Next-Generation Deep-Learning Accelerators: From Hardware to System

Sophia Shao ysshao@berkeley.edu Electrical Engineering and Computer Sciences

Growing Demand in Computing

Two Distinct Eras of Compute Usage in Training AI Systems

Slowing Supply in Computing

Growing Demand in Computing

Slowing Supply in Computing

Growing Demand in Computing

Slowing Supply in Computing

Domain-Specific Accelerators

Growing
Demand in
Computing

Slowing Supply in Computing

Domain-Specific Accelerators

 Customized hardware designed for a domain of applications.

Apple M1 Chip 2020

Full-Stack Optimization for DL Accelerators

Design of Accelerators

 Simba [MICRO'19 Best Paper Award, CACM RH, VLSI'20, JSSC'20 Best Paper Award]

Integration of Accelerators

- Chipyard [IEEE Micro'20]
- Gemmini [DAC'21, Best Paper Award]

Scheduling of Accelerators

• CoSA [ISCA'21]

Full-Stack Optimization for DL Accelerators

Design of Accelerators

 Simba [MICRO'19 Best Paper Award, CACM RH, VLSI'20, JSSC'20 Best Paper Award]

Integration of Accelerators

- Chipyard [IEEE Micro'20]
- Gemmini [DAC'21, Best Paper Award]

Scheduling of Accelerators

CoSA [ISCA'21]

Scalable Inference Accelerators

Motivation

Need for fast and efficient inference accelerators from mobile to datacenter.

Challenge

High design cost of building unique hardware for each design target.

Opportunities

- Deep learning inference is intrinsically scalable with abundant parallelism.
- Recent advances in package-level integration for multi-chip-module-based designs.

The Multi-Chip-Module Approach

Advantages:

- Build systems larger than reticle limit
- Smaller chips are cheaper to design
- Smaller chips have higher yield
- Faster time-to-market

Challenges:

 Area, energy, and latency for chip-tochip communication

Simba: Scaling Inference with MCM-based Architecture

Best Paper Award at MICRO'2019, CACM Research Highlights

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

Simba Characterization:

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

VCUTTS PPOA Theil Personal Action of Control of Control

Simba NoP-Aware Tiling:

- Non-uniform work partitioning
- Communication-aware data placement
- · Cross-layer pipelining

Simba: Scalable MCM-Based Architecture

Package and chiplet spec

6mm² chiplet in TSMC 16nm 36 chiplets/package

Chip-to-chip interconnect

Ground-Referenced Signaling

Efficient compute tiles

128 TOPS0.11 pJ/Op8-bit integer datapath

Simba Characterization

Comparison with GPUs running ResNet-50

14

Simba Characterization

- Layer Sensitivity
- Running three ResNet-50 layers across different number of chiplets.
- Increasing the number of active chiplets does not always translate to performance gains.
- The cost of communication hinders the ability to exploit parallelism.

Full-Stack Optimization for DL Accelerators

Design of Accelerators

• Simba [MICRO'19 Best Paper Award, CACM RH, VLSI'20, JSSC'20 Best Paper Award]

Integration of Accelerators

- Chipyard [IEEE Micro'20]
- Gemmini [DAC'21, Best Paper Award]

Scheduling of Accelerators

CoSA [ISCA'21]

Accelerators don't exist in isolation.

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photoanalysis/

Mobile SoC Usecase

- Mainstream architecture has long focused on general-purpose CPUs and GPUs.
- In an SoC, multiple IP blocks are active at the same time and communicate frequently with each other.
- Example:
 - Recording a 4K video
 - Camera -> ISP
 - "Preview stream" for display
 - "Video stream" for storage
 - DRAM for data sharing

Two Billion Devices and Counting: An Industry Perspective on the State of Mobile Computer Architecture, IEEE Micro'2018

Full-System Visibility for DL Accelerators

SoC

Full-System Visibility: Memory Hierarchy

Full-System Visibility: Virtual Addresses

Full-System Visibility: Host CPUs

Gemmini: Full-System Co-Design of Hardware Accelerators

Full-stack

- Includes OS
- End-to-end workloads
- "Multi-level" API

Full-SoC

- Host CPUs
- Shared memory hierarchies
- Virtual address translation

	Property	NVDLA	VTA	PolySA	DNNBuilder	MAGNet	DNNWeaver	MAERI	Gemmini
Hardware Architecture Template	Multiple Datatypes Multiple Dataflows	Int/Float	Int X	Int 🗸	Int ✓	Int ✓	Int ✓	Int 🗸	Int/Float
	Spatial Array	vector	vector	systolic	systolic	vector	vector	vector	vector/systolic
	Direct convolution	/	×	×	✓	/	/	✓	/
Programming Support	Software Ecosystem	Custom Compiler	TVM	Xilinx SDAccel	Caffe	С	Caffe	Custom Mapper	ONNX/C
	Hardware-Supported Virtual Memory	×	×	×	×	×	×	×	✓
System Support	Full SoC	Х	Х	Х	Х	Х	Х	×	✓
	OS Support	/	1	×	×	×	×	X	✓

https://github.com/ucb-bar/gemmini

Gemmini Case Study: Allocating on-chip SRAM

Where to allocated SRAM?

- Private within each IP
- Shared

https://github.com/ucb-bar/gemmini

Gemmini Case Study: Allocating on-chip SRAM

- Where to allocated SRAM?
 - Private within each IP
 - Shared

Application dependent.

SoC configuration dependent.

https://github.com/ucb-bar/gemmini

[DAC'2021 Best Paper Award]

Full-Stack Optimization for DL Accelerators

Design of Accelerators

 Simba [MICRO'19 Best Paper Award, CACM RH, VLSI'20, JSSC'20 Best Paper Award]

Integration of Accelerators

- Chipyard [IEEE Micro'20]
- Gemmini [DAC'21, Best Paper Award]

Scheduling of Accelerators

CoSA [ISCA'21]

Large Space of Mapping Algorithms to ML Hardware

Algorithm

Scheduler	Search Algorithm				
Brute-force approa	cahes:				
Timeloop	Brute-force & Random				
dMazeRunner	Brute-force				
Interstellar	Brute-force				
Marvel	Decoupled Brute-force				
Feedback-based A	pproaches:				
AutoTVM	ML-based Iteration				
Halide	Beamsearch OpenTuner				
FlexFlow	MCMC				
Constrained Optin	nization Approaches:				
CoSA	Mixed Integer Programming (MIP				

Navigating the Mapping Space

...

```
DRAM level
for q2 = [0:2):
                                          1. Tiling Factors
Global Buffer level
for q1 = [0:7]:
 for n0 = [0:3):
                                          2. Spatial / Temporal
  spatial for r0 = [0:3):
  spatial for k1 = [0:2):
Input Buffer level
   for c1 = [0:2):
                                          3. Loop Permutation
    for p1 = [0:2):
Weight Buffer level
    for p0 = [0:2):
     spatial for k0 = [0:2):
```

29 [ISCA'2021]

CoSA: Constrained-Optimization for Spatial Architecture

Results

31

2.5x speedup compared to SoTA with 90x faster time-to-solution.

[ISCA'2021]

Acknowledgement

Hasan Genc Jenny Huang Seah Kim

- Collaborators from UC Berkeley and NVIDIA!
- Sponsored by DARPA, a Facebook Research Award, a Google Research Award, and ADEPT/SLICE industry sponsors!

Full-Stack Optimization for DL Accelerators

Design of Accelerators

 Simba [MICRO'19 Best Paper Award, CACM RH, VLSI'20, JSSC'20 Best Paper Award]

Integration of Accelerators

- Chipyard [IEEE Micro'20]
- Gemmini [DAC'21, Best Paper Award]

Scheduling of Accelerators

CoSA [ISCA'21]