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Agenda for Today

Ø 1:10-2:00: Preliminary Lecture on Parallel Training

Ø 2:00-2:45: PC Meeting Discussions

Ø 2:45-3:00: Break

Ø 3:00-4:00: Guest Lecture by Prof. Sophia Shao



Remaining slides from Last 
Lecture



Designing an accelerator
1) Accelerators are Only the First 80% of the Problem
The other 80%: Full system design
The remaining 200%: SW development

2) HW design shouldn’t be about what can be built, rather what can be programmed
Stay tuned for the Lecture on AI Frameworks

3) Deploy at scale? Today’s lecture

HW Definition Languages
Co-Design Methodology
Datacenter / Design, Deployment
Datacenter / Heterogeneity

Research Challenges (if you are interested definition checkout EE 290 course by Prof. Shao)
Abstraction Levels, DSLs
Coarse Grained vs Fine Grain Acceleration
Programming Languages, Programming Models
Optimization Techniques, Runtimes

Naveen Kumar (Google)



The right dataflow, precision, and many other parameters heavily depend on 

the workload.

If you were to design a HW today, it would at least take ~2years for its tape 

out, with a cost of ~$500M (estimate for 3nm)

It must remain relevant through ~5 years to justify the huge upfront investment

What do you think is the right workload for the future to bet on?



Distributed Deep Learning



Objectives For Today

Ø Data Parallel Training and its Challenges

Ø Communication Complexity Analysis

Ø Model Parallel Training (Next Lecture)

Ø Memory Efficient Methods for Training Large 

Models (Next Lecture)



Distributed Training: What is it? & Why?

Ø Distributed Training* ~ Training across multiple devices
Ø Different local and remote memory speeds / network

Ø Why do we need distributed training?
Ø Additional memory (memory bandwidth) for larger model

Ø “Need” to store weights + activations
Ø Faster training by leveraging parallel computation
Ø Reduce or eliminate data movement

Ø Privacy à Federated Learning
Ø Limited bandwidth to edge devices 
Ø (stay tuned for 04/25 lecture)

*Very simplified definition.



Training Large Models

10Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Faster Processing

11Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.

Scale Training to 
Multiple Processes

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


On Dataset Size and Learning
Ø Data is a a resource! (e.g., like processors and memory)

Ø Is having lots of processors a problem?

Ø You don’t have to use all the data!
Ø Though using more data can often help

Ø More data often* dominates models and algorithms
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such as f = ma or e = mc2. Meanwhile, sciences that 
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over 
their inability to neatly model human behavior. 
An informal, incomplete grammar of the English 
language runs over 1,700 pages.2 Perhaps when it 
comes to natural language processing and related 
! elds, we’re doomed to complex theories that will 
never have the elegance of physics equations. But 
if that’s so, we should stop acting as if our goal is 
to author extremely elegant theories, and instead 
embrace complexity and make use of the best ally 
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to 
the Brown Corpus, containing one million English 
words.3 Since then, our ! eld has seen several notable 
corpora that are about 100 times larger, and in 2006, 
Google released a trillion-word corpus with frequency 
counts for all sequences up to ! ve words long.4 In 
some ways this corpus is a step backwards from the 
Brown Corpus: it’s taken from un! ltered Web pages 
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected 
part-of-speech tags. But the fact that it’s a million 
times larger than the Brown Corpus outweighs these 
drawbacks. A trillion-word corpus—along with other 
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human 

behavior. So, this corpus could serve as the basis of 
a complete model for certain tasks—if only we knew 
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related 
machine learning have been statistical speech rec-
ognition and statistical machine translation. The 
reason for these successes is not that these tasks are 
easier than other tasks; they are in fact much harder 
than tasks such as document classi! cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural 
task routinely done every day for a real human need 
(think of the operations of the European Union or 
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In 
other words, a large training set of the input-output 
behavior that we seek to automate is available to us 
in the wild. In contrast, traditional natural language 
processing problems such as document classi! ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have 
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also dif! cult for experts to agree 
on, being bedeviled by many of the dif! culties we 
discuss later in relation to the Semantic Web. The 
! rst lesson of Web-scale learning is to use available 
large-scale data rather than hoping for annotated 
data that isn’t available. For instance, we ! nd that 
useful semantic relationships can be automatically 
learned from the statistics of search queries and the 
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually 
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be 

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable 
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore.  Restrictions apply. 
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Example: 
Scale is TPU’s Primary Value Proposition



TPU Pod 
64 2nd-gen TPUs

11.5 petaflops
4 terabytes of HBM memory



TPUv3

TPU v3



Ideal Metric of Success for Efficient 
Training

“Learning”

Record

Record

Second
x

“Learning”

Second
=

Convergence
Machine Learning 

Property

Throughput
System
Property

*Somewhat of a simplistic linear model. As we will later 
see there are many more moving parts to this



Metrics of Success

Ø Minimize training time to “best model”

Ø Best model measured in terms of test error

Ø Other Concerns?
Ø Complexity: Does the approach introduce additional training 

complexity (e.g., hyper-parameters)

Ø Stability: How consistently does the system train the model?

Ø Cost: Will obtaining a faster solution cost more money (power)?



Gradient Descent

Learning rate
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Two key elements:

• The computed gradient: the direction

• The learning rate: how big a step do we take?
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Learning rate

Two key elements:

• The computed gradient: the direction

• The learning rate: how big a step do we take?
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Stochastic Gradient Descent



Synchronous Stochastic Gradient 
Descent

In every iteration of 
SGD we load a 
random mini-batch of 
training data, and
compute the 
gradient. 

GPU
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Parallelization Opportunities
Data Parallelism: Distribute the 
processing of data to multiple 
PEs.
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Model Parallelism: Break the 
model and distribute processing 
of every layer to multiple PEs

For either approach it is also 
possible to use synchronous or 
asynchronous updates

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w



Bulk Synchronous Parallel (BSP) Execution
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Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

Enable more frequent coordination on parameter values
23

Bulk Synchronous Parallel (BSP) Execution



Asynchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Compute Communicate

Iteration

Iteration

Iteration

Compute

Enable more frequent coordination on parameter values, but 
often results in generalization loss. Today we will only focus on 

synchronous training.



Synchronous Data Parallel



Synchronous Data Parallelism
Ø Compute the entire model 

on each processor

Ø Distribute the batch evenly 
across each processor: 
Ø 1024 batch distributed 

over 16 PEs: 64 images 
per GPU

Ø Communicate gradient 
updates through allreduce
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MPI ALLREDUCE
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GPU 2 GPU 3 GPU 4

All Reduce
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Machine A Machine B

Machine D Machine C

All Reduce
There are many different all reduce algorithms, each with their own trade 
offs. 

For simplicity, assume our model has 4 layers, and is trained on P=4 machines

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4



Machine A

Machine B

Machine D Machine C

Parameter Server (Single Master All-Reduce)

d1 d2 d3 d4 c1 c2 c3 c4

b1 b2 b3 b4

a1 a2 a3 a4



Machine A

Machine B

Machine D Machine C

Parameter Server

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters



Machine A

Machine B

Parameter Server

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C



Machine B

Parameter Server

Communicate (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine A

s1 s2 s3 s4s1s1s1 s2s2s2 s3s3s3 s4s4s4

Machine D Machine C



Machine A

Machine B

Parameter Server

Communicate (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C

s1 s2 s3 s4 s1

s1

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

*2



Machine A

Machine B

Parameter Server Comm (P-1) * N Data
Ø P Machines
Ø N Parameters

Machine D Machine C

*2

Issues?
Ø High fan-in on Machine A
Ø (P-1) * N Bandwidth for Machine A



Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Parameter Server All Reduce



Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Send each entry to parameter server for that entry.
Ø Key 1 à A
Ø Key 2 à B
Ø Key 3 à C
Ø Key 4 à D



Machine A Machine B

Machine D Machine C

a1 a2

a3a4

b1 b2

b3b4

d1 d2

d3d4

c1 c2

c3c4

Each machine sends N/P data to all other machines.
(P-1) * N/P
Ø P Machines
Ø N Parameters



Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

Compute local sum on each machine

si = ai bi dici+ + +



Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

s1s1s1 s2s2s2

s3s3s3s4s4s4

Each machine broadcasts* the sum (N/P data size) to all other machines.
(P-1) * N/P
Ø P Machines
Ø N Parameters

* Technically All Gather based on MPI communication definition
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Total Communication per machine:
2* (P-1) * N/P (roughly independent of P)
Ø P Machines
Ø N Parameters



Parameter Server All-Reduce
Ø Same amount of total data transmitted as before, but spread 

evenly across all machines instead of just one

Ø Same high fan-in (P-1)

Ø Reduced Inbound Bandwidth = 2*(P-1)N/P 
Ø Previously 2*(P-1)*N for the parameter server

Machine A Machine B

Machine D Machine C



Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Ring All Reduce
Send messages in a ring to reduce fan-in.
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ß Note this depicts a partial 
sum and not a bigger message.
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Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1s1

s2s2s2s2 s3s3s3s3

s4s4s4s4

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1) * N/P (doesn’t depend on P!)
Ø Fan-in Per Round: 

Ø 1 (doesn’t depend on P)



Machine A Machine B

Machine D Machine C

Ring All Reduce
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s4s4s4s4

Broadcast stage* repeats process sending messages forwarding
sums (same communication costs).

* Technically All Gather based on MPI communication definition
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Ring All-Reduce

Ø Simplified communication topology with low fan-in

Ø Overall communication
Ø Same total communication:  2*(P-1)*N, but evenly distributed
Ø Each Machine communicates 2*(P-1)N/P (almost independent of P)
Ø Fan-in is constant (doesn’t depend on P)

Ø Issue: Number of communication rounds (P-1)

Machine A Machine B

Machine D Machine C



Double Binary Tree All-Reduce

Ø Two overlaid binary reduction trees

Ø Double the fan-in à Log(p) rounds of communication
Ø Currently used on Summit super-computer and latest NCCL

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/


Complexity Summary

Parameter Server Ring All-reduce

54
Great Reference: T. Rajeev, R. Rabenseifner, and W. Gropp. "Optimization of collective communication 
operations in MPICH." The International Journal of High Performance Computing Applications, 2005.
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Data Parallel Training Complexity 
Analysis
Ø Question: Comm time of ring allreduce is independent of 

the number of processors. So what limits scalability?
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Limits of Data Parallel Scaling

Ø The maximum limit of processors that you can use is P=B

Ø But this often leads to very low utilization of the hardware 
and would not yield any speed up

Best Workload
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One epoch training time of AlexNet computed on an Intel KNL system

Ø Why does this 
happen?
Ø Remember 

roofline model?
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Scaling Data Parallel Training
1024
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MPI ALLREDUCE

If we want to keep scaling 
synchronous SGD then we 
have to keep increasing 
the batch size. 



Naively increasing Batch size leads to 
perfect results but …
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Bigger isn’t Always Better

Ø Motivation for larger batch sizes
Ø More opportunities for parallelism à but is it useful?
Ø Recall (1/n variance reduction):

Ø Is a variance reduction helpful?
Ø Only if it let’s you take bigger steps (move faster)
Ø Does it affect the final prediction accuracy?
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Problems with Large Batch Training
Ø Larger Batch leads to sub-optimal generalization

Ø A common belief is that large batch training gets attracted to “sharp 
minimas”

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurIPS’18.
Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.



Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Larger batch sizes harm generalization 
performance.



Objective function Update rule

Why? Large Batch Reduces Noise and 
may Get Trapped in Local Minima

Parameter values along some direction

Lo
ss

Sharp Minima 
Hypothesis

Small batch gradient descent acts as a regularizer

Active Research problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule
Ø Scale the learning rate linearly with the batch size

Ø Addresses generalization performance by taking larger 
steps (also improves training convergence)

Ø Sub-problem: Large learning rates can be destabilizing in 
the beginning. Why?
Ø Gradual warmup solution: increase learning rate scaling from 

constant to linear in first few epochs
Ø Doesn’t help for very large k…
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Key Results

All curves closely 
match using the linear 
scaling rule.

Note learning rate 
schedule drops.
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Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.
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Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9
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5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.
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⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·
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also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.
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for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k
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Figure 7. Distributed synchronous SGD timing. Time per itera-
tion (seconds) and time per ImageNet epoch (minutes) for training
with different minibatch sizes. The baseline (kn = 256) uses 8
GPUs in a single server , while all other training runs distribute
training over (kn/256) server. With 352 GPUs (44 servers) our
implementation completes one pass over all ⇠1.28 million Ima-
geNet training images in about 30 seconds.

ing good features that transfer, or generalize well, to re-
lated tasks. A question of key importance is if the features
learned with large minibatches generalize as well as the fea-
tures learned with small minibatches?

To test this, we adopt the object detection and in-
stance segmentation tasks on COCO [27] as these advanced
perception tasks benefit substantially from ImageNet pre-
training [10]. We use the recently developed Mask R-CNN
[14] system that is capable of learning to detect and segment
object instances. We follow all of the hyper-parameter set-
tings used in [14] and only change the ResNet-50 model
used to initialize Mask R-CNN training. We train Mask R-
CNN on the COCO trainval35k split and report results
on the 5k image minival split used in [14].

It is interesting to note that the concept of minibatch
size in Mask R-CNN is different from the classification
setting. As an extension of the image-centric Fast/Faster
R-CNN [9, 31], Mask R-CNN exhibits different minibatch
sizes for different layers: the network backbone uses two
images (per GPU), but each image contributes 512 Regions-
of-Interest for computing classification (multinomial cross-
entropy), bounding-box regression (smooth-L1/Huber), and
pixel-wise mask (28 ⇥ 28 binomial cross-entropy) losses.
This diverse set of minibatch sizes and loss functions pro-
vides a good test case to the robustness of our approach.

Transfer learning from large minibatch pre-training.
To test how large minibatch pre-training effects Mask R-
CNN, we take ResNet-50 models trained on ImageNet-1k
with 256 to 16k minibatches and use them to initialize Mask
R-CNN training. For each minibatch size we pre-train 5
models and then train Mask R-CNN using all 5 models on
COCO (35 models total). We report the mean box and mask
APs, averaged over the 5 trials, in Table 3a. The results
show that as long as ImageNet validation error is kept low,
which is true up to 8k batch size, generalization to object de-
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Figure 8. Distributed synchronous SGD throughput. The small
overhead when moving from a single server with 8 GPUs to multi-
server distributed training (Figure 7, blue curve) results in linear
throughput scaling that is marginally below ideal scaling (⇠90%
efficiency). Most of the allreduce communication time is hid-
den by pipelining allreduce operations with gradient computation.
Moreover, this is achieved with commodity Ethernet hardware.

tection matches the AP of the small minibatch baseline. We
emphasize that we observed no generalization issues when
transferring across datasets (from ImageNet to COCO) and
across tasks (from classification to detection/segmentation)
using models trained with large minibatches.

Linear scaling rule applied to Mask R-CNN. We also
show evidence of the generality of the linear scaling rule us-
ing Mask R-CNN. In fact, this rule was already used with-
out explicit discussion in [16] and was applied effectively
as the default Mask R-CNN training scheme when using 8
GPUs. Table 3b provides experimental results showing that
when training with 1, 2, 4, or 8 GPUs the linear learning rate
rule results in constant box and mask AP. For these experi-
ments, we initialize Mask R-CNN from the released MSRA
ResNet-50 model, as was done in [14].

5.5. Run Time
Figure 7 shows two visualizations of the run time char-

acteristics of our system. The blue curve is the time per
iteration as minibatch size varies from 256 to 11264 (11k).
Notably this curve is relatively flat and the time per itera-
tion increases only 12% while scaling the minibatch size by
44⇥. Visualized another way, the orange curve shows the
approximately linear decrease in time per epoch from over
16 minutes to just 30 seconds. Run time performance can
also be viewed in terms of throughput (images / second), as
shown in Figure 8. Relative to a perfectly efficient extrapo-
lation of the 8 GPU baseline, our implementation achieves
⇠90% scaling efficiency.

Acknowledgements. We would like to thank Leon Bottou for
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Christian Puhrsch for discussions on efficient data loading, An-
drew Dye for help with debugging distributed training, and Kevin
Lee, Brian Dodds, Jia Ning, Koh Yew Thoon, Micah Harris, and
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Key Results

Ø Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
Ø 90% scaling efficiency

Ø Fairly careful study of the linear scaling rule
Ø Observed limits to linear scaling do not depend on dataset size
Ø But what is the limit?

Ø You cannot indefinitely scale the learning rate …

Since then there has been a race to train ImageNet faster and 
several new large batch training methods have been 
developed (some with good foundation and some heuristics)



ImageNet Training Competition!
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• ImageNet is a dataset of 1.2M 224x224 images
• Training 720 hours à <1 minute

Iandola

Yang You

• Iandola FN, Moskewicz MW, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 2592-2600).

• You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. In Proceedings of the 47th International Conference on Parallel Processing 
2018 Aug 13 (p. 1) ACM (Best Paper Award)

Latest record:
14 seconds / TPUv4
(as of Feb 2022)



Very active area of research

Other papers to read if you are interested:

Ø Golmant, Noah, et al. "On the computational inefficiency 
of large batch sizes for stochastic gradient descent” (Cal)

Ø Shallue et al. “Measuring the Effects of Data Parallelism on 
Neural Network Training” (Google)

Ø You, Yang, et al. "Large batch optimization for deep 
learning: Training bert in 76 minutes." (Cal)



Next week’s readings



Reading for Next Week

Ø Chimera: Efficiently Training Large-Scale Neural Networks with 
Bidirectional Pipelines [SC’21, Best Student Paper finalist]
Ø A novel technique for pipeline parallel training with bidirectional computational 

flow to reduce the ”bubble size”.

Ø Efficient Large-Scale Language Model Training on GPU Clusters Using 
Megatron-LM [SC’21, Best Student Paper] 
Ø Large scale deployment of data, model, and pipeline parallelism to scale training 

of a 1T parameter transformer to 3K+ GPUs

Ø ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep 
Learning [SC’21]
Ø A novel method for increasing the maximum size of the model that can be 

trained on a GPU by leveraging NVMe.

https://arxiv.org/pdf/2107.06925.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/abs/2104.07857


Extra Suggested Reading
Ø DeepSpeed: Advancing MoE inference and training to 

power next-generation AI scale [Blog post]

Ø Large Scale Distributed Deep Networks [NeurIPS’12]
Ø One of the first papers using (known) techniques applied to training large ML 

models at Google

Ø Gpipe: Efficient training of giant neural networks using 
pipeline parallelism [NeurIPS’19]
Ø A micro-batching technique used for pipeline parallelism to reduce ”bubble size” 

with synchronous SGD

Ø PipeDream: Fast and Efficient Pipeline Parallel DNN Training [SOSP’19]
Ø Proposed an asynchronous method for reducing the ”bubble size” of pipeline 

parallel training

https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale/
https://papers.nips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://arxiv.org/pdf/1806.03377.pdf

