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Agenda for Today

Ø 1:10-2:00: Preliminary Lecture on Hardware for ML

Ø 2:00-2:45: PC Meeting Discussions

Ø 2:45-3:00: Break

Ø 3:00-4:00: Guest Lecture by Dr. Reynold Xin (Databricks)



Objectives For Today

Ø Key Trends in Hardware and motivation for DSAs

Ø Reduced Precision Training

Ø Different DataFlow Patterns in Hardware

Ø How to evaluate a HW with Roofline Model

Ø Important context for papers and what to expect



Key Drivers for Neural Network Success

Faster
Computation

More 
Complex 

Nets

More
Data

DARPA Neural Network Study Final 
Report (606 pages):

“After participating in this Study, my 
personal view is that neural networks will 
provide the next major advance in 
computing technology.”

Dr. Jasper Lupo

DARPA, Washington, DC

June, 1988



AlexNet vs Lenet5: 1000x More Compute

1500x

Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


General Purpose Hardware Trend
Key Observations

Ø # Transistors still increasing

Ø Single Core Performance 
Plateauing

Ø End of Dennard Scaling

Ø Distributed Computing

42 Years of Microprocessor Trend Data, Karl Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Common Fallacy: Moore’s Law is Dead 
(it’s not)

Moore, Gordon E. "No exponential is forever: but ‘Forever’ can be delayed!" 
Solid-State Circuits Conference, 2003.

15X

Slide from Prof. Patterson



It is becoming increasingly difficult to 
push the boundary
Building a 3nm fab costs around $20B. This is still economical given the 
$600B ARR for the semi-conductor industry, but it is questionable how much 
farther we can push the limit.

Source: high end performance packaging 3d/2.5d integration report, Yole, Development, 2020.



Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

But It has Slowed Down

End of 
the Line?

2X / 
20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore

2X / 3.5 yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs

(12%/yr)



Domain Specific Accelerators

Ø John Hennessy and David 
Patterson, 
“A New Golden Age for 
Computer Architecture,” 
Communications of the 
ACM, February 2019



Domain Specific Accelerators
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2.5K – 30K X increase in MOPs/mW

25,300 MOPS/mW11,500 MOPS/mW 140,300 MOPS/mW

~3.23 – 4 MOPS/mW (835)
11– 16.6 GFLOPS SGEMM (835)

SnapDragon 835 (à 845 à 855) 



© Pallas Group, UCB
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basicmi.github.io/AI-chip



Two Important Innovations in AI 
Hardware That We Will Cover Today

ØLow Precision Arithmetic Units

ØCustom DataFlow Design



Low Precision Training



Low Precision Training

Ø 1.21042

Ø × 0.61127

Ø 0.73989343

Ø about 1.2

Ø × about 0.6

Ø about 0.7
=>

Ø For a lot of the operations in ML we use randomized 
algorithms. So why not use low precision instead of FP32 
or FP64?

Ø First, let’s see how much performance gain we can get

Ø Second, there are subtleties associated with limited precision 
that need to be resolved



How much is on the table with low 
precision?

Ø At least 2x reduction in 
energy with FP16 compute



How much is on the table with low 
precision?

Ø At least 2x reduction in 
energy with FP16 compute

Ø Significant gains in power if 
the parameters could be 
stored in SRAM vs DRAM

Memory hierarchy from Andrew Walker, EE Times.



Why can’t we just increase SRAM?
Ø SRAM is 100x more 

expensive than DRAM and 

importantly occupies more 

area of the chip!

Ø Using FP16 instead of 

FP32/64 reduces access 

volume without having to 

incur this cost
Intel Sandy Bridge-E Processor Die (Credit Rui Pan)



Faster Compute with FP16

Ø The main reason for higher 
throughput is that FP16 ALUs take 
less area on the chip so we can 
pack more ALUs per unit area



16 Bit Representation
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Float32: (range ~1e-38 to ~3e38)

Float16: (range ~5.96e-8 to 65,504)

BFloat16: (range ~1e-38 to ~3e38)

* Google largely avoided low precision training problems with BFLOAT16



FP16/32 Training Workflow
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ML Challenges with FP16 Training

24

FP32

FP16/32

Naïve FP16 training leads to divergence/poor accuracy

FP16 has very limited dynamic range: 

Ø Max =65504 , Min Normal Number = 2−14 

This creates several challenges in training NN: 

Ø Loss of precision during weight update 

Ø Exacerbates ‘‘vanishing and exploding gradients’’

Ø Overflow/underflow for layer activations during 
forward/backward pass 

Loss curve for training 
AlexNet on ImageNetP. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. 

Venkatesh, H. Wu. Mixed precision training. ICLR’18.
B. Ginsburg, S. Nikolaev, A. Kiswani, H. Wu, A. Gholami, S. Kierat, M. Houston, A. Fit-Flores. Tensor processing using 
low precision format. US Patent 15/624577. 



Limitations of Floating Points

25Figure Reference: volkerschatz.com

• There are only a finite number of different floats

• Floats are discrete but not equidistant

A hypothetical 8-bit floating point representation with 1 bit sign, 3 bit exponent, 4 bit mantisa
Notice that the representable numbers are not equidistant

Teaser question: What is the best way to sum an array with a lot of small values and some 
very large values to minimize numerical error?

In IEEE representation 𝑎 + 𝑏 + 𝑐 ≠ 𝑎 + 𝑏 + 𝑐 no associative property



Unit in the Last Place (ULP)

Ø Floating points can only represent specific real valued 
numbers

Ø Can lead to stalling at one point if the gradients are small

a a + 1ULP

W = W +�W
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Stochastic Rounding
Ø One popular solution proposed to avoid this stalling is 

stochastic rounding

a a + 1ULP

W = W +�W
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Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. Deep learning with limited numerical precision. InInternational Conference on Machine Learning 2015 Jun 1 (pp. 1737-1746). 
Ho ̈hfeld, Markus and Fahlman, Scott E. Probabilistic rounding in neural network learning with limited precision. Neurocomputing, 4(6):291–299, 1992.



Stochastic Rounding
Ø About 5 percent accuracy loss for a 3 layer CNN on 

Cifar-10

Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. Deep learning with limited numerical precision. In International Conference on Machine Learning 2015 Jun 1 (pp. 1737-1746). 
Ho ̈hfeld, Markus and Fahlman, Scott E. Probabilistic rounding in neural network learning with limited precision. Neurocomputing, 4(6):291–299, 1992.



Vanishing Gradient Problem

Ø Main problem is in representing gradients

Ø Solution to be discussed during next week’s PC meeting for [Micikevicius, 2018] paper!



Further Reading (INT8 Training?)
Several recent papers have proposed INT8 training. The ideas are interesting but:

Ø Many layers need to be kept at higher precision (FP16 or FP32)

Ø Master copy of weights needed at higher precision

Ø Lots of Hyper-parameter tuning is needed

Interesting papers to read:

Ø Training DNNs with 8-bit FPs [NeurIPS’18]

Ø HybridFP8 Training [NeurIPS19]

Ø Shifted and Squeezed 8-bit Floating Point [ICLR’20]

https://proceedings.neurips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://openreview.net/pdf?id=Bkxe2AVtPS


Custom DataFlow



Motivation: Use A Custom DataFlow to 
minimize DRAM Accesses

Ø DRAM access are 100x 
costlier than SRAM.

Ø The number of times that 
we access DRAM depends 
on the order of the 
computations in our code!

Ø The goal is to find an 
order/dataflow to minimize 
this cost



Custom DataFlow Motivation

Minimize data 
fetching from 
DRAM

DRAM
(Weights, 

Inputs, 
Outputs)

On-Chip 
Buffer

Compute 
Core

Intel Sandy Bridge-E Processor Die (Credit Rui Pan)



34

Taxonomy of Dataflow in NN 
Accelerators

Weight Stationary (WS)
• A PE reuses a kernel weight across 

different input activations.
• Examples: TPU[2], CNP[3]

[1] Y.-H. Chen, et. al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional 
Neural Networks,” 2016.
[2] N. Jouppi, et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” 2017.
[3] C. Farabet, et al., “CNP: An FPGA-based processor for Convolutional Networks,” 2009.
[4] Z. Du, et al., “ShiDianNao: Shifting vision processing closer to the sensor,” 2015.

Output Stationary (OS)
• A PE accumulates partial products.
• Examples: ShiDianNao (SOC-MOP)[4], 

Envision (MOC-MOP)[5], DNA[6]

We can classify NN accelerators based on spatial/systolic 
architecture according to the type of data each PE locally 
reuses.

[5] B. Moons, et al., “Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable Convolutional Neural Network processor in 28nm 
FDSOI,” 2017.
[6] F. Tu, et al., “Deep Convolutional Neural Network Architecture With 
Reconfigurable Computation Patterns,” 2017.C

W...I1,I0, ...O1,O0, ΣOt W0,W1, ......I1,I0,

PE PE



Weight Stationary DataFlow (TPU)

How often are 
outputs/inputs 

accessed?

How about 
the weights?Every 

Cycle
Every X’ 
Cycles



What do we mean by Stationary?
The datatype (and dimension) that changes most slowly 

Imprecise analogy: think of data transfers as a wave with “amplitude” and “period” 

Ø The stationary datatype has the longest period (locally held tile changes most 

slowly) 

Ø Later we will see how intermediate staging buffers reduce both bandwidth and 

energy 

Often corresponds to datatype that is “done with” earliest without further reloads

Michael Pellauer, MICRO, 2020



Impact of Local Buffer
DRAM

(Weights, 
Inputs, 

Outputs)

On-Chip 
Buffer

Compute 
Core

Ø Buffer size be to minimize refetching data from DRAM?
Dataflow Outputs Inputs Weights
Weight Stationary (WS) X’ X 1

Ø What is the energy cost of accessing the buffers?

Where f is the energy of accessing a buffer of size x. See PPT notes for derivation.

<latexit sha1_base64="oQ4OkuCl4I6ZuNgu3lswLYSAiB8="></latexit>

SX 0[f(X 0) + f(X 0) + f(X) + f(1)]



Output Stationary DataFlow

Every S 
Cycles

Every 
Cycle

How often are 
outputs 

accessed?

How about 
weights/inputs?



Impact of Local Buffer: OS
DRAM

(Weights, 
Inputs, 

Outputs)

On-Chip 
Buffer

Compute 
Core

Ø Buffer size be to minimize refetching data from DRAM?
Dataflow Outputs Inputs Weights
Output Stationary (OS) 1 S S

Ø What is the energy cost of accessing the buffers?

Where f is the energy of accessing a buffer of size x. See PPT notes for derivation.

<latexit sha1_base64="XAemddO+qXYECvi+bl9BmwpbSGM="></latexit>

SX 0[f(1) + f(1) + f(S) + f(S)]



Weight Stationary vs Output Stationary

Dataflow Outputs Inputs Weights
Weight Stationary (WS) X’ X 1
Output Stationary (OS) 1 S S

Buffer size be to minimize refetching data from DRAM

Very different energy cost of accessing the local buffers 
by just a change in the loop order

WS: 

OS: 
<latexit sha1_base64="XAemddO+qXYECvi+bl9BmwpbSGM="></latexit>

SX 0[f(1) + f(1) + f(S) + f(S)]

<latexit sha1_base64="oQ4OkuCl4I6ZuNgu3lswLYSAiB8="></latexit>

SX 0[f(X 0) + f(X 0) + f(X) + f(1)]



Convolution: Restructured as Matrix 
Multiplication
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0

2,0,
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2,2 2,3

3,2 3,3

In practice we deal 
with more complex 
loop structures.

Stay tuned for the 
compilers lecture on 
how ML could be used 
to optimize the 
dataflow pattern for 
these cases.



Squeezelerator: Hybrid WS/OS
(Berkeley, Samsung)

• Squeezelerator: Supports hybrid WS and OS data flow: up to 6x reduction in energy 
over OS, WS
– Determines execution flow statically based on trained weights (one time setup 

cost per network) Output Stationary

Weight Stationary

Kwon, Kiseok, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, and Kurt Keutzer. "Co-design of deep neural nets and neural net accelerators for embedded vision applications." In 2018 55th 
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2018.



Squeezelerator: Hybrid OS/WS
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OS WS Squeezelerator Speedup (vs OS) Speedup (vs WS)

Up to 6x Speedup relative 
to other architectures

Kwon, Kiseok, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, and Kurt Keutzer. "Co-design of deep neural nets and neural net accelerators for embedded vision applications." In 2018 55th 
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2018.
Gholami A, Kwon K, Wu B, Tai Z, Yue X, Jin P, Zhao S, Keutzer K. Squeezenext: Hardware-aware neural network design. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition Workshops 2018 (pp. 1638-1647).



How to Evaluate HW 
Performance
FLOPs is not the same as wall clock time



Williams Roofline Model
Ø For decades programmers and architects did 

back-of-the-envelope calculations on compute 
vs communication at various levels of the 
memory hierarchy
Ø Processor to register file
Ø On-chip L1, L2 (L3?) caches
Ø Off-chip DRAM
Ø Interprocessor communication

Ø UC Berkeley grad student Sam Williams gave a 
simple model, known as the Roofline Model, for 
reasoning about these issues 

45Williams, Samuel, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance model for floating-point programs 
and multicore architectures. No. LBNL-2141E. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009.



Roofline Model: y-axis
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Roofline Model: x-axis
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Bandwidth as Slope
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Bandwidth Meets Arithmetic Intensity
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FLOPS 6= T ime



Designing an accelerator
1) Accelerators are Only the First 80% of the Problem
The other 80%: Full system design
The remaining 200%: SW development

2) HW design shouldn’t be about what can be built, rather what can be programmed
Stay tuned for the Lecture on AI Frameworks

3) Deploy at scale? Stay tuned for the next two lectures on scaling training

HW Definition Languages
Co-Design Methodology
Datacenter / Design, Deployment
Datacenter / Heterogeneity

Research Challenges (if you are interested definition checkout EE 290 course by Prof. Shao)
Abstraction Levels, DSLs
Coarse Grained vs Fine Grain Acceleration
Programming Languages, Programming Models
Optimization Techniques, Runtimes

Naveen Kumar (Google)



What Does the Future Look 
Like?



The right dataflow, precision, and many other parameters heavily 
depend on the workload.

If you were to design a HW today, it would at least take ~2years 
for its tape out, with a cost of ~$500M (estimate for 3nm)

It must remain relevant through ~5 years to justify the huge upfront 
investment

What do you think is the right workload for the future to bet on?



Next week’s readings



Reading for Next Week
Ø Mixed precision training. ICLR’18

Ø Discusses reduced precision training with IEEE FP16.

Ø Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional 
Neural Networks [SIGRAPH’16]
Ø Discusses impact of dataflow on AI Hardware performance, introduces a new 

dataflow called row stationary

Ø Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators 
(formerly: DNN Dataflow Choice Is Overrated) [ASPLOS’20]
Ø Studies the impact of different dataflow patterns

Ø Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-
Stack Integration [DAC’21 [Best Paper Award]]
Ø Introduces an AI accelerator designed by UC Berkeley team with superior 

performance even compared to SOTA HW used in industry

https://openreview.net/pdf?id=r1gs9JgRZ
https://dspace.mit.edu/handle/1721.1/102369
https://arxiv.org/pdf/1809.04070.pdf
https://people.eecs.berkeley.edu/~ysshao/assets/papers/genc2021-dac.pdf


Extra Suggested Reading
Ø Roofline: An Insightful Visual Performance Model 

for Floating-Point Programs and Multicore 
Architectures [CACM’08]
Ø Introduces a very simple method to 

evaluate/understand HW performance

Ø A new golden age for computer architecture
[CACM’19]
Ø Prof. Patterson and Prof. Hennessy’s great article on the 

motivations and opportunities for Domain Specific 
Accelerators

Ø In-Datacenter Performance Analysis of a Tensor 
Processing Unit [ISCA’17]
Ø Design choices and performance analysis of TPU

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
https://dl.acm.org/doi/10.1145/3282307
https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

