
Lakehouse: Supporting Modern
Data and AI Workloads

Reynold Xin @rxin
Jan 31, 2022, Berkeley cs291-162

whoami

§ Reynold Xin
§ 2010 – 2013: PhD in databases @ UC Berkeley
§ 2013 – 2016: Spark (query engine) development @ Databricks

▪ API revamp, e.g. DataFrames
▪ Engine rewrites
▪ Performance efforts, e.g. Sort Benchmark 2014 and current (2016) world record

§ 2016 – present: Lakehouse @ Databricks

The Times, They Are a-Changing…

All enterprises are starting to use large-scale data (petabytes+)

All enterprises are using machine learning

Computing is moving to the cloud

Great opportunity for new data systems!

About

Cloud-based data and ML platform for over 5000 customers
▪ Over 10 million VMs processing exabytes of data per day
▪ Exabytes of data under management

Approximately 800 engineers

Used for ETL, data science, ML and data warehousing

Compute resources growth

Holiday

COVID19

World
recovering

What’s Unique About Databricks?

New system architecture, the lakehouse, that combines the best features
of data lakes and warehouses

Cloud-first: embrace elasticity and scale

Diverse users: integrated platform from BI analysts to ML engineers

Security policies

Our Platform

Built around
open source:

Data science
workspace

SQL analytics

Scheduled jobs

Data scientists

Data engineers

Business
users

Cloud Storage

Compute Clusters

ML platform

Databricks Runtime

Data catalog

Example Use Cases

Optimize production using ML and BI on petabyte-scale data

Correlate 500,000 patient records with DNA to design therapies

Manage and query 170 PB of data that used to be in 14 databases

This Talk

Lakehouse systems: what are they and why now?

Building lakehouse systems

Ongoing projects

What Matters to Data Platform Users?

One might think performance, functions, etc, but these are secondary!

The top problems enterprise data users have are often with the data itself:
▪ Access: can I even get this data in the platform I use?
▪ Reliability: is the data correct?
▪ Timeliness: is the data fresh?

Without great data, you can’t do any analysis!

Data Analyst Survey

60% reported data quality as top challenge

86% of analysts had to use stale data, with
41% using data that is >2 months old

90% regularly had unreliable data sources

Getting high-quality, timely data is hard… but it’s
also a problem with system architectures!

1980s: Data Warehouses

§ ETL data directly from operational
database systems

§ Rich management and performance
features for SQL analytics: schemas,
indexes, transactions, etc

ETL

Operational Data

Data Warehouses

BI Reports

2010s: New Problems for Data Warehouses

§ Could not support rapidly growing
unstructured and semi-structured data:
time series, logs, images, documents, etc

§ High cost to store large datasets

§ No support for data science & ML

ETL

Operational Data

Data Warehouses

BI Reports

2010s: Data Lakes

§ Low-cost storage to hold all raw data
with a file API (e.g. S3, HDFS)

§ Open file formats (e.g. Parquet)
accessible directly by ML / DS engines

§ ETL jobs load specific data into
warehouses, possibly for further ELT

BI
Data

Science
Machine
Learning

Structured, Semi-structured & Unstructured Data

Reports

Data Warehouses

ETL

Data Lake

>90% of
enterprise

data

Problems with Today’s Architectures
Cheap to store all the data, but the 2-tier
architecture is much more complex!

Data reliability suffers:
§ Multiple storage systems with different

semantics, SQL dialects, etc
§ Extra ETL steps that can go wrong

Timeliness suffers:
§ Extra ETL steps before data available in DW

High cost:
§ Continuous ETL, duplicated storage

BI
Data

Science
Machine
Learning

Structured, Semi-structured & Unstructured Data

Reports

Data Warehouses

ETL

Data Lake

Lakehouse Systems

Implement data warehouse management and performance features
on top of directly-accessible data in open formats

Structured, Semi & Unstructured Data

Data Lake Storage

BI Data
Science

Machine
LearningReports

Management &
Performance Layer

ETL

Can we get state-of-the-art performance &
governance features with this design?

Cheap storage
in open formats

for all data

Direct access
to data filesSQL

This Talk

Lakehouse systems: what are they and why now?

Building lakehouse systems

Ongoing projects

Lakehouse Technology

New techniques to provide data warehousing features directly on
data lake storage
§ Retain existing open file formats (e.g. Apache Parquet, ORC)
§ Add management and performance features on top

(transactions, data versioning, indexes, etc)
§ Can also help eliminate other data systems, e.g. message queues

Key Technologies Enabling Lakehouse

1. Metadata layers on data lakes: add transactions, versioning & more

2. Lakehouse engine designs: performant SQL on data lake storage

3. Declarative I/O interfaces for data science & ML

Metadata Layers on Data Lakes

§ Track which files are part of a table version to offer
rich management features like transactions
▪ Clients can then access the underlying files at high speed

§ Examples:

ACID

Client Application

Metadata Layer

Data Lake

Which files
are part of

table v1?
f1, f2 f3

f1 f2 f3 f4

Problem: What if a query reads the table while the delete is running?

Example: Traditional Data Lake

file1.parquet

file2.parquet

file3.parquet

“events” table Query: delete all events data about customer #17

file1b.parquet

file3b.parquet

rewrite

rewrite

+ delete file1.parquet

+ delete file3.parquet

Example:

file1.parquet

file2.parquet

file3.parquet

“events” table

_delta_log / v1.parquet
/ v2.parquet

Query: delete all events data about customer #17

file1b.parquet

file3b.parquet

rewrite

rewrite

track which files are part of
each version of the table
(e.g. v2 = file1, file2, file3)

_delta_log / v3.parquet
atomically add new log file

v3 = file1b, file2, file3b

Clients always read a
consistent table version!

Armbrust et al, VLDB 2020

https://cs.stanford.edu/~matei/papers/2020/vldb_delta_lake.pdf

Other Management Features with

§ Time travel to old table versions

§ Zero-copy CLONE by forking the log

§ DESCRIBE HISTORY

§ Schema enforcement & constraints

SELECT * FROM my_table
TIMESTAMP AS OF “2020-05-01”

CREATE TABLE my_table_dev
SHALLOW CLONE my_table

Other Management Features with

§ Streaming I/O: treat a table as a
stream of changes to remove need
for message buses like Kafka

§ Secure cross-organization sharing
with Delta Sharing
▪ Using cloud storage signed URLs

to give clients fast access to data

spark.readStream
.format("delta")
.table("events")

Delta Table Sharing Server

Provider Client

…

Direct file reads w/ signed URLs

Delta Sharing API

Adoption

Already >50% of Databricks workload

Broad industry support

Ingest
from

Query
from

Store data in

Key Technologies Enabling Lakehouse

1. Metadata layers on data lakes: add transactions, versioning & more

2. Lakehouse engine designs: performant SQL on data lake storage

3. Declarative I/O interfaces for data science & ML

The Challenge

§ Most data warehouses have full control over the data storage system
and query engine, so they design them together

§ The key idea in a Lakehouse is to store data in open storage formats
(e.g. Parquet) for direct access from many systems

§ How can we get great performance with these standard, open formats?

Enabling Lakehouse Performance

Even with a fixed, directly-accessible storage format, 4 optimizations help:
§ Auxiliary data structures like statistics and indexes
§ Data layout optimizations within files
§ Caching hot data in a fast format
§ Execution optimizations like vectorization

New query engines such as Databricks Photon Engine use these ideas

Minimize I/Os for cold data

Match DW performance
on hot data

Optimization 1: Auxiliary Data Structures

§ Even if the base data is in Parquet, we can build other data structures to
speed up queries, and maintain them transactionally

§ Example: min/max zone maps for data skipping

file1.parquet

file2.parquet

file3.parquet

year: min 2018, max 2019
uid: min 12000, max 23000

year: min 2018, max 2020
uid: min 12000, max 14000

year: min 2020, max 2020
uid: min 23000, max 25000

Query: SELECT * FROM events
WHERE year=2020 AND uid=24000

updated transactionally
with Delta table log

Optimization 1: Auxiliary Data Structures

§ Even if the base data is in Parquet, we can build other data structures to
speed up queries, and maintain them transactionally

§ Example: min/max zone maps for data skipping

file1.parquet

file2.parquet

file3.parquet

year: min 2018, max 2019
uid: min 12000, max 23000

year: min 2018, max 2020
uid: min 12000, max 14000

year: min 2020, max 2020
uid: min 23000, max 25000

Query: SELECT * FROM events
WHERE year=2020 AND uid=24000

updated transactionally
with Delta table log

Optimization 2: Data Layout

§ Even with a fixed storage format such as Parquet, we can optimize the
data layout within tables to minimize I/O

§ Example: Z-order sorting for multi-dimensional clustering

dimension 1

dim
ension 2

Optimization 3: Caching

§ Most data warehouses cache hot data in SSD or RAM
§ Can do the same in Lakehouse, using the metadata layer for consistency

§ Example: SSD cache in Photon Engine

0 20 40 60 80

Parquet on S3
Parquet on SSD

Delta Engine cache

Values read per second per core (millions)

Optimization 4: Vectorized Execution

§ Many existing ideas can also be applied over open formats like Parquet

§ Example: Databricks Photon
vectorized engine

3220

25544

35861

0

10000

20000

30000

40000

Delta
Engine

Apache
Spark 3.0

Presto 230

TPC-DS Power Test Time (s)

Putting These Ideas Together

Lakehouse engines can match DW performance on either hot or cold data!

3220

5793
7143

0

2000

4000

6000

8000

Databricks DW1 DW2

TPC-DS Power Test Time (s)

Unique Challenges in Lakehouse

§ Statistics are not always known or up-to-date: use adaptive query
execution to replan at runtime (added in Apache Spark 3.0)

§ Data is less processed, e.g., using strings instead of IDs: optimize the
pathways for strings and semi-structured data

§ Unstructured data are large and unpredictable: design the engine to
tolerate large (>1 GB) fields and to carefully manage memory

Key Technologies Enabling Lakehouse

1. Metadata layers on data lakes: add transactions, versioning & more

2. Lakehouse engine designs: performant SQL on data lake storage

3. Declarative I/O interfaces for data science & ML

ML over a Data Warehouse is Painful

Unlike SQL workloads, ML workloads need to process large amounts of
data with non-SQL code (e.g. TensorFlow, XGBoost)
§ SQL over JDBC/ODBC is too slow for this at scale

Export data to a data lake? → adds a third ETL step and more staleness!

Maintain production datasets in both DW & lake? → even more complex

ML over a Lakehouse

Direct access to data files without overloading the SQL frontend
§ ML frameworks already support reading Parquet!
§ Declarative APIs such as Spark DataFrames can help optimize queries

...

model.fit(train_set)

Lazily evaluated query plan

users

SELECT(kind = “buyer”)

PROJECT(start_date, zip, …)

PROJECT(NULL → 0)users = spark.table(“users”)
buyers = users[users.kind == “buyer”]
train_set = buyers[“start_date”, “zip”, “product”]

.fillna(0)

Data-Integrated ML Goes Much Further

Databricks Machine Learning lets data and ML users collaborate:
▪ ML model metrics become tables thanks to MLflow Tracking
▪ Feature Store runs Delta for storage and Spark [Streaming] for pipelines
▪ Models can be used in SQL or ETL jobs

Much simpler than using separate
data and ML platforms

Summary

Lakehouse systems combine the benefits of data warehouses & lakes
§ Open interfaces for direct access from

a wide range of tools
§ Management features via metadata

layers (transactions, versioning, etc)
§ Performance via new query engines
§ Low cost equal to cloud storage

Streaming
Analytics

BI Data
Science

Machine
Learning

Structured, Semi-Structured & Unstructured Data

Result: simplify data architectures to
improve access, reliability & timeliness

This Talk

Lakehouse systems: what are they and why now?

Building lakehouse systems

Ongoing projects

We Think There’s a Lot More to Do in Data!

Enterprises are just starting to use large-scale data and ML

In five years, there’ll be 10-100x more users working with these tools and
10-100x more data and ML applications

Some ongoing projects: declarative data pipelines (Delta Live Tables),
centralized governance (Unity Catalog), and next-gen engine designs

Delta Live Tables: Declarative Data Pipelines

Declarativity was great in SQL,
but SQL lives within a larger
pipeline (e.g., Airflow tasks)

What if we had a data model of
the pipeline’s ops and tables?

Analyze cross-task, fork to test,
roll back, inject checks, etc

See Michael Armbrust’s blog post and demo

https://databricks.com/blog/2021/05/27/announcing-the-launch-of-delta-live-tables-reliable-data-engineering-made-easy.html

Unity Catalog: Central Governance for Data & ML

Governance requirements for
data are rapidly evolving

Unity Catalog provides rich yet
efficient access control for
millions of data & ML assets

Also gives unified lineage

See Matei’s blog post

GRANT SELECT, EXEC ON DATABASE iot_data
WHERE NOT TAGGED(pii)
TO product_managers

https://databricks.com/blog/2021/05/26/introducing-databricks-unity-catalog-fine-grained-governance-for-data-and-ai-on-the-lakehouse.html

New Engine Projects

Photon: native, vectorized engine for compute operators

Aether: ongoing effort to revamp entire scheduling & exec framework

Streaming: just started a new team to revamp our engine

Conclusion

Databricks tackled one of the key problems orgs have: a simple platform
to let diverse users work with all their data, in use cases from SQL to ML

There’s a lot left to do in this space!

Questions?

