Al-Systems

Distributed Deep
Learning (Part Il)
(294-162)

Amir Gholami & Joseph E. Gonzalez

Acknowledgments

Many slides from Shigang Li, Prof. Kurt Keutzer, Pallas Group

Agenda for Today

» 1:10-2:00: Preliminary Lecture on Parallel Training
» 2:00-2:45: PC Meeting Discussions
> 2:45-3:00: Break

» 3:00-4:00: Guest Lecture by MSFT DeepSpeed Team

Distributed Deep Learning

Objectives For Today

» Challenges with Data Parallel Training
» Model Parallelism

» Pipeline Parallelism

Data parallelism . . .
nput Pipeline parallelism Model parallelism
1 input input
o]l B[] [l Oc%o . &3 o
. D D | D>+
input 551 P2
PO P1 P2
P1 1 E> E> E>C% Pros: Pros:
) t a. Make large model training feasible a. Make large model training
nput b. No collective, only P2P feasible
P2 | E> E> E>% Cons: Cons:
a. Bubbles in pipeline b. Communication for each
Pros: b. Removing bubbles leads to stale operator (or each layer)
a. Easy to realize weights
Cons:
a. Not work for large models
b. High allreduce overhead

Synchronous Data Parallelism

1024

» Compute the entire model
on each processor

» Distribute the batch evenly
across each processor:

» 1024 batch distributed
over 16 PEs: 64 images
per GPU

» Communicate gradient
updates through allreduce

All Reduce

Data Parallel Training Complexity
Analysis

» Question: Comm time of ring allreduce is independent of

the number of processors. So what limits scalability?

Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low utilization of the hardware
and would not yield any speed up

T 104.5 |
Y > Why?
E 10*) .
- Best Workload > Roofline model?
LI%- 103.5 | // |
S
iy

1 2 4 8 16 32 64 128 256 512 1024 2048
Batch Size—

One epoch training time of AlexNet computed on an Intel KNL system

Limits of Data Parallel Scaling

» The maximum limit of processors that you can use is P=B

» But this often leads to very low utilization of the hardware
and would not yield any speed up

104‘5 B | 128
T 0 Peak flops
o — 64
3 aQ
o 2 5
£ 104) RS
'; Best Workload @ 16
S / 'c% 8
& yges | 1
v / T
o i = 2
1 2 4 8 16 32 64 128 256 512 1024 2048
Batch Size— 1
. . . 1 1 1
One epoch training time of AlexNet computed on an Intel KNL system oo e e 124 8T8

flop:DRAM byte ratio

Scaling Data Parallel Training

1024

If we want to keep scaling
synchronous SGD then we
have to keep increasing
the batch size.

(

~
64

@

MPI ALLREDUCE

. J . J & J —

Naively increasing Batch size leads to
perfect results but ...

Images/sec
000000 @ Observed
A Perfect
000000 —
000000 //
00000 //
0
10 20 30
Cloud TPU Devices
“Learning” “Learning” Record
= X
Second Record Second
Throughput
System

Property

Problems with Large Batch Training

» Larger Batch leads to sub-optimal generalization

» A common belief is that large batch training gets attracted to “sharp
minimas

AlexNet-BN for ImageNet

B=64

0.6

! Testing Function

I
o)

o
N
!

o
N

Top-1 Test Accuracy

o —— Batch=512 O s
. Batch=8192 Flat Minimum Sharp Minimum
0 20 40 60 80 100

Epochs

__

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
1 Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS'18. !

i Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.

__

Generalization Gap Problem

I
o
1

Larger batch sizes harm generalization
performance.

w
&)
T

w
(@)
T

N
o1
T

r
+
+
|
+

64 128 256 512 1k 2k 4k 8k 16k 32k 064k
mini-batch size

ImageNet top-1 validation error

N
o

Bigger isn't Always Better

» Motivation for larger batch sizes
» More opportunities for parallelism = but is it usefule
» Recall (1/n variance reduction):

1
— VoL 19 79 L 7,, 179
n; oL (yi, f(xi; 0 ‘B’ZGZBVQ (yi, f(24; 0))

» Is a variance reduction helpful?
» Does it affect the final prediction accuracye

Why<e Large Batch Reduces Noise and
may Get Trapped in Local Minima

Objective function Update rule
1 — 1
L(0) = N Zl(x“yz,e) Or11 =01 — 77t|'?| Z Vol(z,y,0:)
i=1 (z,y)EB

Small batch gradient
descent acts as a
regularizer

Loss

Sharp Minima
Hypothesis

Parameter values along some direction

Active Research problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size
'Qo
ANN
1SN 1
P+l g) _p | = Z — Z VoL (ys, f(xi;0))
ko B;] icB; 6=06(")
» Addresses generalization performance by taking larger
steps (also improves fraining convergence)

» Sub-problem: Large learning rates can be destabilizing in
the beginning.

» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs

» Doesn't help for very large k...

Key Results

100 — —
kn=256, m=0.1 [train]
g0 U L kn=256, m=0.1 [vall]
kn=8%k, n=3.2 [train]
O - W Y S R kn=8k, n=3.2 [val]
S 60¢
5 5
40
20 | | Nsssnninaees
0 20 40 60 80
epochs

e

Batch Size

Learning Rate

All curves closely

match using the linear
scaling rule.

Note learning rate
schedule drops.

Key R

esults

error %

0.1 [train]
0.1 [vall
3.2 [train]
3.2 [val]
80
/’ 1] : 1,\\
Learning
Epoch
= _/

Machine Learning

o
w

116
my —
8 028 [B 8 g
) £
5 0.26 | 4 S
..CG o
o 0y
=024 12 5
g 2
Q- ()]
() L _

g 0.22 1 £
0.2 : ‘ ‘ ‘ ! 0.5
256 512 1k 2k 4k 8k 11k
mini-batch size

8 P100 GPUs 352 P100 GPUs

r

Epoch

-

Second
System

_/

Key Results

> Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
> 90% scaling efficiency

» Fairly careful study of the linear scaling rule

» Observed limits to linear scaling do not depend on dataset size

> But whatis the limite
» You cannot indefinitely scale the learning rate ...

Since then there has been a race to train ImageNet faster and
several new large batch training methods have been
developed (some with good foundation and some heuristics)

ImageNet Training Competition!

10000 ¢ ImageNet is a dataset of 1.2M 224x224 images

* Training 720 hours 2 <1 minute
Latest record:

A
4 ~N £ 1000
3 14 seconds on
< 100 TPUv4-6912
o (as of Feb 2022)
A 2 A 3 amazon
landola [n
O SARA
c 1
k= b fastail Gt |
S 6.57 Tencent
C o1 , SONY
= 0.23 o 03
0.01 flitﬂ
200 128 256 768 128 2048 2048 2176 2048

of PE Nodes

landola FN, Moskewicz MW, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 2592-2600). ;
You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. In Proceedings of the 47th International Conference on Parallel Processing !
2018 Aug 13 (p. 1) ACM (Best Paper Award) !

Very active area of research

Large batch training is very brittle and often requires a lot of
tuning to the point that it is often not worth the extra
compute. Solving this is still an open research area:

» Golmant, Noah, et al. "On the computational inefficiency
of large batch sizes for stochastic gradient descent” (Cal)

» Shallue et al. *Measuring the Effects of Data Parallelism on
Neural Network Training” (Google)

» You, Yang, et al. "Large batch optimization for deep
learning: Training BERT in 76 minutes.” (Cal)

Data Parallelism Summary

>

>

An efficient parallel fraining method where the comm time is
independent of processors with ring allreduce

Very easy to implement. Only requires allreduce operation before
updating parameters

Very challenging to scale. Using large batch training is not an option
as it hurts generalization performance.

> Existing solutions often require a lot of tuning (outside of ResNet-50 on
ImageNet)

Does not work for large models such as GPT-3 which are too large to
fit in one GPU

Processes are never idle

Pipeline Parallelism

Really a form of model parallelism

Data parallelism . : .
nput Pipeline parallelism Model parallelism
1 input input
o]l B I3 [l® o(%)o of 1ol
input
' ;’ 1 PO P1 P2
P1 1 E> E> E>O% Pros: Pros:
) t a. Make large model training feasible a. Make large model training
nput b. No collective, only P2P feasible
P2 | E> E> E>% Cons: Cons:
a. Bubbles in pipeline b. Communication for each
Pros: b. Removing bubbles leads to stale operator (or each layer)
a. Easy to realize weights
Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline Parallelism Bubble where

PO
P1
P2
P3

Time processes are idle
T e |1234 |1234
""""" Bubble

. ~ Forward and backward passes of
model replica0 for micro-batch x

Me Memory consumption for the weights

Ma Memory consumption for the activations

GPipe [NeurlPS'19]:
Reduce Bubble with Micro-Batching

flush | 1Mo a, Ma a,
PO[0L 12 0 b1 4,2 |43
P1 o 11,2 3
P2 3 0172 |3 proportional
P3 112183] 07 1T 273 to N

» GPipe reduces the bubble size by breaking the batch size
info smaller pieces to reduce the idle tfime of the processes

» Pro: Reduces bubble size in an easy to implement manner

» Con: Significantly increases activation memory Bubble
E Forward and backward passes of

model replica0 for micro-batch x
__ Me Memory consumption for the weights
| Slide: Courtesy of Shigang Li ! Ma Memory consumption for the activations

PipeDream[SOSP'19]:
Use Async Updates fo remove Bubble

1234 1234 1234
PipeDream po[g]]273 04 1]5] 26 7] 4 |]
(SOsP'19) P1 (012 0 /3] 1 4] 2 |5 6| 4 |7 ||]
PipeDream-2BW P2 01 0 2] 113 2 |4 5 4 [6] 5 [7] B
(IcML'21) P3 0/ o [a] 1 2] 2 [373/14 4 |5] 5 [6] 6
N~—— ipeDream PipeDream-2BW Me for o for w M

Pipe a
asynchronous apply gradients apply gradients PipeDream PipeDream-28 for both

with stale weights

o=l .

» Pipedream uses asynchronous training: Avoid any idling by
always doing a forward/backward pass irrespective of
stale gradients/weights

> Pro: No bubble

» Con: As with other async methods this does affect model
accuracy and convergence, and as such has not been
adopted in industry.

Asynchronous Methods

» General advice: Training methods that adversely affect
generalization are not adopted, unless there is a 10x
speed improvement.

» Otherwise, there are so many moving parts that can go
wrong in fraining NNs, that most often practitioners stay
away from async methods unless absolutely necessary
» For example training very large rec systems.

Chimera: Bidirectional Pipeline

model replica0

PO (stageO
P1 (stagel)
P2 (stage2

0

0o |1

0 0 + 1

P3\

model replical

0/0] 1

» /2 =2 micro-batches, where *

PO (stage3
i
P2 (stagel

2|2 3

-+

P3 (SEaged)
\

2| |3

« /2 =2 micro-batches, where ¢

o=4

-

0

1 0 |1

1 0 1

10 1

0|11

down pipeline

3

WIN
N

3 2| |3

up pipeline

» Big idea: Replicate the model to the other processes so
that we can do forward pass in two directions

Forward and backward passes of replica0

Forward and backward passes of replical

Gradient Synchronization

model model

replica0 replical n Gradient synchronization for stage_i*

PO 2] 2 [3 3]0
P1 (stagel) (stage2) 2 3 2 0 3 1
P2 2 3 0 2 1 3
P3 2 3 0O [1, 1 2

model model
replica0 replical

Summary
| ‘

Time |1234‘

PipeDream p
(SospP'19) P1

proportional

PipeDream-2BW P2

| Bubble

(iemu21) "3 Pipelg)ream PipeDream-2BW Me for Me for a 00
asynchronous apply gradients apply gradients PipeDream PipeDream-28w for both
with stale weights flush
[~ 0 ,1 ,2 |,3
Gpipe P1| 07,171,273
(Neurlps'19) P2 0,1 ,2 3 o B ¥proportional
P3 0717273 B toN
——
flush 1 gﬂg 4 1,‘2/’33 4
> PO 0 1] 1 [2]3] 3
5| GEMS p1 01 1 2 [3 3 i
2 .
E| (sc'20) P2 0 |1 1 2 [3 3]
g P3 0 [1 1 2 [3 3 n
c
&
% PO 0 The number of pipeline stages (depth) D=N=4
:_ DAPPLE p1 O The number of micro-batches in an iteration
3 ' ' Me Memory consumption for the weights
e P2
§ (ppopp’20) P3| proportional Ma Memory consumption for the activations
£ toD
f=
>

. Forward and backward passes of

POl 2 [3 3]0 1 model replica0 for micro-batch x

Chimera p1 0 3]1 |
,,,,, . Forward and backward passes of
P2 2 1 3 . model replical for micro-batch y

. p3[2] [3]0] 0 [1] 112] [3]

Pipeline Parallelism Summary

> Slightly more involved algorithm than data parallel method but with
the advantage of only requiring point to point communication

» |deal for large scale training to thousands of processes where point-
to-point communication is much cheaper than collective operations
such as allreduce or all-gather

» Requires special handling of bubble that results in idle processes

Model Parallelism

AKA Operator Parallelism

Model Parallelism

Divide the model across machines and replicate the data.
» Supports large models and activations
» Requires communication within single evaluation

» How 1o best divide a model?
> Split individual layers

» which dimension?¢
> Weights or spatial 2 depends on operation
> Split across layers

» Only one set of layers active a time -
poor work balance

» Soln: Pipelining Parallelism

Machine |

Machine 3

¢ duiydely

p BulydE

Model Parallelism: Weights

It helps to think of the operations in matrix form. Consider an FC layer

d B/P B/P
[]

Data Parallelism: Partition input across
different Processors (batch dimension)

* 0 Ps —>

W X Y
d

Model Parallelism: Partition weights °

across different Processes (W dimension) e

ol — | &

Py
W X Y

Let's discuss the communication details, step by step

Model Parallelism: Forward Pass

d

1

d;/P

i

B

°

d,/P

W X

* Requires an all gather communication so that
all processes get each others activation data
« Same cost as all reduce without the 2x factor

1=1

Model Parallelism: Backward Pass

Po, P1 dy/P
*
P .
P
XT P,
VY VW

No communication needed as every processor only needs
the gradient of its own parameters

Backward Pass

PO
d; .
° ° o« o
[]
d./P
P

P 0
Pl * dl Pcl) + S P1

[] Pl
wr vy Vy

local
VX

« Aggregating input gradient requires an 9 Z (5(P _1) Bdi)
allreduce operation P

Communication Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations

2. Allreduce operation for backpropagating activation

gradients
Bd
) vy (e

Teomm(model) = Z (
All Gather All Reduce

Model vs Data Parallelism®@

> When does it make sense 1o use Model vs Data

Parallelism?
L
) +2)° (5(13— 1)B]§l’i)
=2

T eomm (model) = Z (B(P —1)

1

Bd;
P

&

Toomm (data) = Z (ﬁ(P - 1>d§)

Model parallelism reduces the quadratic comm on d;
It is useful for layers with very large weights d;>> 1

> It makes sense to use an integrated/hybrid data and model parallelism

Model Parallelism Summary

>

>

More optimal comm time for large FC layers than Data
parallel approach

Makes training large models feasible by breaking it into
smaller parts

However, requires blocking collective communication

during both forward pass (all gather), as well as backwards
pass (all reduce)

Slightly harder to implement than data parallel

> Processes are never idle

Spatial Parallelism

Spatial Parallel Training

» The general idea is to break the input into smaller pieces
and distribute the work among different processors
» Need to exchange boundary points for spatial convolutions

64 px 64 +1+1px
[| | |

Teomm(domain) = (a + ﬁBX%,VXé }‘1/2)

-

GPU1 GPU2
GPU1 GPU2

L
+Y (a+ BBY YK, /2)

GPU3 GPU4

GPU3 GPU4

L
+2) (alog(P) - ﬁ%ym\)

Communication Complexity

64 +1+1px .
| ' Teomm(domain) =

(o + BBXiy XEK} /2) Exchanging horizontal

L

; pixels
L

>

GPU1 = GPU2 + (o + BBYy, YKL, /2) Exchanging vertical pixels
1=0
L P—1

GPU3'[" GPU4 +2) (alog(P) + BT\WiI) All reduce Cost
=0 (same as before)

""

' Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
i Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018. !

Usetul for High Resolution Training

» Domain parallel scaling on V100 GPUs
» 3x3 Conv, Batch=32, Channel=64

Resolution GPUs Fwd. wall-clock Bwd. wall-clock
128 x 128 1 2.56 ms (1.0x) 6.63 ms (1.0x)
2 1.52 ms (1.7x%) 3.50 ms (1.9x%)
4 1.23 ms (2.1 %) 2.33 ms (2.8%)
256 x 256 1 10.02ms (1.0x) 26.81 ms (1.0x)
2 5.34 ms (1.9%x) 11.79 ms (2.3 %)
4 3.11 ms (3.2x%) 6.96 ms (3.9%)
512512 1 45.15ms (1.0x) 126.11 ms (1.0x)
P 20.18 ms (2.2x) 60.15 ms (2.1x)
4 10.65 ms (4.2x) 26.76 ms (4.7x)

i Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
i Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.

Spatial Parallelism Summary

> A litfle harder to implement since you need to exchange
the boundary points

» Only effective for high resolution input data
> Limits the number of processors that can be effectively utilized

GPU1 GPU2

GPU3 GPU4

