
Amir Gholami & Joseph E. Gonzalez

AI-Systems

Distributed Deep
Learning (Part I)
(294-162)

Acknowledgments
Many slides from Prof. Kurt Keutzer, Pallas Group

Agenda for Today

Ø 1:10-2:00: Preliminary Lecture on Parallel Training

Ø 2:00-2:45: PC Meeting Discussions

Ø 2:45-3:00: Break

Ø 3:00-4:00: Guest Lecture by Prof. Sophia Shao

Remaining slides from Last
Lecture

Designing an accelerator
1) Accelerators are Only the First 80% of the Problem
The other 80%: Full system design
The remaining 200%: SW development

2) HW design shouldn’t be about what can be built, rather what can be programmed
Stay tuned for the Lecture on AI Frameworks

3) Deploy at scale? Today’s lecture

HW Definition Languages
Co-Design Methodology
Datacenter / Design, Deployment
Datacenter / Heterogeneity

Research Challenges (if you are interested definition checkout EE 290 course by Prof. Shao)
Abstraction Levels, DSLs
Coarse Grained vs Fine Grain Acceleration
Programming Languages, Programming Models
Optimization Techniques, Runtimes

Naveen Kumar (Google)

The right dataflow, precision, and many other parameters heavily depend on

the workload.

If you were to design a HW today, it would at least take ~2years for its tape

out, with a cost of ~$500M (estimate for 3nm)

It must remain relevant through ~5 years to justify the huge upfront investment

What do you think is the right workload for the future to bet on?

Distributed Deep Learning

Objectives For Today

Ø Data Parallel Training and its Challenges

Ø Communication Complexity Analysis

Ø Model Parallel Training (Next Lecture)

Ø Memory Efficient Methods for Training Large

Models (Next Lecture)

Distributed Training: What is it? & Why?

Ø Distributed Training* ~ Training across multiple devices
Ø Different local and remote memory speeds / network

Ø Why do we need distributed training?
Ø Additional memory (memory bandwidth) for larger model

Ø “Need” to store weights + activations
Ø Faster training by leveraging parallel computation
Ø Reduce or eliminate data movement

Ø Privacy à Federated Learning
Ø Limited bandwidth to edge devices
Ø (stay tuned for 04/25 lecture)

*Very simplified definition.

Training Large Models

10Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.

Beyo
nd sin

gle

chip
 mem

ory

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Faster Processing

11Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.

Scale Training to
Multiple Processes

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

On Dataset Size and Learning
Ø Data is a a resource! (e.g., like processors and memory)

Ø Is having lots of processors a problem?

Ø You don’t have to use all the data!
Ø Though using more data can often help

Ø More data often* dominates models and algorithms

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
! elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our ! eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to ! ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from un! ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classi! cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classi! ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also dif! cult for experts to agree
on, being bedeviled by many of the dif! culties we
discuss later in relation to the Semantic Web. The
! rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we ! nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
! elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our ! eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to ! ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from un! ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classi! cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classi! ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also dif! cult for experts to agree
on, being bedeviled by many of the dif! culties we
discuss later in relation to the Semantic Web. The
! rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we ! nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

E X P E R T O P I N I O N

8 1541-1672/09/$25.00 © 2009 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Contact Editor: Brian Brannon, bbrannon@computer.org

such as f = ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inability to neatly model human behavior.
An informal, incomplete grammar of the English
language runs over 1,700 pages.2 Perhaps when it
comes to natural language processing and related
! elds, we’re doomed to complex theories that will
never have the elegance of physics equations. But
if that’s so, we should stop acting as if our goal is
to author extremely elegant theories, and instead
embrace complexity and make use of the best ally
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to
the Brown Corpus, containing one million English
words.3 Since then, our ! eld has seen several notable
corpora that are about 100 times larger, and in 2006,
Google released a trillion-word corpus with frequency
counts for all sequences up to ! ve words long.4 In
some ways this corpus is a step backwards from the
Brown Corpus: it’s taken from un! ltered Web pages
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected
part-of-speech tags. But the fact that it’s a million
times larger than the Brown Corpus outweighs these
drawbacks. A trillion-word corpus—along with other
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classi! cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural
task routinely done every day for a real human need
(think of the operations of the European Union or
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In
other words, a large training set of the input-output
behavior that we seek to automate is available to us
in the wild. In contrast, traditional natural language
processing problems such as document classi! ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also dif! cult for experts to agree
on, being bedeviled by many of the dif! culties we
discuss later in relation to the Semantic Web. The
! rst lesson of Web-scale learning is to use available
large-scale data rather than hoping for annotated
data that isn’t available. For instance, we ! nd that
useful semantic relationships can be automatically
learned from the statistics of search queries and the
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore. Restrictions apply.

Example:
Scale is TPU’s Primary Value Proposition

TPU Pod
64 2nd-gen TPUs

11.5 petaflops
4 terabytes of HBM memory

TPUv3

TPU v3

Ideal Metric of Success for Efficient
Training

“Learning”

Record

Record

Second
x

“Learning”

Second
=

Convergence
Machine Learning

Property

Throughput
System
Property

*Somewhat of a simplistic linear model. As we will later
see there are many more moving parts to this

Metrics of Success

Ø Minimize training time to “best model”

Ø Best model measured in terms of test error

Ø Other Concerns?
Ø Complexity: Does the approach introduce additional training

complexity (e.g., hyper-parameters)

Ø Stability: How consistently does the system train the model?

Ø Cost: Will obtaining a faster solution cost more money (power)?

Gradient Descent

Learning rate

16

I

conv1
16 16

I

conv2/3

+

16 16

I

conv4/5

+

16 16

I

conv6/7

+

32 32

I/
2

conv8/9

Downsample

+ +

64 64
I/
4

conv18/19

+

Bit-Setting 1

Bit-Setting 2
8

4

4/2

4/8

2/4

8/2

8/2

4/4

4/2-4

4/8-8

8/4

2/4
8

2

FC&softmax

Two key elements:

• The computed gradient: the direction

• The learning rate: how big a step do we take?

min
w

J (w) =
1

N

NX

i=1

cost(w, xi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="XrpLEjoOQ5QSTtKgB85DyKxcKk8=">AAACdXicZVFdSxtBFJ2stur2w6iPIgymLSoad0XUFyHUPohQaqFRwY3h7uRuMji7O8zMGsOyf6e/pq8V/CW+djZZsNELA2fOvXc450woBdfG8x5rzszsm7dz8wvuu/cfPi7Wl5YvdJophm2WilRdhaBR8ATbhhuBV1IhxKHAy/D2pOxf3qHSPE1+mZHETgz9hEecgbFUt94a3vj0mA5vPLpDAxByADSIFLA8kKAMB0GDGMyAgcjPig07t1k8t4aF2603vKY3Lvoa+BVokKrOu0u1taCXsizGxDABWl/7njSdvHySCSzcINMogd1CH68tTCBG3cnHVgv62TI9GqXKnsTQMfv/Rg6x1qM4tJOlbP2yV5LPvW9oFSj8bm8/JCowqdrKA1D9GO4Lq6gfbJfIndZkoqNOzhOZGUzYRFKUCWpSWiZMe1whM2JkATDFrSvKBmAjNfYfpl7q3XGpK3/3E4NuGaj/Mr7X4GKv6R8093/uN1pfq2jnySpZJxvEJ4ekRU7JOWkTRn6TP+Qveag9OWvOJ+fLZNSpVTsrZKqc3X/w/79/</latexit>

w1 = w0 � ↵
@J (w0)

@w
<latexit sha1_base64="DS4W1LGCZ52RMZJOxi6Z2AKi5Sw=">AAACO3icZVDLSgNBEJz17fqMHkUYDIKIhF0R9RjUgxdRwWjADdI76cTB2QczvWpY8hNe9Vf8EM/exKt3J8mCRgsGaqofVFeYKmnI896ckdGx8YnJqWl3ZnZufmGxtHRpkkwLrIlEJboegkElY6yRJIX1VCNEocKr8O6wV7+6R21kEl9QJ8VGBO1YtqQAslI9OEJFwB9uFstexeuD/yd+QcqswNlNyVkNmonIIoxJKDDm2vdSauSgSQqFXTfIDKYg7qCN15bGEKFp5H3DXb5ulSZvJdq+mHhf/T2RQ2RMJwptZwR0a/7WeuJP7QitA40n9neaogZK9GYegG5H8Ni1jtrBVo+5w56otd/IZZxmhLEYWGplilPCeznxptQoSHUsAaGlvYqLW9AgyKY5tKl5L1NT3Pc4ONB1baD+3/j+k8vtir9b2TnfKVcPimin2ApbYxvMZ3usyo7ZGasxwRR7Ys/sxXl13p0P53PQOuIUM8tsCM7XN2sVrXc=</latexit>

�w

19

Learning rate

Two key elements:

• The computed gradient: the direction

• The learning rate: how big a step do we take?

16

I

conv1
16 16

I

conv2/3

+

16 16

I

conv4/5

+

16 16

I

conv6/7

+

32 32

I/
2

conv8/9

Downsample

+ +

64 64
I/
4

conv18/19

+

Bit-Setting 1

Bit-Setting 2
8

4

4/2

4/8

2/4

8/2

8/2

4/4

4/2-4

4/8-8

8/4

2/4
8

2

FC&softmax

min
w

J (w) =
1

N

NX

i=1

cost(w, xi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="DS4W1LGCZ52RMZJOxi6Z2AKi5Sw=">AAACO3icZVDLSgNBEJz17fqMHkUYDIKIhF0R9RjUgxdRwWjADdI76cTB2QczvWpY8hNe9Vf8EM/exKt3J8mCRgsGaqofVFeYKmnI896ckdGx8YnJqWl3ZnZufmGxtHRpkkwLrIlEJboegkElY6yRJIX1VCNEocKr8O6wV7+6R21kEl9QJ8VGBO1YtqQAslI9OEJFwB9uFstexeuD/yd+QcqswNlNyVkNmonIIoxJKDDm2vdSauSgSQqFXTfIDKYg7qCN15bGEKFp5H3DXb5ulSZvJdq+mHhf/T2RQ2RMJwptZwR0a/7WeuJP7QitA40n9neaogZK9GYegG5H8Ni1jtrBVo+5w56otd/IZZxmhLEYWGplilPCeznxptQoSHUsAaGlvYqLW9AgyKY5tKl5L1NT3Pc4ONB1baD+3/j+k8vtir9b2TnfKVcPimin2ApbYxvMZ3usyo7ZGasxwRR7Ys/sxXl13p0P53PQOuIUM8tsCM7XN2sVrXc=</latexit>

�w

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

Stochastic Gradient Descent

Synchronous Stochastic Gradient
Descent

In every iteration of
SGD we load a
random mini-batch of
training data, and
compute the
gradient.

GPU

64

fp
ro

p
bp

ro
p

Mini-batch
min
w

J (w) =
1

N

NX

i=1

cost(w, xi)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�W
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

<latexit sha1_base64="nJZoccES7xBkCRqw9rymmq5S/Xs=">AAAAAHicbVBNS8NAEN34WetX1KOXxSLUgyWRgl4EqRfxVMGq0KRlst20Szcf7G4sJeSPefE/ePPmxYMiXr26qQG1+mDh8d7M7MzzYs6ksqxHY2Z2bn5hsbRUXl5ZXVs3NzavZJQIQlsk4pG48UBSzkLaUkxxehMLCoHH6bU3PM3961sqJIvCSzWOqRtAP2Q+I6C01DUvRx0bH+NRx8L7ji+ApA7weABZ2sgcmQTdlB3bWadReDEIxYBjJwA1IMDT86yqe/eyb2uUlbtmxapZE+C/xC5IBRVods0HpxeRJKChIhykbNtWrNw0n0g4zcpOImkMZAh92tY0hIBKN51cn+FdrfSwHwn9QoUn6s+OFAIpx4GnK/Ot5bSXi/957UT5R27KwjhRNCRfH/kJxyrCeZS4xwQlio81ASKY3hWTAeiclA48D8GePvkvuTqo2fWadVGvnDSKOEpoG+2gKrLRITpBZ6iJWoigO/SEXtCrcW88G2/G+1fpjFH0bKFfMD4+AYkTrt8=</latexit>

<latexit sha1_base64="DS4W1LGCZ52RMZJOxi6Z2AKi5Sw=">AAACO3icZVDLSgNBEJz17fqMHkUYDIKIhF0R9RjUgxdRwWjADdI76cTB2QczvWpY8hNe9Vf8EM/exKt3J8mCRgsGaqofVFeYKmnI896ckdGx8YnJqWl3ZnZufmGxtHRpkkwLrIlEJboegkElY6yRJIX1VCNEocKr8O6wV7+6R21kEl9QJ8VGBO1YtqQAslI9OEJFwB9uFstexeuD/yd+QcqswNlNyVkNmonIIoxJKDDm2vdSauSgSQqFXTfIDKYg7qCN15bGEKFp5H3DXb5ulSZvJdq+mHhf/T2RQ2RMJwptZwR0a/7WeuJP7QitA40n9neaogZK9GYegG5H8Ni1jtrBVo+5w56otd/IZZxmhLEYWGplilPCeznxptQoSHUsAaGlvYqLW9AgyKY5tKl5L1NT3Pc4ONB1baD+3/j+k8vtir9b2TnfKVcPimin2ApbYxvMZ3usyo7ZGasxwRR7Ys/sxXl13p0P53PQOuIUM8tsCM7XN2sVrXc=</latexit>

�w

21

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

Parallelization Opportunities
Data Parallelism: Distribute the
processing of data to multiple
PEs.

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

Model Parallelism: Break the
model and distribute processing
of every layer to multiple PEs

For either approach it is also
possible to use synchronous or
asynchronous updates

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

Bulk Synchronous Parallel (BSP) Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

w

w

w

w1

w2

w3

w

w

w

22

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

Enable more frequent coordination on parameter values
23

Bulk Synchronous Parallel (BSP) Execution

Asynchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Compute Communicate

Iteration

Iteration

Iteration

Compute

Enable more frequent coordination on parameter values, but
often results in generalization loss. Today we will only focus on

synchronous training.

Synchronous Data Parallel

Synchronous Data Parallelism
Ø Compute the entire model

on each processor

Ø Distribute the batch evenly
across each processor:
Ø 1024 batch distributed

over 16 PEs: 64 images
per GPU

Ø Communicate gradient
updates through allreduce

1024

GPU 1

64

fp
ro

p
bp

ro
p

GPU 2

64

fp
ro

p
bp

ro
p

GPU 3

64

fp
ro

p
bp

ro
p

…

GPU 16

64

fp
ro

p
bp

ro
p

MPI ALLREDUCE
<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

GPU 2 GPU 3 GPU 4

All Reduce
<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

GPU 1

<latexit sha1_base64="f/WNRzGoX7eLLG31I7IbTnaOTBQ=">AAACc3icZVFdaxQxFM2OVev4tbWPRQjdFkR0nZGl9aWlVB+kILbQbQuddbiTvbMNTWZCkqldwvwbf42v+uIP8d3M7kDd9kLg5NzcyzknmRLc2Cj60wnuLd1/8HD5Ufj4ydNnz7srL05MWWmGQ1aKUp9lYFDwAoeWW4FnSiPITOBpdvmx6Z9eoTa8LI7tVOFIwqTgOWdgPZV2dyGN6Q5NTCVTx3fi+pvbfzeok1wDc4kCbTkImkiwFwyEO6jrG/Z7HabdXtSPZkXvgrgFPdLWYbrSeZmMS1ZJLCwTYMx5HCk7cs1KJrAOk8qgAnYJEzz3sACJZuRmRmu66ZkxzUvtT2HpjP1/woE0Zioz/7JRbG73GvKm9wm9Ao1f/O2rQg221K9dAnoi4br2iibJmwaFi5ps/mHkeKEqiwWbS8orQW1Jm3zpmGtkVkw9AKa5d0XZBfg0rf+FhU3jK65M6+96bjBsAo1vx3cXnLzvx1v9wdGgt7ffRrtM1sg6eUVisk32yGdySIaEkR/kJ/lFfnf+BmvBerAxfxp02plVslDB23+Ct7/m</latexit>

a1 =

B/4X

i=1

@J
@w

<latexit sha1_base64="/INHXULU5pjH/I3xR+jCc3YfuEk=">AAACdnicZVFdaxQxFM2OVeu06rY+iiW4FEVknSmL9aVQqw9SKLbQbQuddbiTvbMNTWZCkqldwvwef42viv/ERzO7A3XbCyEn535w7kmmBDc2iv50gntL9x88XH4Urqw+fvK0u7Z+YspKMxyyUpT6LAODghc4tNwKPFMaQWYCT7PLT03+9Aq14WVxbKcKRxImBc85A+uptPsxS2O6QxNTydTxnb13g/qb22quJNfAXKJAWw6CJhLsBQPh9uv6hv1eh2m3F/WjWdC7IG5Bj7RxmK51XiTjklUSC8sEGHMeR8qOXDOSCazDpDKogF3CBM89LECiGbnZrjXd9MyY5qX2p7B0xv7f4UAaM5WZr2wUm9u5hrzJfUavQOOBf31VqMGW+o1LQE8kXNde0SR526BwUZPNP4wcL1RlsWBzSXklqC1pYzEdc43MiqkHwDT3W1F2Ad5N6z9iYdL4iivT7nc9XzBsDI1v23cXnGz14/f9wdGgt7vXWrtMnpOX5DWJyTbZJV/IIRkSRn6Qn+QX+d35G2wEm8GreWnQaXuekYUIon9RlcCr</latexit>

b1 =

2B/4X

i=B/4

@J
@w

<latexit sha1_base64="QsjRnBJu8xnUSkobwLFRGl7J5xY=">AAACd3icZVFda9swFFW8r9b7SrfHMSYWNsoYmd2FbS+FkvWhDMY6WNpCnZlr5ToVlWwhyV2D8P/pr+lrt5/St8qJoUt7Qejo3A/OPcqU4MZG0b9OcOfuvfsPVlbDh48eP3naXXu2Z8pKMxyxUpT6IAODghc4stwKPFAaQWYC97Pjr01+/wS14WXxy84UjiVMC55zBtZTaXfI0phu0sRUMnV8c2P4YVD/dh+bK8k1MJco0JaDoIkEe8RAuG91fc3+qcO024v60TzobRC3oEfa2E3XOi+TSckqiYVlAow5jCNlx64ZyQTWYVIZVMCOYYqHHhYg0YzdfNmavvHMhOal9qewdM7+3+FAGjOTma9sFJubuYa8zm2jV6Dxu3/9UKjBlvqdS0BPJZzWXtE0ed+gcFmTzb+MHS9UZbFgC0l5JagtaeMxnXCNzIqZB8A091tRdgTeTet/YmnS5IQr0+53ulgwbAyNb9p3G+xt9ONP/cHPQW9r2Fq7Ql6Q12SdxOQz2SI7ZJeMCCNn5JxckL+dy+BV8DZYX5QGnbbnOVmKIL4C5KfA6Q==</latexit>

c1 =

3B/4X

i=2B/4

@J
@w

<latexit sha1_base64="qX52bNjFNgOgPRvzw88NZ0hZujw=">AAACdHicZVFdaxQxFM1O/ajjR7f1UYXgUhCR7Uxd1JdiWX0QQazgtoXOOtzJ3NmGJjMhydQuYX6Ov8ZXffCP+Gxmd6BueyFwcm7u5ZyTTAlubBT96QVrN27eur1+J7x77/6Djf7m1qGpas1wwipR6eMMDApe4sRyK/BYaQSZCTzKzt61/aNz1IZX5Vc7VziVMCt5wRlYT6X9t3ka0z2amFqmju+9HO+Mmm9u3CSFBuYSBdpyEDSRYE8ZCPexaS7Z702Y9gfRMFoUvQ7iDgxIVwfpZu9JklesllhaJsCYkzhSduralUxgEya1QQXsDGZ44mEJEs3ULZw2dNszOS0q7U9p6YL9f8KBNGYuM/+yVWyu9lrysvcevQKNn/zts0INttLPXQJ6JuGi8YpmyYsWhauabPFm6nipaoslW0oqakFtRduAac41MivmHgDT3Lui7BR8mtZ/w8qm/Jwr0/m7WBoM20Djq/FdB4e7w/jVcPRlNNgfd9Guk0fkKXlGYvKa7JMP5IBMCCM/yE/yi/zu/Q0eB4Nge/k06HUzD8lKBcN/OaPANw==</latexit>

d1 =
BX

i=3B/4

@J
@w

<latexit sha1_base64="nq4g15K2yLC7nosr3vOUupx/Ymo=">AAACg3icZVFdaxQxFM2OVuv4ta2PIgQXQawsM2XRviyU6oMIagW3LXTW4U7mzjY0mQlJpnYJ86/8M/qqP8TM7EDd9kLCybn3JvecZEpwY6Po1yC4dXvjzt3Ne+H9Bw8fPR5ubR+ZqtYMZ6wSlT7JwKDgJc4stwJPlEaQmcDj7Pxdmz++QG14VX6zS4VzCYuSF5yB9VQ6/JyYWqaOT+PmuztokkIDc4kCbTkImkiwZwyE+9g0V+yPhk4ppDHdoVm3s27P0zhMh6NoHHVBb4K4ByPSx2G6NXiW5BWrJZaWCTDmNI6Unbv2KSawCZPaoAJ2Dgs89bAEiWbuOuENfeGZnBaV9qu0tGP/73AgjVnKzFe2Ssz1XEte5d6jn0DjJ3/6olCDrfQrl4BeSLhs/ESL5HWLwvWZbLE3d7xUtcWSrUYqakFtRVu/ac41MiuWHgDT3Kui7Ay8y9b/ytpN+QVXptd3uRIYtobG1+27CY52x/Gb8eTrZLR/0Fu7SZ6S5+Qliclbsk8+kEMyI4z8JL/JH/I32Ah2gt1gsioNBn3PE7IWwfQfRZHDPg==</latexit>

BX

i=1

@J
@w

= a1 + b1 + c1 + d1

MPI ALLREDUCE

Machine A Machine B

Machine D Machine C

All Reduce
There are many different all reduce algorithms, each with their own trade
offs.

For simplicity, assume our model has 4 layers, and is trained on P=4 machines

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Machine A

Machine B

Machine D Machine C

Parameter Server (Single Master All-Reduce)

d1 d2 d3 d4 c1 c2 c3 c4

b1 b2 b3 b4

a1 a2 a3 a4

Machine A

Machine B

Machine D Machine C

Parameter Server

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

Machine A

Machine B

Parameter Server

d1 d2 d3 d4
c1 c2 c3 c4

b1 b2 b3 b4
a1 a2 a3 a4

Sends (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C

Machine B

Parameter Server

Communicate (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine A

s1 s2 s3 s4s1s1s1 s2s2s2 s3s3s3 s4s4s4

Machine D Machine C

Machine A

Machine B

Parameter Server

Communicate (P-1) * N Data
Ø P Machines
Ø N Parameters

si = ai bi dici+ + +

Machine D Machine C

s1 s2 s3 s4 s1

s1

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

*2

Machine A

Machine B

Parameter Server Comm (P-1) * N Data
Ø P Machines
Ø N Parameters

Machine D Machine C

*2

Issues?
Ø High fan-in on Machine A
Ø (P-1) * N Bandwidth for Machine A

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Parameter Server All Reduce

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Send each entry to parameter server for that entry.
Ø Key 1 à A
Ø Key 2 à B
Ø Key 3 à C
Ø Key 4 à D

Machine A Machine B

Machine D Machine C

a1 a2

a3a4

b1 b2

b3b4

d1 d2

d3d4

c1 c2

c3c4

Each machine sends N/P data to all other machines.
(P-1) * N/P
Ø P Machines
Ø N Parameters

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

Compute local sum on each machine

si = ai bi dici+ + +

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3

s1s1s1 s2s2s2

s3s3s3s4s4s4

Each machine broadcasts* the sum (N/P data size) to all other machines.
(P-1) * N/P
Ø P Machines
Ø N Parameters

* Technically All Gather based on MPI communication definition

Machine A Machine B

Machine D Machine C

s1 s2

s4 s3s1

s1

s1 s2

s2

s2s3

s3 s3

s4

s4s4

Total Communication per machine:
2* (P-1) * N/P (roughly independent of P)
Ø P Machines
Ø N Parameters

Parameter Server All-Reduce
Ø Same amount of total data transmitted as before, but spread

evenly across all machines instead of just one

Ø Same high fan-in (P-1)

Ø Reduced Inbound Bandwidth = 2*(P-1)N/P
Ø Previously 2*(P-1)*N for the parameter server

Machine A Machine B

Machine D Machine C

Machine A Machine B

Machine D Machine C

a1 a2 a3 a4 b1 b2 b3 b4

d1 d2 d3 d4 c1 c2 c3 c4

Ring All Reduce
Send messages in a ring to reduce fan-in.

Machine A Machine B

Machine D Machine C

a2 a3 a4 b1 b3 b4

d1 d2 d3

d4

c1 c2
c3

c4

Ring All Reduce

a1

b2

ß Note this depicts a partial
sum and not a bigger message.

Machine A Machine B

Machine D Machine C

a2 a3 b3 b4

d1 d2

d3

c1
c2

c3

c4

Ring All Reduce

b2

b1

a1

a4
d4

Machine A Machine B

Machine D Machine C

a2 b3

d1

d2

c1

c2

c4

Ring All Reduce

b2

b1

a1

b4
a4
d4

a3
d3

c3

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1s1

s2s2s2s2 s3s3s3s3

s4s4s4s4

Each machine sends N/P data to next machine each of (p-1) rounds:
(P-1) * N/P (doesn’t depend on P!)
Ø Fan-in Per Round:

Ø 1 (doesn’t depend on P)

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1s1

s2s2s2s2 s3s3s3s3

s4s4s4s4

Broadcast stage* repeats process sending messages forwarding
sums (same communication costs).

* Technically All Gather based on MPI communication definition

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1

s1

s2s2s2s2

s3s3s3

s3

s4s4s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1s1s1

s1 s2s2

s2s2

s3s3 s3

s3s4s4

s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1

s1

s1

s1 s2s2

s2s2

s3

s3

s3

s3s4 s4

s4 s4

Machine A Machine B

Machine D Machine C

Ring All Reduce

s1

s1

s1

s1 s2s2

s2s2

s3

s3

s3

s3s4 s4

s4 s4

Ring All-Reduce

Ø Simplified communication topology with low fan-in

Ø Overall communication
Ø Same total communication: 2*(P-1)*N, but evenly distributed
Ø Each Machine communicates 2*(P-1)N/P (almost independent of P)
Ø Fan-in is constant (doesn’t depend on P)

Ø Issue: Number of communication rounds (P-1)

Machine A Machine B

Machine D Machine C

Double Binary Tree All-Reduce

Ø Two overlaid binary reduction trees

Ø Double the fan-in à Log(p) rounds of communication
Ø Currently used on Summit super-computer and latest NCCL

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Complexity Summary

Parameter Server Ring All-reduce

54
Great Reference: T. Rajeev, R. Rabenseifner, and W. Gropp. "Optimization of collective communication
operations in MPICH." The International Journal of High Performance Computing Applications, 2005.

Tcomm = (↵+ PN�)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Tcomm = 2((P � 1)↵+
P � 1

P
N�)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

α latency
β bandwidth
N message size
P #processes

Data Parallel Training Complexity
Analysis
Ø Question: Comm time of ring allreduce is independent of

the number of processors. So what limits scalability?
<latexit sha1_base64="G2kjUpaw5HVsHPXPBLEvxbqLqIw=">AAAClHicZVFbaxQxFM6Otzretgq+iBBchF2ty0wp6oOFYhV88LJCt1totsOZbGYmNJkZkkzpkubn+SP8Db7qu9ndAd32QODLdy585ztpLbg2UfSzE1y7fuPmrY3b4Z279+4/6G4+PNRVoygb00pU6igFzQQv2dhwI9hRrRjIVLBJerq/yE/OmNK8Kg/MvGZTCXnJM07BeCrpJhgfJNbSSkrn+jYFQws3wLt4m+hGJpbvRu7EfnZEsMz0CYi6ANwfvYoHLzFJmQFMMgXUesbZkcMXk4RfYKJ4XpjBVhgm3V40jJaBr4K4BT3UxijZ7Dwls4o2kpWGCtD6OI5qM7WgDKeCuZA0mtVATyFnxx6WIJme2qUTDj/3zAxnlfKvNHjJ/t9hQWo9l6mvlGAKfTm3IP/lPjCvQLEv/vetZgpMpV5YAiqXcO68opxsLVC4rslkb6eWl3VjWElXkrJGYFPhxQHwjCtGjZh7AFRxvxWmBXgPjT/T2qTZGa91u9/5asGlofFl+66Cw+1h/Hq4832nt/e+tXYDPUHPUB/F6A3aQ5/QCI0RRT/QL/Qb/QkeB++C/eDjqjTotD2P0FoEX/8CeDXJcg==</latexit>

Tcomm(batch) = 2
LX

i=0

✓
↵(P � 1) + �

P � 1

P
|Wi|

◆
,

<latexit sha1_base64="0eohEf1Sg8Et84iqzxHg4wxZLAk=">AAACiXicZVHRahNBFJ2sVetWbaqPIgwGoYqGXSlahEJJfRChWKFpC90k3J3cTYbO7A4zs03DMj/mn/jW1/oVziYLNe2FgTP3zL2ccyZVghsbRX9awYO1h48erz8JN54+e77Z3npxYopSM+yzQhT6LAWDgufYt9wKPFMaQaYCT9OLg5o/vURteJEf27nCgYRJzjPOwPrWqH08G8Z0j86GEf2YZBpYlYBQU3BVzyWmlKOK78Vu2Gs4BdpyEDSRYKcMRPXDbfvZd+6Wmrlw1O5E3WhR9D6IG9AhTR2Ntlqvk3HBSom5ZQKMOY8jZQdVvZIJdGFSGlTALmCC5x7mINEMqoV9R9/6zphmhfYnt3TR/X+iAmnMXKb+ZS3b3OXq5i33Db0CjYf+9lOhBlvo9z4UPZFw5byiSfKhRuGqJpvtDiqeq9JizpaSslJQW9A6dTrmGpkVcw+Aae5dUTYFH6n1f7OyaXzJlWn8XS0NhnWg8d347oOTT934c3fn105nv9dEu05ekTdkm8TkC9kn38kR6RNGfpNrckP+BhtBHOwGX5dPg1Yz85KsVHDwD0KLx7E=</latexit>

w1 = w0 � ↵

B

BX

i=1

@J (w0)

@w

GPU GPU GPU GPU…

Limits of Data Parallel Scaling

Ø The maximum limit of processors that you can use is P=B

Ø But this often leads to very low utilization of the hardware
and would not yield any speed up

Best Workload

1 2 4 8 16 32 64 128 256 512 1024 2048

103.5

104

104.5

Batch Size!

O
n
e
E
p
o
c
h
T
im

e
(
s
e
c
)
!

One epoch training time of AlexNet computed on an Intel KNL system

Ø Why does this
happen?
Ø Remember

roofline model?

Limits of Data Parallel Scaling

Ø The maximum limit of processors that you can use is P=B

Ø But this often leads to very low utilization of the hardware
and would not yield any speed up

Best Workload

1 2 4 8 16 32 64 128 256 512 1024 2048

103.5

104

104.5

Batch Size!

O
n
e
E
p
o
c
h
T
im

e
(
s
e
c
)
!

One epoch training time of AlexNet computed on an Intel KNL system

2

1/8

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/4 1/2 1 2 4 8 16
1

Peak flops

Stre
am

 Ban
dw

idt
h

Ke
rn

el
’s

 A
rit

hm
et

ic
 In

te
ns

ity

Scaling Data Parallel Training
1024

GPU 1

64

fp
ro

p
bp

ro
p

GPU 2

64

fp
ro

p
bp

ro
p

GPU 3

64

fp
ro

p
bp

ro
p

…

GPU 16

64

fp
ro

p
bp

ro
p

MPI ALLREDUCE

If we want to keep scaling
synchronous SGD then we
have to keep increasing
the batch size.

Naively increasing Batch size leads to
perfect results but …

“Learning”

Record

Record

Second
x

“Learning”

Second
=

Convergence
Machine Learning

Property

Throughput
System
Property

Bigger isn’t Always Better

Ø Motivation for larger batch sizes
Ø More opportunities for parallelism à but is it useful?
Ø Recall (1/n variance reduction):

Ø Is a variance reduction helpful?
Ø Only if it let’s you take bigger steps (move faster)
Ø Does it affect the final prediction accuracy?

⇡ 1

|B|
X

i2B
r✓L(yi, f(xi; ✓))

<latexit sha1_base64="Thm6Taoh2IDis7KSsPNUqU3pCo8=">AAACTnicbZFNaxsxEIa1bpO4zked9tiLqAk4EMxuWmggl5BeeughhToJeM0yK8/GIlrtIs0GG2V/YS4ht/6MXnpoCK38cUiTDghe3mcGjV6lpZKWwvBH0HjxcmV1rfmqtb6xufW6vf3m1BaVEdgXhSrMeQoWldTYJ0kKz0uDkKcKz9LLzzN+doXGykJ/p2mJwxwutMykAPJW0sYYytIUEx5nBoSLancd50BjAcod19c1j22VJ07GUvNHwPsaUgVJTGMkWKA0c1/r7jSRezzrThJ5yBd0dzdpd8JeOC/+XERL0WHLOknad/GoEFWOmoQCawdRWNLQgSEpFNatuLJYgriECxx4qSFHO3TzOGq+450RzwrjjyY+dx9POMitneap75ytbZ+ymfk/NqgoOxg6qcuKUIvFRVmlOBV8li0fSYOC1NQLEEb6XbkYg8+V/A+0fAjR0yc/F6f7vehDL/r2sXN0vIyjyd6x96zLIvaJHbEv7IT1mWA37Cf7ze6D2+BX8BD8WbQ2guXMW/ZPNZp/AaOPtas=</latexit>

1

n

X

i=1

r✓L(yi, f(xi; ✓))
<latexit sha1_base64="9tIkTA05K6qKF5YET43h6Bewhaw=">AAACLnicbZDLSsNAFIYn3q23qks3g0WoICVRQUEEUQQXLhSsCk0JJ9OJHTqZhJkTsYQ8kRtfRReCirj1MZxeFt4ODHz8/znMOX+YSmHQdV+ckdGx8YnJqenSzOzc/EJ5cenSJJlmvM4SmejrEAyXQvE6CpT8OtUc4lDyq7Bz1POvbrk2IlEX2E15M4YbJSLBAK0UlI+pH2lguVfkqqC+yeIgF/ueRQWhhMDHNkegfgzYDqP8tK h2A7FBo+pdIPbowF1fD8oVt+b2i/4FbwgVMqyzoPzktxKWxVwhk2BMw3NTbOagUTDJi5KfGZ4C68ANb1hUEHPTzPvnFnTNKi0aJdo+hbSvfp/IITamG4e2s7e2+e31xP+8RobRbjMXKs2QKzb4KMokxYT2sqMtoTlD2bUATAu7K2VtsPGhTbhkQ/B+n/wXLjdr3lbNO9+uHBwO45giK2SVVIlHdsgBOSFnpE4YuSeP5JW8OQ/Os/PufAxaR5zhzDL5Uc7nF34aqCU=</latexit>

Problems with Large Batch Training
Ø Larger Batch leads to sub-optimal generalization

Ø A common belief is that large batch training gets attracted to “sharp
minimas”

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurIPS’18.
Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.

Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

1

ar
X

iv
:1

70
6.

02
67

7v
2

 [c
s.C

V
]

30
 A

pr
 2

01
8

Larger batch sizes harm generalization
performance.

Objective function Update rule

Why? Large Batch Reduces Noise and
may Get Trapped in Local Minima

Parameter values along some direction

Lo
ss

Sharp Minima
Hypothesis

Small batch gradient descent acts as a regularizer

Active Research problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule
Ø Scale the learning rate linearly with the batch size

Ø Addresses generalization performance by taking larger
steps (also improves training convergence)

Ø Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
Ø Gradual warmup solution: increase learning rate scaling from

constant to linear in first few epochs
Ø Doesn’t help for very large k…

✓(t+1) ✓(t) � ⌘̂

0

@1

k

kX

j=1

1

|Bj |
X

i2Bj

r✓L(yi, f(xi; ✓))

����
✓=✓(t)

1

A

<latexit sha1_base64="eMmXZxDqLNwjAZ0Zvvfyqa8Lukk=">AAACyHicbVFdi9QwFE3r11o/dtRHX4KD0EEdWhUUZGFZEUR8WMHZXZjMljSTttlJ05LcupZsX/yJvvnkXzEzLbofXggczjmXe29OWkthIIp+ef616zdu3tq6Hdy5e+/+9ujBwwNTNZrxGatkpY9SargUis9AgORHtea0TCU/TFfv1/rhN66NqNRXaGu+KGmuRCYYBUclo98ECg702IaAn+F40mEieQZU6+oU/9Mc/wKTgoIljhlMIck0ZTbu7KojpikTe7ITd8er4C9/RkoKBaPS7nXJyZnr29gEEQpfkJyiaCpp0o/sxTSzn7uwTcRznIXfE/FuWGgyCUgq8lwT7U6DxPb0zvl1O6JFXsAkGY2jabQpfBXEAxijofaT0U+yrFhTcgVMUmPmcVTDwlINgkneBaQxvKZsRXM+d1DRkpuF3QTR4aeOWeKs0u4pwBv2fIelpTFtmTrn+kBzWVuT/9PmDWRvF1aougGuWD8oaySGCq9TxUuhOQPZOkCZFm5XzArqUgCXfeA+Ib588lVw8HIav5rGX16Pd/eG79hCj9ETFKIYvUG76CPaRzPEvA/eygOv8T/5tX/qt73V94aeR+hC+T/+ALw/32s=</latexit>

=
⌘k

<latexit sha1_base64="kQqnuCY5RPzV63+hItRh857Vte8=">AAAB8HicdVDLSsNAFL2pr1pfVZduBovgKiQ++lgIRTcuK9iHtKFMppN26EwSZiZCCf0KNy4UcevnuPNvnLYRVPTAhcM593LvPX7MmdKO82HllpZXVtfy64WNza3tneLuXktFiSS0SSIeyY6PFeUspE3NNKedWFIsfE7b/vhq5rfvqVQsCm/1JKaewMOQBYxgbaQ7dIF6VGM07hdLjl2r1srnDnJsZw5DKrWqW64gN1NKkKHRL773BhFJBA014VipruvE2kux1IxwOi30EkVjTMZ4SLuGhlhQ5aXzg6foyCgDFETSVKjRXP0+kWKh1ET4plNgPVK/vZn4l9dNdFD1UhbGiaYhWSwKEo50hGbfowGTlGg+MQQTycytiIywxESbjAomhK9P0f+kdWK7p7Z7c1aqX2Zx5OEADuEYXKhAHa6hAU0gIOABnuDZktaj9WK9LlpzVjazDz9gvX0CxiCPwA==</latexit>

Key Results

All curves closely
match using the linear
scaling rule.

Note learning rate
schedule drops.

0 20 40 60 80

epochs

20

40

60

80

100

e
rr

o
r

%

kn=256, =0.1 [train]

kn=256, =0.1 [val]

kn=8k, =3.2 [train]

kn=8k, =3.2 [val]

Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.

0 20 40 60 80

epochs

20

40

60

80

100

tr
a
in

in
g
 e

rr
o
r

%

kn=256, = 0.1, 23.60% 0.12

kn=256, = 0.2, 23.68% 0.09

Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9

Training vs Validation

Key Results

0 20 40 60 80

epochs

20

40

60

80

100

e
rr

o
r

%

kn=256, =0.1 [train]

kn=256, =0.1 [val]

kn=8k, =3.2 [train]

kn=8k, =3.2 [val]

Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.

0 20 40 60 80

epochs

20

40

60

80

100

tr
a
in

in
g
 e

rr
o
r

%

kn=256, = 0.1, 23.60% 0.12

kn=256, = 0.2, 23.68% 0.09

Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9

256 512 1k 2k 4k 8k 11k

mini-batch size

0.2

0.22

0.24

0.26

0.28

0.3

tim
e
 p

e
r

ite
ra

tio
n
 (

se
cs

)

0.5

1

2

4

8

16

tim
e
 p

e
r

e
p
o
ch

 (
m

in
s)

Figure 7. Distributed synchronous SGD timing. Time per itera-
tion (seconds) and time per ImageNet epoch (minutes) for training
with different minibatch sizes. The baseline (kn = 256) uses 8
GPUs in a single server , while all other training runs distribute
training over (kn/256) server. With 352 GPUs (44 servers) our
implementation completes one pass over all ⇠1.28 million Ima-
geNet training images in about 30 seconds.

ing good features that transfer, or generalize well, to re-
lated tasks. A question of key importance is if the features
learned with large minibatches generalize as well as the fea-
tures learned with small minibatches?

To test this, we adopt the object detection and in-
stance segmentation tasks on COCO [27] as these advanced
perception tasks benefit substantially from ImageNet pre-
training [10]. We use the recently developed Mask R-CNN
[14] system that is capable of learning to detect and segment
object instances. We follow all of the hyper-parameter set-
tings used in [14] and only change the ResNet-50 model
used to initialize Mask R-CNN training. We train Mask R-
CNN on the COCO trainval35k split and report results
on the 5k image minival split used in [14].

It is interesting to note that the concept of minibatch
size in Mask R-CNN is different from the classification
setting. As an extension of the image-centric Fast/Faster
R-CNN [9, 31], Mask R-CNN exhibits different minibatch
sizes for different layers: the network backbone uses two
images (per GPU), but each image contributes 512 Regions-
of-Interest for computing classification (multinomial cross-
entropy), bounding-box regression (smooth-L1/Huber), and
pixel-wise mask (28 ⇥ 28 binomial cross-entropy) losses.
This diverse set of minibatch sizes and loss functions pro-
vides a good test case to the robustness of our approach.

Transfer learning from large minibatch pre-training.
To test how large minibatch pre-training effects Mask R-
CNN, we take ResNet-50 models trained on ImageNet-1k
with 256 to 16k minibatches and use them to initialize Mask
R-CNN training. For each minibatch size we pre-train 5
models and then train Mask R-CNN using all 5 models on
COCO (35 models total). We report the mean box and mask
APs, averaged over the 5 trials, in Table 3a. The results
show that as long as ImageNet validation error is kept low,
which is true up to 8k batch size, generalization to object de-

8 16 32 64 128 256 352

GPUs

2k

4k

8k

16k

32k

im
a
g
e
s

/
se

co
n
d

ideal
actual

Figure 8. Distributed synchronous SGD throughput. The small
overhead when moving from a single server with 8 GPUs to multi-
server distributed training (Figure 7, blue curve) results in linear
throughput scaling that is marginally below ideal scaling (⇠90%
efficiency). Most of the allreduce communication time is hid-
den by pipelining allreduce operations with gradient computation.
Moreover, this is achieved with commodity Ethernet hardware.

tection matches the AP of the small minibatch baseline. We
emphasize that we observed no generalization issues when
transferring across datasets (from ImageNet to COCO) and
across tasks (from classification to detection/segmentation)
using models trained with large minibatches.

Linear scaling rule applied to Mask R-CNN. We also
show evidence of the generality of the linear scaling rule us-
ing Mask R-CNN. In fact, this rule was already used with-
out explicit discussion in [16] and was applied effectively
as the default Mask R-CNN training scheme when using 8
GPUs. Table 3b provides experimental results showing that
when training with 1, 2, 4, or 8 GPUs the linear learning rate
rule results in constant box and mask AP. For these experi-
ments, we initialize Mask R-CNN from the released MSRA
ResNet-50 model, as was done in [14].

5.5. Run Time
Figure 7 shows two visualizations of the run time char-

acteristics of our system. The blue curve is the time per
iteration as minibatch size varies from 256 to 11264 (11k).
Notably this curve is relatively flat and the time per itera-
tion increases only 12% while scaling the minibatch size by
44⇥. Visualized another way, the orange curve shows the
approximately linear decrease in time per epoch from over
16 minutes to just 30 seconds. Run time performance can
also be viewed in terms of throughput (images / second), as
shown in Figure 8. Relative to a perfectly efficient extrapo-
lation of the 8 GPU baseline, our implementation achieves
⇠90% scaling efficiency.

Acknowledgements. We would like to thank Leon Bottou for
helpful discussions on theoretical background, Jerry Pan and
Christian Puhrsch for discussions on efficient data loading, An-
drew Dye for help with debugging distributed training, and Kevin
Lee, Brian Dodds, Jia Ning, Koh Yew Thoon, Micah Harris, and
John Volk for Big Basin and hardware support.

11

“Learning”

Epoch

Epoch

Second
Machine Learning System

Key Results

Ø Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
Ø 90% scaling efficiency

Ø Fairly careful study of the linear scaling rule
Ø Observed limits to linear scaling do not depend on dataset size
Ø But what is the limit?

Ø You cannot indefinitely scale the learning rate …

Since then there has been a race to train ImageNet faster and
several new large batch training methods have been
developed (some with good foundation and some heuristics)

ImageNet Training Competition!

10.5 22.94
6.57

1 0.66 0.3 0.23 0.11 0.03
0.020.01

0.1

1

10

100

1000

10000

128 200 128 256 768 128 2048 2048 2176 2048

Tr
ai

ni
ng

 Ti
m

e
(h

ou
rs

)

of PE Nodes

• ImageNet is a dataset of 1.2M 224x224 images
• Training 720 hours à <1 minute

Iandola

Yang You

• Iandola FN, Moskewicz MW, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 2592-2600).

• You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. In Proceedings of the 47th International Conference on Parallel Processing
2018 Aug 13 (p. 1) ACM (Best Paper Award)

Latest record:
14 seconds / TPUv4
(as of Feb 2022)

Very active area of research

Other papers to read if you are interested:

Ø Golmant, Noah, et al. "On the computational inefficiency
of large batch sizes for stochastic gradient descent” (Cal)

Ø Shallue et al. “Measuring the Effects of Data Parallelism on
Neural Network Training” (Google)

Ø You, Yang, et al. "Large batch optimization for deep
learning: Training bert in 76 minutes." (Cal)

Next week’s readings

Reading for Next Week

Ø Chimera: Efficiently Training Large-Scale Neural Networks with
Bidirectional Pipelines [SC’21, Best Student Paper finalist]
Ø A novel technique for pipeline parallel training with bidirectional computational

flow to reduce the ”bubble size”.

Ø Efficient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM [SC’21, Best Student Paper]
Ø Large scale deployment of data, model, and pipeline parallelism to scale training

of a 1T parameter transformer to 3K+ GPUs

Ø ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning [SC’21]
Ø A novel method for increasing the maximum size of the model that can be

trained on a GPU by leveraging NVMe.

https://arxiv.org/pdf/2107.06925.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/abs/2104.07857

Extra Suggested Reading
Ø DeepSpeed: Advancing MoE inference and training to

power next-generation AI scale [Blog post]

Ø Large Scale Distributed Deep Networks [NeurIPS’12]
Ø One of the first papers using (known) techniques applied to training large ML

models at Google

Ø Gpipe: Efficient training of giant neural networks using
pipeline parallelism [NeurIPS’19]
Ø A micro-batching technique used for pipeline parallelism to reduce ”bubble size”

with synchronous SGD

Ø PipeDream: Fast and Efficient Pipeline Parallel DNN Training [SOSP’19]
Ø Proposed an asynchronous method for reducing the ”bubble size” of pipeline

parallel training

https://www.microsoft.com/en-us/research/blog/deepspeed-advancing-moe-inference-and-training-to-power-next-generation-ai-scale/
https://papers.nips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://arxiv.org/pdf/1806.03377.pdf

