Al-Systems

Distributed Deep
Learning (Part I)
(294-162)

Amir Gholami & Joseph E. Gonzalez

Acknowledgments

Many slides from Prof. Kurt Keutzer, Pallas Group

Agenda for Today

» 1:10-2:00: Preliminary Lecture on Parallel Training
» 2:00-2:45: PC Meeting Discussions
> 2:45-3:00: Break

» 3:00-4:00: Guest Lecture by Prof. Sophia Shao

Remaining slides from Last
Lecture

Designing an accelerator

1) Accelerators are Only the First 80% of the Problem
The other 80%: Full system design
The remaining 200%: SW development

2) HW design shouldn’t be about what can be built, rather what can be programmed
Stay tuned for the Lecture on Al Frameworks

3) Deploy at scale? Today’s lecture

Research Challenges (if you are interested definition checkout EE 290 course by Prof. Shao)

Abstraction Levels, DSLs HW Definition Languages
Coarse Grained vs Fine Grain Acceleration Co-Design Methodology
Programming Languages, Programming Models Datacenter / Design, Deployment
Optimization Techniques, Runtimes Datacenter / Heterogeneity

The right dataflow, precision, and many other parameters heavily depend on

the workload.

If you were to design a HW today, it would at least take ~2years for its tape

out, with a cost of ~§500M (estimate for 3nm)

It must remain relevant through ~5 years to justify the huge upfront investment

What do you think is the right workload for the future to bet on?

Distributed Deep Learning

Objectives For Today

» Data Parallel Training and its Challenges
» Communication Complexity Analysis
» Model Parallel Training (Next Lecture)

» Memory Efficient Methods for Training Large

Models (Next Lecture)

Distributed Training: What is ite & Whye

» Distributed Training® ~ Training across multiple devices
» Different local and remote memory speeds / network

» Why do we need distributed training?
> Additional memory (memory bandwidth) for larger model
> “Need” to store weights + activations
» Faster training by leveraging parallel computation
» Reduce or eliminate data movement
> Privacy - Federated Learning

> Limited bandwidth to edge devices
> (stay tuned for 04/25 lecture)

*Very simplified definition.

Training Large Models

Al and Memory Wall

10000
] Transformer Size: 240x /2 yrs
i Al HW Memory: 2x /2 yrs
1000
c]
L .
2 100
E]]
c]
= .
(o] i A100-80 (80GB)
(9 Megatron)
E 10—E o — PS
-lq-; E . V100 (32GB) .TPUv3 (32GB) A100 (40GB)
% i @ P100 (12GB) @ TPUV2 (16GB) GI:’-Z
1%
© 1 >
* : BER ALBERT
] GPT-1 ¢ ® e
0 1; Inception V4 ResNext101 Transformer .- ELECTRA
T3 [] [] ®
1 ResNet50 DenseNet |
i [o
0.01 T T T T T T
2016 2017 2018 2019 2020 2021
YEAR

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Faster Processing

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models

le+093
E GPT-3
E o
le+08— .
] Transformer: 750x / 2 yrs Microsef®r-NLG
] CV/NLP/Speech: 15x/ 2 yrs e o
| Moore's Law: 2x [/ 2 yrs Megatron LM
—~1le+07 - Wav2Vec 2.0
a -
9 - .
£ 1 er06 . Scale Training to
—1le 3 Xception .
g : ° « Multiple Processes
g’ 1 InceptionV3
© le+05-) GPT-1
O E L
g . Transformer
c . Seq2Seq ResNet ResNext o
Cle+04- o [®
= E VGG DenseNet ELMo
] Y [)
1le+03+ AlexNet | S
] o
] &
le+02-
1 1 I 1 1 I 1 1 I 1 1 ' 1 I\ 1 1 I\ 1
2012 2013 2014 2015 2016 2017 2018

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

On Dataset Size and Learning

» Datais a aresource! (e.g., like processors and memory)
> |Is having lots of processors a problem?

» You don't have to use all the datal
» Though using more data can often help

» More data offen* dominates models and algorithms

CEXPERT OPINION

tttttttt ditor: Brian Brannon, bbrannon@computer.org

The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

Example:
Scale is TPU’s Primary Value Proposition

ldeal Metric of Success for Efficient

Training

/ .
“Learning”

\

Second
o

*Somewhat of a simplistic linear model. As we will later
see there are many more moving parts to this

_/

/

-

“Learning”

\

Record

_/

~

Record

\

-

Second

Throughput
System
Property

_/

Metrics of Success

» Minimize training time to “best model”

> Best model measured in terms of test error

> Other Concernse

» Complexity: Does the approach infroduce additional fraining

complexity (e.q., hyper-parameters)
> Stability: How consistently does the system train the modele

» Cost: Will obtaining a faster solution cost more money (power) e

Gradient Descent

Learning rate

Two key elements:

The computed gradient: the direction

"w©® w < The learning rate: how big a step do we take?

Stochastic Gradient Descen’r1 N
, Yy min J (w) = ~ Zcost(w,xi)

B
wl — 0 — & 0J (w")
B — ow
/ T ,
Learning rate Aw

Two key elements:

 The computed gradient: the direction

« The learning rate: how big a step do we take?

Synchronous Stochastic Gradient

Descent @
 E—
In every iteration of
SGD we load a Mini-batch
random mini-batch of
training data, and
compute the

gradient.

Parallelization Opportunities

Data Parallelism: Distribute the o T (w)
: : 1_ .0
processing of data to multiple W =w — =
PEs DR o
. 1=

Model Parallelism: Break the

B 9 0
model and distribute processing 1 o @ Z J(w")
of every layer to multiple PEs B 0

For either approach it is also 1 0

possible to use synchronous or
asynchronous updates i=1

Bulk Synchronous Parallel (BSP) Execution

Compute Commumcate , Compute

Machine | m

Machine 2

22

Bulk Synchronous Parallel (BSP) Execution

Compute - Communicate | Compute
Machine 2 — lteration lteration M

Machine 3 - [teration m lteration >

V V
Barrier Barrier

Enable more frequent coordination on parameter values

23

Asynchronous Execution

Compute Communicate Compute
Machine | — Iteration - lteration
Machine 2 — iteration - lteration
Machine 3 - [teration - [teration

Enable more frequent coordination on parameter values, but
often results in generalization loss. Today we will only focus on
synchronous training.

Synchronous Data Parallel

Synchronous Data Parallelism

1024

» Compute the entire model
on each processor

» Distribute the batch evenly
across each processor:

» 1024 batch distributed
over 16 PEs: 64 images
per GPU

» Communicate gradient
updates through allreduce

All Reduce

All Reduce

There are many different all reduce algorithms, each with their own frade
offs.

For simplicity, assume our model has 4 layers, and is tfrained on P=4 machines

Machine D Machine C

Machine D Machine C

Parameter Server

Sends (P-1) * N Data
» P Machines
> N Parameters

Machine D Machine C

Parameter Server

Sends (P-1) * N Data
» P Machines
> N Parameters

Machine D Machine C

Machine B
Parameter Server H
Machine A
Communicate (P-1) * N Data
» P Machines
» N Parameters

5

Machine B

Parameter Server
)

Machine A Communicate (P-1) * N Data

N Parameter

Machine D

Machine C

SQ 53 %2 >

®)
Comm (P-1) * N Data
> P Machines
» N Parameters

Parameter Server

‘ Machine A ‘

|

=

Issues?
» High fan-in on Machine A
» (P-1) * N Bandwidth for Machine A

L Machine B J

Parameter Server All Reduce

Machine D Machine C

Send each entry to parameter server for that entry.
> Key 1> A

> Key2>B
> Key 3> C
> Key4 > D

Machine D Machine C

Each machine sends N/P data to all other machines.
(P-1) * N/P

» P Machines

» N Parameters

Machine D Machine C

b,

Compute local sum on each machine

Machine D Machine C

Machine A Machine B

Each machine broadcasts* the sum (N/P data size) to all other machines.
(P-1) * N/P

» P Machines

» N Parameters

Machine D Machine C

* Technically All Gather based on MPI communication definition

Machine A

Machine B

Total Communication per machine:

2* (P-1) * N/P (roughly independent of P)
» P Machines

» N Parameters

Machine D

Parameter Server All-Reduce

» Same amount of total data transmitted as before, but spread
evenly across all machines instead of just one

Machine A H Machine B ‘

e

» Same high fan-in (P-1)

» Reduced Inbound Bandwidth = 2*(P-1)N/P
» Previously 2*(P-1)*N for the parameter server

Ring All Reduce

Send messages in a ring to reduce fan-in.

Machine D Machine C

< Note this depicts a partial
sum and not a bigger message.

Ring All Reduce

Machine D Machine C

Ring All Reduce

Machine D
2

Ring All Reduce

Machine D

Machine A Machine B

Ring All Reduce

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1) * N/P (doesn’t depend on P!)
» Fan-in Per Round:

» 1 (doesn’t depend on P)

Machine D Machine C

Machine A Machine B

Ring All Reduce

Broadcast stage* repeats process sending messages forwarding
sums (same communication costs).

Machine D Machine C

* Technically All Gather based on MPI communication definition

Machine A Machine B

Ring All Reduce

Machine D Machine C

S3

Machine A Machine B

Ring All Reduce

Machine D Machine C

Sy

Machine A Machine B

Ring All Reduce

Machine D Machine C

S2 S3

Machine A Machine B

Ring All Reduce

Machine D Machine C

S2 S3

Ring All-Reduce

» Simplified communication topology with low fan-in

{ Machine A H Machine B J

Machine D Machine C

> Overall communication

» Same total communication: 2*(P-1)*N, but
» Each Machine communicates
> Fansinis constant]|(doesn’t depend on P)

> Issue: Number of communication rounds (P-1)

Double Binary Tree All-Reduce

» Two overlaid binary reduction trees W

o 14 [8 [22 [26] [0 1] [5] (] 03 @7 RI [[29

(2] [6] [0 [¢

3 Allreduce, 8 bytes
g 51200

25600 == NCCL 2.4 — Trees

e NCCL 2.3 — RiNgs

12800
6400
3200

(2]
> 1600

R ECE T et MO O S T e 800

————— @

400

——————
200

100
96 192 384 768 1536 3072 6144 12288 24576

GPUs

» Double the fan-in = Log(p) rounds of communication
» Currently used on Summit super-computer and latest NCCL

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Complexity Summary

Tcomm — (()4+PN6)

a latency Bottleneck

B bandwidth
N message size
P #processes

P
Parameter Server

gukes

Parameter Server Ring All-reduce

Great Reference: T. Rajeev, R. Rabenseifner, and W. Gropp. "Optimization of collective communication ”
operations in MPICH." The International Journal of High Performance Computing Applications, 2005.

Data Parallel Training Complexity
Analysis

» Question: Comm time of ring allreduce is independent of

the number of processors. So what limits scalability?

Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low utilization of the hardware
and would not yield any speed up

1045 |-)
i » Why does this
! f happen?
g Best Workload > Remember
& s / | roofline model?
§ /
1 2 4 8 16 32 64 128 256 512 1024 2048

Batch Size—
One epoch training time of AlexNet computed on an Intel KNL system

Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low utilization of the hardware
and would not yield any speed up

104‘5 B | 128
T 0 Peak flops
o — 64
3 aQ
o 2 5
£ 104) RS
'; Best Workload @ 16
S / 'c% 8
& yges | 1
v / T
o i = 2
1 2 4 8 16 32 64 128 256 512 1024 2048
Batch Size— 1
. . . 1 1 1
One epoch training time of AlexNet computed on an Intel KNL system oo e e 124 8T8

flop:DRAM byte ratio

Scaling Data Parallel Training

1024

If we want to keep scaling
synchronous SGD then we
have to keep increasing
the batch size.

(

~
64

@

MPI ALLREDUCE

. J . J & J —

Naively increasing Batch size leads to
perfect results but ...

Images/sec
000000 @ Observed
A Perfect
000000 —
000000 //
00000 //
0
10 20 30
Cloud TPU Devices
“Learning” “Learning” Record
= X
Second Record Second
Throughput
System

Property

Bigger isn't Always Better

» Motivation for larger batch sizes
» More opportunities for parallelism = but is it usefule
» Recall (1/n variance reduction):

1
— L 19 19 L 79 19
n;w (i, f(z; 0 ‘B’ZW (i, f(2:;0))

1eB

» Is a variance reduction helpful?

> Onlyifitlet’s you take bigger steps (move faster)
» Does it affect the final prediction accuracye

Problems with Large Batch Training

» Larger Batch leads to sub-optimal generalization

» A common belief is that large batch training gets attracted to “sharp
minimas

AlexNet-BN for ImageNet

B=64

0.6

! Testing Function

I
o)

o
N
!

o
N

Top-1 Test Accuracy

o —— Batch=512 O s
. Batch=8192 Flat Minimum Sharp Minimum
0 20 40 60 80 100

Epochs

__

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
1 Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS'18. !

i Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.

__

Generalization Gap Problem

I
o
1

Larger batch sizes harm generalization
performance.

w
&)
T

w
(@)
T

N
o1
T

r
+
+
+
i

64 128 256 512 1k 2k 4k 8 16k 32k 64k
mini-batch size

ImageNet top-1 validation error

N
o

Why<¢ Large Batch Reduces Noise and
may Get Trapped in Local Minima

Objective function Update rule
1 — 1
L(O) =+ > Ui, yi, 0) Ory1 = 0 — g > Vol(z,y,6:)
i=1 (z,y)EB

Small batch gradient descent acts as a regularizer

Loss

Sharp Minima
Hypothesis

Parameter values along some direction

Active Research problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size
'Qo
9(t+1) < Q(t) Z Z VG’L yzv 3317))
zEB 0=06(t)
» Addresses generalization performance by taking larger
steps (also improves fraining convergence)

» Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?

» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs

» Doesn't help for very large k...

Key Results

Training vs Validation

100 .
kn=256, m=0.1 [train]
g0 1 1 kn=256, n=0.1 [vall]
kn=8%k, n=3.2 [train]
o PR e kn=8k, 1=3.2 [val] All curves.closely'
5 60 A\NE ., { match using the linear
S Sk scaling rule.
40 .
Note learning rate
.......................... schedule drops.
20 ' '
0 20 40 60 80

Key Results

100
0.3 116
0
80 ER ¢ é 0.28 - 18
' =
2 2\ \d ©0.26r 4
- A\ \Z:2 S
e 60 B '_‘ :..- E
o : =024r1 42
g
40 2022} 41
0.2 * ‘ : : ‘ 0.5
20 256 512 1k 2k 4K 8k 11k
mini-batch size
epochs
11 . 7
Learning Epoch

Epoch Second
- _/ - _/
Machine Learning System

time per epoch (mins)

Key Results

> Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
> 90% scaling efficiency

» Fairly careful study of the linear scaling rule

» Observed limits to linear scaling do not depend on dataset size

> But whatis the limite
» You cannot indefinitely scale the learning rate ...

Since then there has been a race to train ImageNet faster and
several new large batch training methods have been
developed (some with good foundation and some heuristics)

ImageNet Training Competition!

10000 ¢ ImageNet is a dataset of 1.2M 224x224 images
* Training 720 hours 2 <1 minute

? 1000 Latest record:
3 14 seconds / TPUv4
£, 100 (as of Feb 2022)
()
€ 10
=
g
:§ Tenceni
C o1 SONY
= o0
0.01 [llOF]

256 768 128 2048 2048 2176 2048
of PE Nodes

landola FN, Moskewicz MW, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 2592-2600).

You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. In Proceedings of the 47th International Conference on Parallel Processing !
2018 Aug 13 (p. 1) ACM (Best Paper Award) !

Very active area of research

Other papers to read if you are interested:

» Golmant, Noah, et al. "On the computational inefficiency
of large batch sizes for stochastic gradient descent” (Cal)

» Shallue et al. *Measuring the Effects of Data Parallelism on
Neural Network Training” (Google)

» You, Yang, et al. "Large batch optimization for deep
learning: Training bert in 76 minutes.” (Cal)

Next week's readings

Reading for Next Week

> Chimera: Efficiently Training Large-Scale Neural Networks with
Bidirectional Pipelines [SC'21, Best Student Paper finalist]

> A novel technique for pipeline parallel fraining with bidirectional computational
flow to reduce the "bubble size”.

> Efficient Large-Scale Language Model Training on GPU Clusters Using
Megairon-LM [SC'21, Best Student Paper]

> Large scale deployment of data, model, and pipeline parallelism to scale training
of a 1T parameter transformer to 3K+ GPUs

> /eRO-Infinity: Breaking the GPU Memory Wall for Exireme Scale Deep
Learning [SC'21]

» A novel method for increasing the maximum size of the model that can be
trained on a GPU by leveraging NVMe.

https://arxiv.org/pdf/2107.06925.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/abs/2104.07857

Extra Suggested Reading

» DeepSpeed: Advancing MoE inference and training 1o
power next-generation Al scale [Blog post]

» Large Scale Distributed Deep Networks [NeurlPS'12]

» One of the first papers using (known) techniques applied to training large ML
models at Google

» Gpipe: Efficient training of giant neural networks using

pipeline parallelism [NeurlPS'19]

» A micro-batching technique used for pipeline parallelism to reduce "bubble size’
with synchronous SGD

> PipeDream: Fast and Efficient Pipeline Parallel DNN Troininq [SOSP'19]

» Proposed an asynchronous method for reducing the "bubble size” of pipeline
parallel training

https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale/
https://papers.nips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://arxiv.org/pdf/1806.03377.pdf

