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Agenda for Today

Ø 1:10-2:00: Preliminary Lecture on Parallel Training

Ø 2:00-2:45: PC Meeting Discussions

Ø 2:45-3:00: Break

Ø 3:00-4:00: Guest Lecture by MSFT DeepSpeed Team



Distributed Deep Learning



Objectives For Today

Ø Challenges with Data Parallel Training

Ø Model Parallelism

Ø Pipeline Parallelism



Parallel and distributed training

Pros:
a.  Easy to realize

Cons:
a.  Not work for large models
b.  High allreduce overhead

Data parallelism

Pros:
a.  Make large model training feasible
b.  No collective, only P2P

Cons:
a.  Bubbles in pipeline
b.  Removing bubbles leads to stale 

weights

Pipeline parallelism
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Synchronous Data Parallelism
Ø Compute the entire model 

on each processor

Ø Distribute the batch evenly 
across each processor: 
Ø 1024 batch distributed 

over 16 PEs: 64 images 
per GPU

Ø Communicate gradient 
updates through allreduce
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Data Parallel Training Complexity 
Analysis
Ø Question: Comm time of ring allreduce is independent of 

the number of processors. So what limits scalability?
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Limits of Data Parallel Scaling

Ø The maximum limit of processors that you can use is P=B

Ø But this often leads to very low utilization of the hardware 
and would not yield any speed up

Best Workload
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One epoch training time of AlexNet computed on an Intel KNL system

Ø Why?
Ø Roofline model?
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Scaling Data Parallel Training
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If we want to keep scaling 
synchronous SGD then we 
have to keep increasing 
the batch size. 



Naively increasing Batch size leads to 
perfect results but …
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Problems with Large Batch Training
Ø Larger Batch leads to sub-optimal generalization

Ø A common belief is that large batch training gets attracted to “sharp 
minimas”

Keskar et al., On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR’16.
Z. Yao, A. Gholami, Q. Lei, K. Keutzer, M. Mahoney. Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurIPS’18.
Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with LARS." arXiv:1708.03888, 2018.



Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Larger batch sizes harm generalization 
performance.

Goyal, Priya, et al. "Accurate, large minibatch SGD: Training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).



Bigger isn’t Always Better

Ø Motivation for larger batch sizes
Ø More opportunities for parallelism à but is it useful?
Ø Recall (1/n variance reduction):

Ø Is a variance reduction helpful?
Ø Does it affect the final prediction accuracy?
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Objective function Update rule

Why? Large Batch Reduces Noise and 
may Get Trapped in Local Minima

Parameter values along some direction

Lo
ss

Sharp Minima 
Hypothesis

Small batch gradient 
descent acts as a 
regularizer

Active Research problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule
Ø Scale the learning rate linearly with the batch size

Ø Addresses generalization performance by taking larger 
steps (also improves training convergence)

Ø Sub-problem: Large learning rates can be destabilizing in 
the beginning. 
Ø Gradual warmup solution: increase learning rate scaling from 

constant to linear in first few epochs
Ø Doesn’t help for very large k…
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Key Results

All curves closely 
match using the linear 
scaling rule.

Note learning rate 
schedule drops.
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Figure 4. Training and validation curves for large minibatch
SGD with gradual warmup vs. small minibatch SGD. Both sets
of curves match closely after training for sufficient epochs. We
note that the BN statistics (for inference only) are computed us-
ing running average, which is updated less frequently with a large
minibatch and thus is noisier in early training (this explains the
larger variation of the validation error in early epochs).

5.3. Analysis Experiments
Minibatch size vs. error. Figure 1 (page 1) shows top-
1 validation error for models trained with minibatch sizes
ranging from of 64 to 65536 (64k). For all models we used
the linear scaling rule and set the reference learning rate
as ⌘ = 0.1 · kn

256 . For models with kn > 256, we used
the gradual warmup strategy always starting with ⌘ = 0.1
and increasing linearly to the reference learning rate after
5 epochs. Figure 1 illustrates that validation error remains
stable across a broad range of minibatch sizes, from 64 to
8k, after which it begins to increase. Beyond 64k training
diverges when using the linear learning rate scaling rule.5

Training curves for various minibatch sizes. Each of the
nine plots in Figure 3 shows the top-1 training error curve
for the 256 minibatch baseline (orange) and a second curve
corresponding to different size minibatch (blue). Valida-
tion errors are shown in the plot legends. As minibatch size
increases, all training curves show some divergence from
the baseline at the start of training. However, in the cases
where the final validation error closely matches the base-
line (kn  8k), the training curves also closely match after
the initial epochs. When the validation errors do not match
(kn � 16k), there is a noticeable gap in the training curves
for all epochs. This suggests that when comparing a new
setting, the training curves can be used as a reliable proxy
for success well before training finishes.

Alternative learning rate rules. Table 2a shows results for
multiple learning rates. For small minibatches (kn = 256),

5We note that because of the availability of hardware, we simulated dis-
tributed training of very large minibatches (�12k) on a single server by us-
ing multiple gradient accumulation steps between SGD updates. We have
thoroughly verified that gradient accumulation on a single server yields
equivalent results relative to distributed training.
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Figure 5. Training curves for small minibatches with different
learning rates ⌘. As expected, changing ⌘ results in curves that do
not match. This is in contrast to changing batch-size (and linearly
scaling ⌘), which results in curves that do match, e.g. see Figure 3.

⌘ = 0.1 gives best error but slightly smaller or larger ⌘ also
work well. When applying the linear scaling rule with a
minibatch of 8k images, the optimum error is also achieved
with ⌘ = 0.1 · 32, showing the successful application of the
linear scaling rule. However, in this case results are more
sensitive to changing ⌘. In practice we suggest to use a
minibatch size that is not close to the breaking point.

Figure 5 shows the training curves of a 256 minibatch
using ⌘ = 0.1 or 0.2. It shows that changing the learning
rate ⌘ in general changes the overall shapes of the train-
ing curves, even if the final error is similar. Contrasting
this result with the success of the linear scaling rule (that
can match both the final error and the training curves when
minibatch sizes change) may reveal some underlying invari-
ance maintained between small and large minibatches.

We also show two alternative strategies: keeping ⌘ fixed
at 0.1 or using 0.1 ·

p
32 according to the square root scaling

rule that was justified theoretically in [21] on grounds that it
scales ⌘ by the inverse amount of the reduction in the gradi-
ent estimator’s standard deviation. For fair comparisons we
also use gradual warmup for 0.1 ·

p
32. Both policies work

poorly in practice as the results show.

Batch Normalization � initialization. Table 2b controls
for the impact of the new BN � initialization introduced in
§5.1. We show results for minibatch sizes 256 and 8k with
the standard BN initialization (� = 1 for all BN layers)
and with our initialization (� = 0 for the final BN layer
of each residual block). The results show improved per-
formance with � = 0 for both minibatch sizes, and the
improvement is slightly larger for the 8k minibatch size.
This behavior also suggests that large minibatches are more
easily affected by optimization difficulties. We expect that
improved optimization and initialization methods will help
push the boundary of large minibatch training.

ResNet-101. Results for ResNet-101 [16] are shown in Ta-
ble 2c. Training ResNet-101 with a batch-size of kn = 8k

9
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Goyal, Priya, et al. "Accurate, large minibatch SGD: Training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).
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for all epochs. This suggests that when comparing a new
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Figure 7. Distributed synchronous SGD timing. Time per itera-
tion (seconds) and time per ImageNet epoch (minutes) for training
with different minibatch sizes. The baseline (kn = 256) uses 8
GPUs in a single server , while all other training runs distribute
training over (kn/256) server. With 352 GPUs (44 servers) our
implementation completes one pass over all ⇠1.28 million Ima-
geNet training images in about 30 seconds.

ing good features that transfer, or generalize well, to re-
lated tasks. A question of key importance is if the features
learned with large minibatches generalize as well as the fea-
tures learned with small minibatches?

To test this, we adopt the object detection and in-
stance segmentation tasks on COCO [27] as these advanced
perception tasks benefit substantially from ImageNet pre-
training [10]. We use the recently developed Mask R-CNN
[14] system that is capable of learning to detect and segment
object instances. We follow all of the hyper-parameter set-
tings used in [14] and only change the ResNet-50 model
used to initialize Mask R-CNN training. We train Mask R-
CNN on the COCO trainval35k split and report results
on the 5k image minival split used in [14].

It is interesting to note that the concept of minibatch
size in Mask R-CNN is different from the classification
setting. As an extension of the image-centric Fast/Faster
R-CNN [9, 31], Mask R-CNN exhibits different minibatch
sizes for different layers: the network backbone uses two
images (per GPU), but each image contributes 512 Regions-
of-Interest for computing classification (multinomial cross-
entropy), bounding-box regression (smooth-L1/Huber), and
pixel-wise mask (28 ⇥ 28 binomial cross-entropy) losses.
This diverse set of minibatch sizes and loss functions pro-
vides a good test case to the robustness of our approach.

Transfer learning from large minibatch pre-training.
To test how large minibatch pre-training effects Mask R-
CNN, we take ResNet-50 models trained on ImageNet-1k
with 256 to 16k minibatches and use them to initialize Mask
R-CNN training. For each minibatch size we pre-train 5
models and then train Mask R-CNN using all 5 models on
COCO (35 models total). We report the mean box and mask
APs, averaged over the 5 trials, in Table 3a. The results
show that as long as ImageNet validation error is kept low,
which is true up to 8k batch size, generalization to object de-
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Figure 8. Distributed synchronous SGD throughput. The small
overhead when moving from a single server with 8 GPUs to multi-
server distributed training (Figure 7, blue curve) results in linear
throughput scaling that is marginally below ideal scaling (⇠90%
efficiency). Most of the allreduce communication time is hid-
den by pipelining allreduce operations with gradient computation.
Moreover, this is achieved with commodity Ethernet hardware.

tection matches the AP of the small minibatch baseline. We
emphasize that we observed no generalization issues when
transferring across datasets (from ImageNet to COCO) and
across tasks (from classification to detection/segmentation)
using models trained with large minibatches.

Linear scaling rule applied to Mask R-CNN. We also
show evidence of the generality of the linear scaling rule us-
ing Mask R-CNN. In fact, this rule was already used with-
out explicit discussion in [16] and was applied effectively
as the default Mask R-CNN training scheme when using 8
GPUs. Table 3b provides experimental results showing that
when training with 1, 2, 4, or 8 GPUs the linear learning rate
rule results in constant box and mask AP. For these experi-
ments, we initialize Mask R-CNN from the released MSRA
ResNet-50 model, as was done in [14].

5.5. Run Time
Figure 7 shows two visualizations of the run time char-

acteristics of our system. The blue curve is the time per
iteration as minibatch size varies from 256 to 11264 (11k).
Notably this curve is relatively flat and the time per itera-
tion increases only 12% while scaling the minibatch size by
44⇥. Visualized another way, the orange curve shows the
approximately linear decrease in time per epoch from over
16 minutes to just 30 seconds. Run time performance can
also be viewed in terms of throughput (images / second), as
shown in Figure 8. Relative to a perfectly efficient extrapo-
lation of the 8 GPU baseline, our implementation achieves
⇠90% scaling efficiency.

Acknowledgements. We would like to thank Leon Bottou for
helpful discussions on theoretical background, Jerry Pan and
Christian Puhrsch for discussions on efficient data loading, An-
drew Dye for help with debugging distributed training, and Kevin
Lee, Brian Dodds, Jia Ning, Koh Yew Thoon, Micah Harris, and
John Volk for Big Basin and hardware support.
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Key Results

Ø Train ResNet-50 to state-of-the-art on 256 GPUs in 1 hour
Ø 90% scaling efficiency

Ø Fairly careful study of the linear scaling rule
Ø Observed limits to linear scaling do not depend on dataset size
Ø But what is the limit?

Ø You cannot indefinitely scale the learning rate …

Since then there has been a race to train ImageNet faster and 
several new large batch training methods have been 
developed (some with good foundation and some heuristics)



ImageNet Training Competition!

10.5 22.94
6.57

1 0.66 0.3 0.23 0.11 0.03
0.020.01

0.1

1

10

100

1000

10000

128 200 128 256 768 128 2048 2048 2176 2048

Tr
ai

ni
ng

 Ti
m

e 
(h

ou
rs

)

# of PE Nodes

• ImageNet is a dataset of 1.2M 224x224 images
• Training 720 hours à <1 minute

Iandola

Yang You

• Iandola FN, Moskewicz MW, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition 2016 (pp. 2592-2600).

• You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. In Proceedings of the 47th International Conference on Parallel Processing 
2018 Aug 13 (p. 1) ACM (Best Paper Award)

Latest record:
14 seconds on 
TPUv4-6912
(as of Feb 2022)

200,000x Speedup in 10 years



Very active area of research

Large batch training is very brittle and often requires a lot of 
tuning to the point that it is often not worth the extra 
compute. Solving this is still an open research area:

Ø Golmant, Noah, et al. "On the computational inefficiency 
of large batch sizes for stochastic gradient descent” (Cal)

Ø Shallue et al. “Measuring the Effects of Data Parallelism on 
Neural Network Training” (Google)

Ø You, Yang, et al. "Large batch optimization for deep 
learning: Training BERT in 76 minutes." (Cal)



Data Parallelism Summary
Ø An efficient parallel training method where the comm time is 

independent of processors with ring allreduce

Ø Very easy to implement. Only requires allreduce operation before 
updating parameters

Ø Very challenging to scale. Using large batch training is not an option 
as it hurts generalization performance.
Ø Existing solutions often require a lot of tuning (outside of ResNet-50 on 

ImageNet)

Ø Does not work for large models such as GPT-3 which are too large to 
fit in one GPU

Ø Processes are never idle



Pipeline Parallelism
Really a form of model parallelism



Parallel and distributed training

Pros:
a.  Easy to realize

Cons:
a.  Not work for large models
b.  High allreduce overhead

Data parallelism

Pros:
a.  Make large model training feasible
b.  No collective, only P2P

Cons:
a.  Bubbles in pipeline
b.  Removing bubbles leads to stale 

weights

Pipeline parallelism

P0

P1

P2

input

input

input

input

P0 P1 P2

Slide: Courtesy of Shigang Li

Pros:
a.  Make large model training 

feasible

Cons:
b.  Communication for each 

operator (or each layer)

Model parallelism
input

P0
P1
P2

P0
P1
P2

P0
P1

P2



Pipeline Parallelism
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GPipe [NeurIPS’19]:
Reduce Bubble with Micro-Batching
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Ø GPipe reduces the bubble size by breaking the batch size 
into smaller pieces to reduce the idle time of the processes

Ø Pro: Reduces bubble size in an easy to implement manner

Ø Con: Significantly increases activation memory

Slide: Courtesy of Shigang Li



PipeDream[SOSP’19]:
Use Async Updates to remove Bubble

Ø Pipedream uses asynchronous training: Avoid any idling by 
always doing a forward/backward pass irrespective of 
stale gradients/weights

Ø Pro: No bubble

Ø Con: As with other async methods this does affect model 
accuracy and convergence, and as such has not been 
adopted in industry.

PipeDream 
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Asynchronous Methods

Ø General advice: Training methods that adversely affect 
generalization are not adopted, unless there is a 10x 
speed improvement.

Ø Otherwise, there are so many moving parts that can go 
wrong in training NNs, that most often practitioners stay 
away from async methods unless absolutely necessary
Ø For example training very large rec systems.



Chimera: Bidirectional Pipeline

Ø Big idea: Replicate the model to the other processes so 
that we can do forward pass in two directions
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Gradient Synchronization
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�     The number of pipeline stages (depth)
�     The number of micro-batches in an iteration

Memory consumption for the weights
Memory consumption for the activations
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Pipeline Parallelism Summary
Ø Slightly more involved algorithm than data parallel method but with 

the advantage of only requiring point to point communication

Ø Ideal for large scale training to thousands of processes where point-
to-point communication is much cheaper than collective operations 
such as allreduce or all-gather

Ø Requires special handling of bubble that results in idle processes



Model Parallelism
AKA Operator Parallelism



Divide the model across machines and replicate the data.

Ø Supports large models and activations

Ø Requires communication within single evaluation

Ø How to best divide a model?
Ø Split individual layers 

Ø which dimension? 
Ø Weights or spatial à depends on operation

Ø Split across layers 
Ø Only one set of layers active a time à

poor work balance
Ø Soln: Pipelining Parallelism

Model Parallelism

M
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3



Model Parallelism: Weights
It helps to think of the operations in matrix form. Consider an FC layer

Data Parallelism: Partition input across 
different Processors (batch dimension)

Model Parallelism: Partition weights 
across different Processes (W dimension) 

Let’s discuss the communication details, step by step

P0, P1 P0 P1* P0 P1di

di B/P B/P

W X Y
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Model Parallelism: Forward Pass
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Ylocal
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• Requires an all gather communication so that 
all processes get each others activation data

• Same cost as all reduce without the 2x factor
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Model Parallelism: Backward Pass
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No communication needed as every processor only needs 
the gradient of its own parameters



Backward Pass
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• Aggregating input gradient requires an 
allreduce operation
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Communication Complexity Analysis
In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the 
activations

2. All reduce operation for backpropagating activation 
gradients

All Gather All Reduce
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Model vs Data Parallelism?
Ø When does it make sense to use Model vs Data 

Parallelism?
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Ø Model parallelism reduces the quadratic comm on di

Ø It is useful for layers with very large weights di >> 1

Ø It makes sense to use an integrated/hybrid data and model parallelism

Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks."  SPAA, 2018.



Model Parallelism Summary

Ø More optimal comm time for large FC layers than Data 
parallel approach

Ø Makes training large models feasible by breaking it into 
smaller parts

Ø However, requires blocking collective communication 
during both forward pass (all gather), as well as backwards 
pass (all reduce)

Ø Slightly harder to implement than data parallel

Ø Processes are never idle



Spatial Parallelism



Spatial Parallel Training

Ø The general idea is to break the input into smaller pieces 
and distribute the work among different processors
Ø Need to exchange boundary points for spatial convolutions

GPU1 GPU2

GPU3 GPU4

64 px 64 + 1 + 1 px

GPU1 GPU2

GPU3 GPU4

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
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Communication Complexity

64 + 1 + 1 px

GPU1 GPU2

GPU3 GPU4

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks."  SPAA, 2018.
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Exchanging horizontal 
pixels

Exchanging vertical pixels

All reduce Cost
(same as before)



Useful for High Resolution Training

Ø Domain parallel scaling on V100 GPUs
Ø 3x3 Conv, Batch=32, Channel=64

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.



Spatial Parallelism Summary

Ø A little harder to implement since you need to exchange 
the boundary points

Ø Only effective for high resolution input data
Ø Limits the number of processors that can be effectively utilized

GPU1 GPU2

GPU3 GPU4


