tellex et al., 2011) assumes a one-
to-one mapping from noun phrases to entities and
is trained using full supervision, while LSP allows
one-to-many mappings from noun phrases to entities
and can be trained using minimal annotation. Ma-
tuszek et al. (2012) learns only one-argument cate-
gories (“attributes”) and requires a fully supervised
initial training phase. In contrast, LSP models two-
argument relations and allows for weakly supervised
supervised training throughout.

3 Logical Semantics with Perception

Logical Semantics with Perception (LSP) is a model
for grounded language acquisition. LSP accepts as
input a natural language statement and an environ-
ment and outputs the objects in the environment de-
noted by the statement. The LSP model has three
components: perception, parsing and evaluation (see
Figure 2). The perception component constructs
logical knowledge bases from low-level feature-
based representations of environments. The pars-
ing component semantically parses natural language

into lambda calculus queries against the constructed
knowledge base. Finally, the evaluation compo-
nent deterministically executes this query against the
knowledge base to produce LSP’s output.

The output of LSP can be either a denotation or
a grounding. A denotation is the set of entity refer-
ents for the phrase as a whole, while a grounding is
the set of entity referents for each component of the
phrase. The distinction between these two outputs is
shown in Figure 1b. In this example, the denotation
is the set of “things to the right of the blue mug,”
which does not include the blue mug itself. On the
other hand, the grounding includes both the refer-
ents of “things” and “blue mug.” Only denotations
are used during training, so we ignore groundings in
the following model description. However, ground-
ings are used in our evaluation, as they are a more
complete description of the model’s understanding.

Formally, LSP is a linear model f that predicts a
denotation � given a natural language statement z in
an environment d. As shown in Figure 3, the struc-
ture of LSP factors into perception (fper), semantic
parsing (fprs) and evaluation (feval) components us-
ing several latent variables:

f(�,�, `, t, z,d; ✓) = fper(�, d; ✓per)+

fprs(`, t, z; ✓prs) + feval(�,�, `)

LSP assumes access to a set of predicates that
take either one argument, called categories (c 2 C)
or two arguments, called relations (r 2 R).2 These
predicates are the interface between LSP’s percep-
tion and parsing components. The perception func-
tion fper takes an environment d and produces a log-

2The set of predicates are derived from our training data.
See Section 5.3.

195

Jointly Learning to Parse and Perceive: Connecting 
Natural Language to the Physical World 



Prior State of the Art
Ø Deep Embeddings

Ø Learned end-to-end but image representation is independent 
of the question.

Image Question Answering: A Visual Semantic Embedding Model and a New Dataset

DQ2355: What is the color of roll of
tissue paper?
Ground truth: white

Comment: This question is easy be-

cause toilet tissue paper is always

white.

DQ1466: What is on the night stand?
Ground truth: paper

Comment: This question is very hard

because the object is too small to focus.

DQ2010: What is to the right of the ta-
ble?
Ground truth: sink

Comment: There are too many cluttered

objects.

Figure 2. Sample questions from DAQUAR, showing a variety of difficulty levels (last line contains our own editorial comments).

t = 1 t = 2 t = T

how many books

dropout p

LSTM

...softmax

one two ... red bird
.21 .56 ... .09 .01

linear map

image

CNN

word embedding

Figure 3. VIS+LSTM Model

4.2. Question-Answer Generation

The currently available DAQUAR dataset contains approx-
imately 1500 images, with 7000 images on 37 common ob-
ject classes, which might be not enough for training large
complex models. Another problem with the current dataset
is that simply guessing the mode can yield very good accu-
racy. We aim to create another dataset, to produce a much
larger number of QA pairs and a more even distribution of
answers. While collecting human generated QA pairs is
one possible approach, and another is to generate questions
based on image labellings, we instead propose to automat-
ically convert descriptions into QA form.

As a starting point we used the Microsoft-COCO dataset
(Lin et al., 2014), but the same method can be applied to
any other image description dataset, such as Flickr (Hodosh
et al., 2013), SBU (Ordonez et al., 2011), or even the inter-
net. Another advantage of using image descriptions is that
they are generated by humans in the first place. Hence most
objects mentioned in the descriptions are easier to notice
than the ones in DAQUAR’s human generated questions,

and synthetic QAs from ground truth labellings. This al-
lows the model to rely more on common sense and rough
image understanding without any logic reasoning. Lastly
the conversion process preserves the language variability in
the original description and will result in more human-like
questions than questions generated from image labellings.

Question generation is still an open-ended topic. We are
not trying to solve a linguistic problem but instead aim to
create a usable image QA dataset. We adopt a conservative
approach to generating questions: because we have the lux-
ury of large publicly-available image description datasets,
we can afford to reject many possible questions in an at-
tempt to create high-quality questions.

4.2.1. COMMON STRATEGIES

1. Compound sentences to simple sentences
Here we only consider a simple case, where two sen-
tences are joined together with a conjunctive words.
We split the orginial sentences into two independent
sentences. For example, “There is a cat and the cat is
running.” will be split as “There is a cat.” and “The
cat is running.”

2. Indefinite determiners to definite determiners.
Asking questions on a specific instance of the subject
requires changing the determiner into definite form
“the”. For example, “A boy is playing baseball.” will
have “the” instead of “a” in its question form: “What
is the boy playing?”.

3. Wh-movement constraints
In English, questions tend to start with interrogative
words such as “what”. The algorithm needs to move
the verb as well as the “wh-” constituent to the front of
the sentence. In this work we consider the following
two simple constraints:

What is the doing cat ? <BOA> Sitting on umbrella the 

CNN 

LSTM 

Embedding 

Fusing 

Sitting on umbrella the <EOA> 

Shared 

Shared 

Intermediate 

Softmax 

Figure 2: Illustration of the mQA model architecture. We input an image and a question about the
image (i.e. “What is the cat doing?”) to the model. The model is trained to generate the answer to
the question (i.e. “Sitting on the umbrella”). The weight matrix in the word embedding layers of
the two LSTMs (one for the question and one for the answer) are shared. In addition, as in [25], this
weight matrix is also shared, in a transposed manner, with the weight matrix in the Softmax layer.
Different colors in the figure represent different components of the model. (Best viewed in color.)

There are some concurrent and independent works on this topic: [1, 23, 32]. [1] propose a large-
scale dataset also based on MS COCO. They also provide some simple baseline methods on this
dataset. Compared to them, we propose a stronger model for this task and evaluate our method using
human judges. Our dataset also contains two different kinds of language, which can be useful for
other tasks, such as machine translation. Because we use a different set of annotators and different
requirements of the annotation, our dataset and the [1] can be complementary to each other, and lead
to some interesting topics, such as dataset transferring for visual question answering.

Both [23] and [32] use a model containing a single LSTM and a CNN. They concatenate the question
and the answer (for [32], the answer is a single word. [23] also prefer a single word as the answer),
and then feed them to the LSTM. Different from them, we use two separate LSTMs for questions
and answers respectively in consideration of the different properties (e.g. grammar) of questions and
answers, while allow the sharing of the word-embeddings. For the dataset, [23] adopt the dataset
proposed in [22], which is much smaller than our FM-IQA dataset. [32] utilize the annotations in
MS COCO and synthesize a dataset with four pre-defined types of questions (i.e. object, number,
color, and location). They also synthesize the answer with a single word. Their dataset can also be
complementary to ours.

3 The Multimodal QA (mQA) Model

We show the architecture of our mQA model in Figure 2. The model has four components: (I). a
Long Short-Term Memory (LSTM [12]) for extracting semantic representation of a question, (II). a
deep Convolutional Neural Network (CNN) for extracting the image representation, (III). an LSTM
to extract representation of the current word in the answer and its linguistic context, and (IV). a
fusing component that incorporates the information from the first three parts together and generates
the next word in the answer. These four components can be jointly trained together 3. The details
of the four model components are described in Section 3.1. The effectiveness of the important
components and strategies are analyzed in Section 5.3.

The inputs of the model are a question and the reference image. The model is trained to generate
the answer. The words in the question and answer are represented by one-hot vectors (i.e. binary
vectors with the length of the dictionary size N and have only one non-zero vector indicating its
index in the word dictionary). We add a hBOAi sign and a hEOAi sign, as two spatial words in
the word dictionary, at the beginning and the end of the training answers respectively. They will be
used for generating the answer to the question in the testing stage.

In the testing stage, we input an image and a question about the image into the model first. To
generate the answer, we start with the start sign hBOAi and use the model to calculate the probability
distribution of the next word. We then use a beam search scheme that keeps the best K candidates

3In practice, we fix the CNN part because the gradient returned from LSTM is very noisy. Finetuning the
CNN takes a much longer time than just fixing it, and does not improve the performance significantly.

3

Are you Talking to a Machine? Datasets and 
Methods for Multilingual Image Question Answering

Image Question Answering: A Visual Semantic 
Embedding Model and a new Dataset
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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swer natural language questions about images using collec-
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(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic
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Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Is there a circle next to a square?

Ø Objective: Convert question into logical expression.

Ø Conceptually à Inducing a program from a question

Ø Also probably the more brittle part of the work
Ø Addressed in follow-up paper
Ø Alternative solution: user writes logical expression à programming

Question:

is(circle, next-to(square))
Logical Expression:
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to human-robot interaction, search, and accessibility, and
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tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic
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Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
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Neural Modules
Attention

attend : Image ! Attention

Convolution

attend[dog]

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Separate 
weights for 
each argument 
e.g., [dog]

“Learned Sub-routines/Functions”

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

FC ReLU

re-attend[above]

×2

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

Stack Conv. ReLU

combine[except]

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

Attend FC Softmax couch

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

FC ReLU Softmax yesFC

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Composition!

Attention

attend : Image ! Attention

Convolution

attend[dog]

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

“Learned programs”

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

FC ReLU

re-attend[above]

×2

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

Stack Conv. ReLU

combine[except]

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

Attend FC Softmax couch

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

FC ReLU Softmax yesFC

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

attend[tie]

classify[color] yellow

(a) NMN for answering the question What color is his

tie? The attend[tie] module first predicts a heatmap
corresponding to the location of the tie. Next, the
classify[color] module uses this heatmap to pro-
duce a weighted average of image features, which are
finally used to predict an output label.

(b) NMN for answering the question Is there a red shape above a cir-

cle? The two attend modules locate the red shapes and circles, the
re-attend[above] shifts the attention above the circles, the combine mod-
ule computes their intersection, and the measure[is] module inspects the
final attention and determines that it is non-empty.

Figure 2: Sample NMNs for question answering about natural images and shapes. For both examples, layouts, attentions,
and answers are real predictions made by our model.

of the sentence. The parser also performs basic lemmati-
zation, for example turning kites into kite and were into be.
This reduces sparsity of module instances.

Next, we filter the set of dependencies to those con-
nected the wh-word in the question (the exact distance we
traverse varies depending on the task). This gives a sim-
ple symbolic form expressing (the primary) part of the sen-
tence’s meaning. For example, what is standing in the

field becomes what(stand); what color is the truck becomes
color(truck), and is there a circle next to a square becomes
is(circle, next-to(square)). In the process we also strip
away function words like determiners and modals, so what

type of cakes were they? and what type of cake is it? both
get converted to type(cake). The code for transforming
parse trees to structured queries will be provided in the ac-
companying software package.

These representations bear a certain resemblance to
pieces of a combinatory logic [18]: every leaf is implicitly
a function taking the image as input, and the root represents
the final value of the computation. But our approach, while
compositional and combinatorial, is crucially not logical:
the inferential computations operate on continuous repre-
sentations produced by neural networks, becoming discrete
only in the prediction of the final answer.

Layout These symbolic representations already deter-
mine the structure of the predicted networks, but not the
identities of the modules that compose them. This final as-
signment of modules is fully determined by the structure
of the parse. All leaves become attend modules, all inter-
nal nodes become re-attend or combine modules dependent
on their arity, and root nodes become measure modules for
yes/no questions and classify modules for all other ques-
tion types.

Given the mapping from queries to network layouts de-
scribed above, we have for each training example a net-
work structure, an input image, and an output label. In
many cases, these network structures are different, but
have tied parameters. Networks which have the same
high-level structure but different instantiations of indi-
vidual modules (for example what color is the cat?—
classify[color](attend[cat]) and where is the truck?—
classify[where](attend[truck])) can be processed in the
same batch, resulting in efficient computation.

As noted above, parts of this conversion process are task-
specific—we found that relatively simple expressions were
best for the natural image questions, while the shapes ques-
tion (by design) required deeper structures. Some summary
statistics are provided in Table 1.

Generalizations It is easy to imagine applications where
the input to the layout stage comes from something other
than a natural language parser. Users of an image database,
for example, might write SQL-like queries directly in order
to specify their requirements precisely, e.g.

IS(cat) AND NOT(IS(dog))

or even mix visual and non-visual specifications in their
queries:

IS(cat) and date > 2014-11-5

Indeed, it is possible to construct this kind of “visual
SQL” using precisely the approach described in this paper—
once our system is trained, the learned modules for atten-
tion, classification, etc. can be assembled by any kind of
outside user, without relying on natural language specifi-
cally.

“What color is his tie?”
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Composition!

Attention

attend : Image ! Attention

Convolution

attend[dog]

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

“Learned programs”

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

FC ReLU

re-attend[above]

×2

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

Stack Conv. ReLU

combine[except]

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

Attend FC Softmax couch

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

FC ReLU Softmax yesFC

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

“Is there a red shape above a circle?”

(a) NMN for answering the question What color is his

tie? The attend[tie] module first predicts a heatmap
corresponding to the location of the tie. Next, the
classify[color] module uses this heatmap to pro-
duce a weighted average of image features, which are
finally used to predict an output label.

re-attend[above]

yes

attend[circle]

combine[and]

attend[red]

measure[is]

(b) NMN for answering the question Is there a red shape above a cir-

cle? The two attend modules locate the red shapes and circles, the
re-attend[above] shifts the attention above the circles, the combine mod-
ule computes their intersection, and the measure[is] module inspects the
final attention and determines that it is non-empty.

Figure 2: Sample NMNs for question answering about natural images and shapes. For both examples, layouts, attentions,
and answers are real predictions made by our model.

of the sentence. The parser also performs basic lemmati-
zation, for example turning kites into kite and were into be.
This reduces sparsity of module instances.

Next, we filter the set of dependencies to those con-
nected the wh-word in the question (the exact distance we
traverse varies depending on the task). This gives a sim-
ple symbolic form expressing (the primary) part of the sen-
tence’s meaning. For example, what is standing in the

field becomes what(stand); what color is the truck becomes
color(truck), and is there a circle next to a square becomes
is(circle, next-to(square)). In the process we also strip
away function words like determiners and modals, so what

type of cakes were they? and what type of cake is it? both
get converted to type(cake). The code for transforming
parse trees to structured queries will be provided in the ac-
companying software package.

These representations bear a certain resemblance to
pieces of a combinatory logic [18]: every leaf is implicitly
a function taking the image as input, and the root represents
the final value of the computation. But our approach, while
compositional and combinatorial, is crucially not logical:
the inferential computations operate on continuous repre-
sentations produced by neural networks, becoming discrete
only in the prediction of the final answer.

Layout These symbolic representations already deter-
mine the structure of the predicted networks, but not the
identities of the modules that compose them. This final as-
signment of modules is fully determined by the structure
of the parse. All leaves become attend modules, all inter-
nal nodes become re-attend or combine modules dependent
on their arity, and root nodes become measure modules for
yes/no questions and classify modules for all other ques-
tion types.

Given the mapping from queries to network layouts de-
scribed above, we have for each training example a net-
work structure, an input image, and an output label. In
many cases, these network structures are different, but
have tied parameters. Networks which have the same
high-level structure but different instantiations of indi-
vidual modules (for example what color is the cat?—
classify[color](attend[cat]) and where is the truck?—
classify[where](attend[truck])) can be processed in the
same batch, resulting in efficient computation.

As noted above, parts of this conversion process are task-
specific—we found that relatively simple expressions were
best for the natural image questions, while the shapes ques-
tion (by design) required deeper structures. Some summary
statistics are provided in Table 1.

Generalizations It is easy to imagine applications where
the input to the layout stage comes from something other
than a natural language parser. Users of an image database,
for example, might write SQL-like queries directly in order
to specify their requirements precisely, e.g.

IS(cat) AND NOT(IS(dog))

or even mix visual and non-visual specifications in their
queries:

IS(cat) and date > 2014-11-5

Indeed, it is possible to construct this kind of “visual
SQL” using precisely the approach described in this paper—
once our system is trained, the learned modules for atten-
tion, classification, etc. can be assembled by any kind of
outside user, without relying on natural language specifi-
cally.
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Training

Attention

attend : Image ! Attention

Convolution

attend[dog]

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention
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A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

Attention

attend : Image ! Attention

An attention module attend[c] convolves every position
in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention

re-attend : Attention ! Attention

A re-attention module re-attend[c] is essentially just a
multilayer perceptron with rectified nonlinearities (ReLUs),
performing a fully-connected mapping from one attention
to another. Again, the weights for this mapping are distinct
for each c. So re-attend[above] should take an attention
and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination
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A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label

A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
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Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
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in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
for example, the output of the module attend[dog] is a
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and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
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the first fully-connected (FC) layer produces a vector of
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put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

Attend FC Softmax couch

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement
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A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.
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to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
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We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
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in the input image with a weight vector (distinct for each
c) to produce a heatmap or unnormalized attention. So,
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matrix whose entries should be in regions of the image
containing cats, and small everywhere else, as shown above.

Re-attention
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multilayer perceptron with rectified nonlinearities (ReLUs),
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and shift the regions of greatest activation upward (as
above), while re-attend[not] should move attention away
from the active regions. For the experiments in this paper,
the first fully-connected (FC) layer produces a vector of
size 32, and the second is the same size as the input.

Combination

combine : Attention ⇥ Attention ! Attention

A combination module combine[c] merges two attentions
into a single attention. For example, combine[and] should
be active only in the regions that are active in both inputs,
while combine[except] should be active where the first in-
put is active and the second is inactive.

Classification

classify : Image ⇥ Attention ! Label

A classification module classify[c] takes an attention and
the input image and maps them to a distribution over labels.
For example, classify[color] should return a distribution
over colors in the region attended to.

Measurement

measure : Attention ! Label
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A measurement module measure[c] takes an attention alone
and maps it to a distribution over labels. Because atten-
tions passed between modules are unnormalized, measure is
suitable for evaluating the existence of a detected object, or
counting sets of objects.

4.2. From strings to networks
Having built up an inventory of modules, we now need

to assemble them into the layout specified by the question.
The transformation from a natural language question to an
instantiated neural network takes place in two steps. First
we map from natural language questions to layouts, which
specify both the set of modules used to answer a given ques-
tion, and the connections between them. Next we use these
layouts are used to assemble the final prediction networks.

We use standard tools pre-trained on existing linguis-
tic resources to obtained structured representations of ques-
tions. Future work might focus on learning (or at least fine-
tuning) this prediction process jointly with the rest of the
system.

Parsing We begin by parsing each question with the Stan-
ford Parser [14]. to obtain a universal dependency represen-
tation [4]. Dependency parses express grammatical rela-
tions between parts of a sentence (e.g. between objects and
their attributes, or events and their participants), and pro-
vide a lightweight abstraction away from the surface form

attend[tie]

classify[color] yellow

(a) NMN for answering the question What color is his

tie? The attend[tie] module first predicts a heatmap
corresponding to the location of the tie. Next, the
classify[color] module uses this heatmap to pro-
duce a weighted average of image features, which are
finally used to predict an output label.

(b) NMN for answering the question Is there a red shape above a cir-

cle? The two attend modules locate the red shapes and circles, the
re-attend[above] shifts the attention above the circles, the combine mod-
ule computes their intersection, and the measure[is] module inspects the
final attention and determines that it is non-empty.

Figure 2: Sample NMNs for question answering about natural images and shapes. For both examples, layouts, attentions,
and answers are real predictions made by our model.

of the sentence. The parser also performs basic lemmati-
zation, for example turning kites into kite and were into be.
This reduces sparsity of module instances.

Next, we filter the set of dependencies to those con-
nected the wh-word in the question (the exact distance we
traverse varies depending on the task). This gives a sim-
ple symbolic form expressing (the primary) part of the sen-
tence’s meaning. For example, what is standing in the

field becomes what(stand); what color is the truck becomes
color(truck), and is there a circle next to a square becomes
is(circle, next-to(square)). In the process we also strip
away function words like determiners and modals, so what

type of cakes were they? and what type of cake is it? both
get converted to type(cake). The code for transforming
parse trees to structured queries will be provided in the ac-
companying software package.

These representations bear a certain resemblance to
pieces of a combinatory logic [18]: every leaf is implicitly
a function taking the image as input, and the root represents
the final value of the computation. But our approach, while
compositional and combinatorial, is crucially not logical:
the inferential computations operate on continuous repre-
sentations produced by neural networks, becoming discrete
only in the prediction of the final answer.

Layout These symbolic representations already deter-
mine the structure of the predicted networks, but not the
identities of the modules that compose them. This final as-
signment of modules is fully determined by the structure
of the parse. All leaves become attend modules, all inter-
nal nodes become re-attend or combine modules dependent
on their arity, and root nodes become measure modules for
yes/no questions and classify modules for all other ques-
tion types.

Given the mapping from queries to network layouts de-
scribed above, we have for each training example a net-
work structure, an input image, and an output label. In
many cases, these network structures are different, but
have tied parameters. Networks which have the same
high-level structure but different instantiations of indi-
vidual modules (for example what color is the cat?—
classify[color](attend[cat]) and where is the truck?—
classify[where](attend[truck])) can be processed in the
same batch, resulting in efficient computation.

As noted above, parts of this conversion process are task-
specific—we found that relatively simple expressions were
best for the natural image questions, while the shapes ques-
tion (by design) required deeper structures. Some summary
statistics are provided in Table 1.

Generalizations It is easy to imagine applications where
the input to the layout stage comes from something other
than a natural language parser. Users of an image database,
for example, might write SQL-like queries directly in order
to specify their requirements precisely, e.g.

IS(cat) AND NOT(IS(dog))

or even mix visual and non-visual specifications in their
queries:

IS(cat) and date > 2014-11-5

Indeed, it is possible to construct this kind of “visual
SQL” using precisely the approach described in this paper—
once our system is trained, the learned modules for atten-
tion, classification, etc. can be assembled by any kind of
outside user, without relying on natural language specifi-
cally.

(a) NMN for answering the question What color is his

tie? The attend[tie] module first predicts a heatmap
corresponding to the location of the tie. Next, the
classify[color] module uses this heatmap to pro-
duce a weighted average of image features, which are
finally used to predict an output label.
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(b) NMN for answering the question Is there a red shape above a cir-

cle? The two attend modules locate the red shapes and circles, the
re-attend[above] shifts the attention above the circles, the combine mod-
ule computes their intersection, and the measure[is] module inspects the
final attention and determines that it is non-empty.

Figure 2: Sample NMNs for question answering about natural images and shapes. For both examples, layouts, attentions,
and answers are real predictions made by our model.

of the sentence. The parser also performs basic lemmati-
zation, for example turning kites into kite and were into be.
This reduces sparsity of module instances.

Next, we filter the set of dependencies to those con-
nected the wh-word in the question (the exact distance we
traverse varies depending on the task). This gives a sim-
ple symbolic form expressing (the primary) part of the sen-
tence’s meaning. For example, what is standing in the

field becomes what(stand); what color is the truck becomes
color(truck), and is there a circle next to a square becomes
is(circle, next-to(square)). In the process we also strip
away function words like determiners and modals, so what

type of cakes were they? and what type of cake is it? both
get converted to type(cake). The code for transforming
parse trees to structured queries will be provided in the ac-
companying software package.

These representations bear a certain resemblance to
pieces of a combinatory logic [18]: every leaf is implicitly
a function taking the image as input, and the root represents
the final value of the computation. But our approach, while
compositional and combinatorial, is crucially not logical:
the inferential computations operate on continuous repre-
sentations produced by neural networks, becoming discrete
only in the prediction of the final answer.

Layout These symbolic representations already deter-
mine the structure of the predicted networks, but not the
identities of the modules that compose them. This final as-
signment of modules is fully determined by the structure
of the parse. All leaves become attend modules, all inter-
nal nodes become re-attend or combine modules dependent
on their arity, and root nodes become measure modules for
yes/no questions and classify modules for all other ques-
tion types.

Given the mapping from queries to network layouts de-
scribed above, we have for each training example a net-
work structure, an input image, and an output label. In
many cases, these network structures are different, but
have tied parameters. Networks which have the same
high-level structure but different instantiations of indi-
vidual modules (for example what color is the cat?—
classify[color](attend[cat]) and where is the truck?—
classify[where](attend[truck])) can be processed in the
same batch, resulting in efficient computation.

As noted above, parts of this conversion process are task-
specific—we found that relatively simple expressions were
best for the natural image questions, while the shapes ques-
tion (by design) required deeper structures. Some summary
statistics are provided in Table 1.

Generalizations It is easy to imagine applications where
the input to the layout stage comes from something other
than a natural language parser. Users of an image database,
for example, might write SQL-like queries directly in order
to specify their requirements precisely, e.g.

IS(cat) AND NOT(IS(dog))

or even mix visual and non-visual specifications in their
queries:

IS(cat) and date > 2014-11-5

Indeed, it is possible to construct this kind of “visual
SQL” using precisely the approach described in this paper—
once our system is trained, the learned modules for atten-
tion, classification, etc. can be assembled by any kind of
outside user, without relying on natural language specifi-
cally.
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Evaluation Metrics and Results

Ø Accuracy on VQA benchmarks
Ø Existing benchmarks only require limited reasoning…

Ø Introduce new Shapes Benchmark

size 4 size 5 size 6 All

Majority 64.4 62.5 61.7 63.0
VIS+LSTM 71.9 62.5 61.7 65.3
NMN 89.7 92.4 85.2 90.6
NMN (easy) 97.7 91.1 89.7 90.8

Table 2: Results on the SHAPES dataset. Here “size” is
the number of modules needed to instantiate an appropriate
NMN. Our model achieves high accuracy and outperforms
a baseline from previous work, especially on highly compo-
sitional questions. “NMN (easy)” is a modified training set
with no size-6 questions; these results demonstrate that our
model is able to generalize to questions more complicated
than it has ever seen at training time.

dataset, and we hope that SHAPES will continue to be used
in conjunction with natural image datasets.

To produce an initial set of image features, we pass the
input image through the convolutional portion of a LeNet
[17] which is jointly trained with the question-answering
part of the model. We compare our approach to a reim-
plementation of the VIS+LSTM baseline similar to the one
described by [26], again swapping out the pre-trained image
embedding with a LeNet.

As can be seen in Table 2, our model achieves excellent
performance on this dataset, while the VIS+LSTM base-
line fares little better than a majority guesser. Moreover,
the color detectors and attention transformations behave as
expected (Figure 2b), indicating that our joint training pro-
cedure correctly allocates responsibilities among modules.
This confirms that our approach is able to model complex
compositional phenomena outside the capacity of previous
approaches to visual question answering.

We perform an additional experiment on a modified ver-
sion of the training set, which contains no size-6 questions
(i.e. questions whose corresponding NMN has 6 modules).
Here our performance does not suffer at all, and perhaps in-
creases slightly; this demonstrates that our model is able to
generalize to questions even more complicated than those it
has seen during training. Using only linguistic information,
the model extrapolates simple visual patterns it has learned
to even harder questions.

7. Experiments: natural images
Next we consider the model’s ability to handle hard per-

ceptual problems involving natural images. Here we evalu-
ate on the recently-released VQA dataset. This is the largest
resource of its kind, consisting of more than 200,000 im-
ages, each paired with three questions and ten answers per
question. Data was generated by human annotators, in con-
trast to previous work, which has generated questions au-
tomatically from captions [26]. We learn our model using
the standard train/test split, training only with those answers

test-dev test

Yes/No Number Other All All

LSTM [2] 78.20 35.7 26.6 48.8 –
VIS+LSTM [2] 78.9 35.2 36.4 53.7 54.1
NMN 69.38 30.7 22.7 42.7 –
NMN+LSTM 77.7 37.2 39.3 54.8 55.1

Table 3: Results on the VQA test server. NMN+LSTM is
the full model shown in Figure 1, while NMN is an ablation
experiment with no whole-question LSTM. The full model
outperforms previous approaches, scoring particularly well
on questions not involving a binary decision. Baseline num-
bers are as reported in previous work.

marked as high confidence. The visual input to the NMN
is the conv5 layer of a 16-layer VGGNet [27] after max-
pooling. We do not fine-tune the VGGNet.

Results are shown in Table 3. As can be seen, we outper-
form the best published results on this task. A breakdown
of our questions by answer type reveals that our model per-
forms especially well on questions answered by an object,
attribute, or number, but worse than a sequence baseline
in the yes/no category. Inspection of training-set accura-
cies suggests that performance on yes/no questions is due
to overfitting. An ensemble with a sequence-only system
might achieve even better results; future work within the
NMN framework should focus on redesigning the measure

module to reduce effects from overfitting.
Inspection of parser outputs also suggests that there is

substantial room to improve the system using a better parser.
A hand inspection of the first 50 parses in the training set
suggests that most (80–90%) of questions asking for simple
properties of objects are correctly analyzed, but more com-
plicated questions are more prone to picking up irrelevant
predicates. For example are these people most likely experi-

encing a work day? is parsed as be(people, likely), when
the desired analysis is is(people, work). Parser errors of
this kind could be fixed with joint learning.

Figure 3 is broadly suggestive of the kinds of predic-
tion errors made by the system, including plausible seman-
tic confusions (cardboard interpreted as leather, round win-
dows interpreted as clocks), normal lexical variation (con-

tainer for cup), and use of answers that are a priori plausible
but unrelated to the image (describing a horse as located in
a pen rather than a barn).

8. Conclusions and future work
In this paper, we have introduced neural module net-

works, which provide a general-purpose framework for
learning collections of neural modules which can be dy-
namically assembled into arbitrary deep networks. We have
demonstrated that this approach achieves state-of-the-art
performance on existing datasets for visual question an-

Shapes Benchmark 
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VIS+LSTM 71.9 62.5 61.7 65.3
NMN 89.7 92.4 85.2 90.6
NMN (easy) 97.7 91.1 89.7 90.8

Table 2: Results on the SHAPES dataset. Here “size” is
the number of modules needed to instantiate an appropriate
NMN. Our model achieves high accuracy and outperforms
a baseline from previous work, especially on highly compo-
sitional questions. “NMN (easy)” is a modified training set
with no size-6 questions; these results demonstrate that our
model is able to generalize to questions more complicated
than it has ever seen at training time.

dataset, and we hope that SHAPES will continue to be used
in conjunction with natural image datasets.

To produce an initial set of image features, we pass the
input image through the convolutional portion of a LeNet
[17] which is jointly trained with the question-answering
part of the model. We compare our approach to a reim-
plementation of the VIS+LSTM baseline similar to the one
described by [26], again swapping out the pre-trained image
embedding with a LeNet.

As can be seen in Table 2, our model achieves excellent
performance on this dataset, while the VIS+LSTM base-
line fares little better than a majority guesser. Moreover,
the color detectors and attention transformations behave as
expected (Figure 2b), indicating that our joint training pro-
cedure correctly allocates responsibilities among modules.
This confirms that our approach is able to model complex
compositional phenomena outside the capacity of previous
approaches to visual question answering.

We perform an additional experiment on a modified ver-
sion of the training set, which contains no size-6 questions
(i.e. questions whose corresponding NMN has 6 modules).
Here our performance does not suffer at all, and perhaps in-
creases slightly; this demonstrates that our model is able to
generalize to questions even more complicated than those it
has seen during training. Using only linguistic information,
the model extrapolates simple visual patterns it has learned
to even harder questions.

7. Experiments: natural images
Next we consider the model’s ability to handle hard per-

ceptual problems involving natural images. Here we evalu-
ate on the recently-released VQA dataset. This is the largest
resource of its kind, consisting of more than 200,000 im-
ages, each paired with three questions and ten answers per
question. Data was generated by human annotators, in con-
trast to previous work, which has generated questions au-
tomatically from captions [26]. We learn our model using
the standard train/test split, training only with those answers

test-dev test

Yes/No Number Other All All

LSTM [2] 78.20 35.7 26.6 48.8 –
VIS+LSTM [2] 78.9 35.2 36.4 53.7 54.1
NMN 69.38 30.7 22.7 42.7 –
NMN+LSTM 77.7 37.2 39.3 54.8 55.1

Table 3: Results on the VQA test server. NMN+LSTM is
the full model shown in Figure 1, while NMN is an ablation
experiment with no whole-question LSTM. The full model
outperforms previous approaches, scoring particularly well
on questions not involving a binary decision. Baseline num-
bers are as reported in previous work.

marked as high confidence. The visual input to the NMN
is the conv5 layer of a 16-layer VGGNet [27] after max-
pooling. We do not fine-tune the VGGNet.

Results are shown in Table 3. As can be seen, we outper-
form the best published results on this task. A breakdown
of our questions by answer type reveals that our model per-
forms especially well on questions answered by an object,
attribute, or number, but worse than a sequence baseline
in the yes/no category. Inspection of training-set accura-
cies suggests that performance on yes/no questions is due
to overfitting. An ensemble with a sequence-only system
might achieve even better results; future work within the
NMN framework should focus on redesigning the measure

module to reduce effects from overfitting.
Inspection of parser outputs also suggests that there is

substantial room to improve the system using a better parser.
A hand inspection of the first 50 parses in the training set
suggests that most (80–90%) of questions asking for simple
properties of objects are correctly analyzed, but more com-
plicated questions are more prone to picking up irrelevant
predicates. For example are these people most likely experi-

encing a work day? is parsed as be(people, likely), when
the desired analysis is is(people, work). Parser errors of
this kind could be fixed with joint learning.

Figure 3 is broadly suggestive of the kinds of predic-
tion errors made by the system, including plausible seman-
tic confusions (cardboard interpreted as leather, round win-
dows interpreted as clocks), normal lexical variation (con-

tainer for cup), and use of answers that are a priori plausible
but unrelated to the image (describing a horse as located in
a pen rather than a barn).

8. Conclusions and future work
In this paper, we have introduced neural module net-

works, which provide a general-purpose framework for
learning collections of neural modules which can be dy-
namically assembled into arbitrary deep networks. We have
demonstrated that this approach achieves state-of-the-art
performance on existing datasets for visual question an-

VQA Benchmark



how many different lights

in various different shapes

and sizes?

what is the color of the

horse?

what color is the vase? is the bus full of passen-

gers?

is there a red shape above

a circle?

measure[count](

attend[light])

classify[color](

attend[horse])

classify[color](

attend[vase])

measure[is](

combine[and](

attend[bus],

attend[full])

measure[is](

combine[and](

attend[red],

re-attend[above](

attend[circle])))

four (four) brown (brown) green (green) yes (yes) no (no)

what is stuffed with

toothbrushes wrapped in

plastic?

where does the tabby cat

watch a horse eating hay?

what material are the

boxes made of?

is this a clock? is a red shape blue?

classify[what](

attend[stuff])

classify[where](

attend[watch])

classify[material](

attend[box])

measure[is](

attend[clock])

measure[is](

combine[and](

attend[red],

attend[blue]))

container (cup) pen (barn) leather (cardboard) yes (no) yes (no)

Figure 3: Example output from our approach on different visual QA tasks. The top row shows correct answers, while the
bottom row shows mistakes (correct answers are given in parentheses).

swering, performing especially well on questions answered
by an object or an attribute. Additionally, we have in-
troduced a new dataset of highly compositional questions
about simple arrangements of shapes, and shown that our
approach substantially outperforms previous work.

So far we have maintained a strict separation between
predicting network structures and learning network param-
eters. It is easy to imagine that these two problems might
be solved jointly, with uncertainty maintained over network
structures throughout training and decoding. This might be
accomplished either with a monolithic network, by using
some higher-level mechanism to “attend” to relevant por-
tions of the computation, or else by integrating with existing

tools for learning semantic parsers [16].

The fact that our neural module networks can be
trained to produce predictable outputs—even when freely
composed—points toward a more general paradigm of
“programs” built from neural networks. In this paradigm,
network designers (human or automated) have access to a
standard kit of neural parts from which to construct mod-
els for performing complex reasoning tasks. While visual
question answering provides a natural testbed for this ap-
proach, its usefulness is potentially much broader, extend-
ing to queries about documents and structured knowledge
bases or more general signal processing and function ap-
proximation.

Qualitative 
Results



Impact
Ø Over 300 citations (pretty good)

Ø Follow-up work “Learning to Reason: End-to-End Module 
Networks for Visual Question Answering” address 
limitations of parsing.
Ø Uses Policy RNN to predict composition (trained using RL)

How many other 
things are of the 
same size as the 
green matte ball?

relocate[1]

4

count[2]

find[0]

Does the blue cylinder have 
the same material as the big 
block on the right side of the 
red metallic thing?

yes

find[1]find[0]

filter[3]

relocate[2]

compare[4]

Figure 5: Question answering examples on the CLEVR dataset. On the left, it can be seen that the model successfully locates
the matte green ball, attends to all the other objects of the same size, and then correctly identifies that there are 4 such objects
(excluding the initial ball). On the right, it can be seen the various modules similarly assume intuitive semantics. Of particular
interest is the second find module, which picks up the word right in addition to metallic red thing: this suggests that model
can use the fact that downstream computation will look to the right of the detected object to focus its initial search in the left
half of the image, a behavior supported by our attentive approach but not a conventional linguistic analysis of the question.

Compare Integer Query Attribute Compare Attribute

Method Overall Exist Count equal less more size color material shape size color material shape

CNN+BoW [26] 48.4 59.5 38.9 50 54 49 56 32 58 47 52 52 51 52
CNN+LSTM [4] 52.3 65.2 43.7 57 72 69 59 32 58 48 54 54 51 53
CNN+LSTM+MCB [9] 51.4 63.4 42.1 57 71 68 59 32 57 48 51 52 50 51
CNN+LSTM+SA [25] 68.5 71.1 52.2 60 82 74 87 81 88 85 52 55 51 51

NMN (expert layout) [3] 72.1 79.3 52.5 61.2 77.9 75.2 84.2 68.9 82.6 80.2 80.7 74.4 77.6 79.3

ours - policy search
from scratch 69.0 72.7 55.1 71.6 85.1 79.0 88.1 74.0 86.6 84.1 50.1 53.9 48.6 51.1

ours - cloning expert 78.9 83.3 63.3 68.2 87.2 85.4 90.5 80.2 88.9 88.3 89.4 52.5 85.4 86.7
ours - policy search
after cloning 83.7 85.7 68.5 73.8 89.7 87.7 93.1 84.8 91.5 90.6 92.6 82.8 89.6 90.0

Table 3: Evaluation of our method and previous work on CLEVR test set. With policy search after cloning, the accuracies are
consistently improved on all questions types, with large improvement on some question types like compare color.

We evaluate our model on the test set of CLEVR. Table 3
shows the detailed performance of our model and previous
methods on each question type, where “ours - policy search
from scratch” is the baseline using pure reinforcement learn-
ing without resorting to the expert, “ours - cloning expert”
is the supervised behavioral cloning from the constructed
expert policy in the first stage, and “ours - policy search
after cloning” is our model further trained for the second
training stage. It can be seen that without using any ex-
pert demonstrations, our method with policy optimization
from scratch already achieves higher performance than most
previous work, and our model trained in the first behavioral
cloning stage outperforms the previous approaches by a large
margin in overall accuracy. This indicates that our neural
modules are capable of reasoning for complex questions in
the dataset like “does the block that is to the right of the big
cyan sphere have the same material as the large blue thing?”

Our model also outperforms the NMN baseline [3] trained
on the same expert layout as used in our model1. This shows
that our soft attention module parameterization is better than
the hard-coded textual parameters in NMN. Figure 5 shows
some question answering examples with our model.

By comparing “ours - policy search after cloning” with
“ours - cloning expert” in Table 3, it can be seen that the
performance consistently improves after end-to-end training
with policy search using reinforcement learning in the second
training stage, with especially large improvement on the
compare color type of questions, indicating that the original
expert policy is not optimal, and we can improve upon it
with policy search over the entire layout space. Figure 6
shows an example before and after end-to-end optimization.

1The question parsing in the original NMN implementation does not
work on the CLEVR dataset, as confirmed in [15]. For fair comparison with
NMN, we train NMN using the same expert layout as our model.



Points to a bigger opportunity…

Ø Composition of learned modules

Ø Conjecture: Increasing “non-experts” will compose 
existing ML models to solve new complex problems.
Ø Organizations will develop and reuse model components in 

multiple tasks
Ø Training will span many different neural module programs

Ø Needed?
Ø Abstractions for individual components
Ø Mechanisms for composition and joint training


