

Ray RLlib

A scalable and unified library for reinforcement learning https://rllib.io

Eric Liang

• RLlib the open source project ("abstractions for RL")

• System challenges building a scalable RL library

Background: What is reinforcement learning?

observation + reward

Supervised Learning

Reinforcement Learning

Growing number of RL applications

A scalable, unified library for reinforcement learning

Performance

IMPALA and A2C vs A3C after 1 hour of training:

env	RLlib IMPALA 32-workers	RLlib A2C 5-workers	Mnih et al A3C 16-workers
BeamRider	3181	874	~1000
Breakout	538	268	~10
QBert	10850	1212	~500
SpaceInvaders	843	518	~300

User growth in 2018

Num Issues and Dev-list Threads

Month of 2018

Filtering GitHub and ray-dev@ issues for "rllib":

- user engagement is increasing
- couple dozen companies and research labs using RLlib!

Amazon SageMaker RL

Reinforcement learning for every developer indicate scientist

390

R7 •

AWS Simulati	Amazon	Amazon Sumerian	
	Sumerian	Sumerian DQN PPC	AWS Simul
	DQN PPO		
	DQN PPO		

Project status

- Goal: be the best library for RL applications and RL applications research
- - new algorithms
 - cross-cutting features (env modeling, AutoRL)
 - better performance
- Documentation at <u>https://rllib.io</u>

Continuing development (<u>https://github.com/ray-project/ray</u>)

©2017 RISELab

Abstractions for Distributed Reinforcement Learning

RL research scales with compute

Fig. courtesy NVidia Inc.

CPU GPU TPU

Fig. courtesy OpenAl

Example

rllib train --run=PPO --env=Pong-v0 --config='{"num_workers": 1}'

rllib train --run=PPO --env=Pong-v0 --config='{"num_workers": 4, "num_gpus": 1}'

rllib train --run=PPO --env=Pong-v0 --config='{"num_workers": 256, "num_gpus": 8}' --redis-address=localhost:6379

Systems for RL today

- Many implementations (7000+ repos on GitHub!) - how general are they (and do they scale)? PPO: multiprocessing, MPI AlphaZero: custom systems **Evolution Strategies: Redis IMPALA:** Distributed TensorFlow A3C: shared memory, multiprocessing, TF
- Huge variety of algorithms and distributed systems used to implement, but little unification of different architectures

Challenges to unification

1. Wide range of physical execution strategies for one "algorithm"

GPU

send experiences

multiprocessing

single-node

synchronous

Challenges to unification

2. Tight coupling with deep learning frameworks

Different parallelism paradigms: – Distributed TensorFlow vs TensorFlow + MPI?

http://rllib.io

Challenges to unification

3. Large variety of algorithms with different structures

Algorithm Family	Policy Evaluation	Replay Buffer	Gradient-Based Optimizer	Other Distributed Components
DQNs	Х	Х	Х	
Policy Gradient	X		X	
Off-policy PG	X	X	X	
Model-Based/Hybrid	Х		Х	Model-Based Planning
Multi-Agent	X	X	X	
Evolutionary Methods	X			Derivative-Free Optimization
AlphaGo	X	X	X	MCTS, Derivative-Free Optimization

We need abstractions for RL

components.

Goals:

- Code reuse across deep learning frameworks
- Scalable execution of algorithms
- Easily compare and reproduce algorithms

Good abstractions decompose RL algorithms into reusable

Structure of RL computations

Agent

Environment

http://rllib.io

Structure of RL computations

Agent

Environment

Many RL loop decompositions

Async DQN (Mnih et al; 2016)

Ape-X DQN (Horgan et al; 2018)

http://rllib.io

http://rllib.io

Common components

Async DQN (Mnih et al; 2016)

Ape-X DQN (Horgan et al; 2018)

Common components

Async DQN (Mnih et al; 2016)

http://rllib.io

Ape-X DQN (Horgan et al; 2018)

Structural differences

Async DQN (Mnih et al; 2016)

- Asynchronous optimization
- Replicated workers
- Single machine

...and this is just one family!

 \rightarrow No existing system can effectively meet all the varied demands of RL workloads.

Ape-X DQN (Horgan et al; 2018)

- Central learner
- Data queues between components
- Large replay buffers
- Scales to clusters
- + Population-Based Training (Jaderberg et al; 2017)
- Nested parallel computations
- Control decisions based on intermediate results

Requirements for a new system

- Goal: Capture a broad range of RL workloads with high performance and substantial code reuse
- 1. Support stateful computations
 - e.g., simulators, neural nets, replay buffers - big data frameworks, e.g., Spark, are typically stateless
- 2. Support asynchrony
 - difficult to express in MPI, esp. nested parallelism
- 3. Allow easy composition of (distributed) components

Ray System Substrate

- RLlib builds on Ray to provide higher-level RL abstractions Hierarchical parallel task model with stateful workers - flexible enough to capture a broad range of RL workloads (vs specialized sys.)
 - - GPU
 - send experiences

single-node

synchronous

multiprocessing

Hierarchical Parallel Task Model

- 1. Create Python class instances in the cluster (stateful workers) 2. Schedule short-running tasks onto workers
 - Challenge: High performance: 1e6+ tasks/s, ~200us task

Hierarchical Task Model

http://rllib.io

RLlib Abstractions in Action

abstractions for reinforcement learning.

RLlib is open source and available at http://rllib.io Thanks!

Summary: RLlib addresses challenges in providing scalable

